|
"""TODO(drop): Add a description here.""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{Dua2019DROP, |
|
author={Dheeru Dua and Yizhong Wang and Pradeep Dasigi and Gabriel Stanovsky and Sameer Singh and Matt Gardner}, |
|
title={DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs}, |
|
booktitle={Proc. of NAACL}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. |
|
. DROP is a crowdsourced, adversarially-created, 96k-question benchmark, in which a system must resolve references in a |
|
question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or |
|
sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was |
|
necessary for prior datasets. |
|
""" |
|
_URL = "https://s3-us-west-2.amazonaws.com/allennlp/datasets/drop/drop_dataset.zip" |
|
|
|
|
|
class AnswerParsingError(Exception): |
|
pass |
|
|
|
|
|
class DropDateObject: |
|
""" |
|
Custom parser for date answers in DROP. |
|
A date answer is a dict <date> with at least one of day|month|year. |
|
|
|
Example: date == { |
|
'day': '9', |
|
'month': 'March', |
|
'year': '2021' |
|
} |
|
|
|
This dict is parsed and flattend to '{day} {month} {year}', not including |
|
blank values. |
|
|
|
Example: str(DropDateObject(date)) == '9 March 2021' |
|
""" |
|
|
|
def __init__(self, dict_date): |
|
self.year = dict_date.get("year", "") |
|
self.month = dict_date.get("month", "") |
|
self.day = dict_date.get("day", "") |
|
|
|
def __iter__(self): |
|
yield from [self.day, self.month, self.year] |
|
|
|
def __bool__(self): |
|
return any(self) |
|
|
|
def __repr__(self): |
|
return " ".join(self).strip() |
|
|
|
|
|
class Drop(datasets.GeneratorBasedBuilder): |
|
"""TODO(drop): Short description of my dataset.""" |
|
|
|
|
|
VERSION = datasets.Version("0.1.0") |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"section_id": datasets.Value("string"), |
|
"query_id": datasets.Value("string"), |
|
"passage": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers_spans": datasets.features.Sequence( |
|
{"spans": datasets.Value("string"), "types": datasets.Value("string")} |
|
) |
|
|
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://allennlp.org/drop", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
data_dir = os.path.join(dl_dir, "drop_dataset") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_train.json"), "split": "train"}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={"filepath": os.path.join(data_dir, "drop_dataset_dev.json"), "split": "validation"}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
with open(filepath, mode="r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
id_ = 0 |
|
for i, (section_id, section) in enumerate(data.items()): |
|
for j, qa in enumerate(section["qa_pairs"]): |
|
|
|
example = { |
|
"section_id": section_id, |
|
"query_id": qa["query_id"], |
|
"passage": section["passage"], |
|
"question": qa["question"], |
|
} |
|
|
|
if split == "train": |
|
answers = [qa["answer"]] |
|
else: |
|
answers = qa["validated_answers"] |
|
|
|
try: |
|
example["answers_spans"] = self.build_answers(answers) |
|
yield id_, example |
|
id_ += 1 |
|
except AnswerParsingError: |
|
|
|
|
|
continue |
|
|
|
@staticmethod |
|
def _raise(message): |
|
""" |
|
Raise a custom AnswerParsingError, to be sure to only catch our own |
|
errors. Messages are irrelavant for this script, but are written to |
|
ease understanding the code. |
|
""" |
|
raise AnswerParsingError(message) |
|
|
|
def build_answers(self, answers): |
|
|
|
returned_answers = { |
|
"spans": list(), |
|
"types": list(), |
|
} |
|
for answer in answers: |
|
date = DropDateObject(answer["date"]) |
|
|
|
if answer["number"] != "": |
|
|
|
if date: |
|
self._raise("This answer is both number and date!") |
|
if len(answer["spans"]): |
|
self._raise("This answer is both number and text!") |
|
|
|
returned_answers["spans"].append(answer["number"]) |
|
returned_answers["types"].append("number") |
|
|
|
elif date: |
|
|
|
if len(answer["spans"]): |
|
self._raise("This answer is both date and text!") |
|
|
|
returned_answers["spans"].append(str(date)) |
|
returned_answers["types"].append("date") |
|
|
|
|
|
for span in answer["spans"]: |
|
|
|
if answer["number"] != "": |
|
self._raise("This answer is both text and number!") |
|
if date: |
|
self._raise("This answer is both text and date!") |
|
|
|
returned_answers["spans"].append(span) |
|
returned_answers["types"].append("span") |
|
|
|
|
|
_len = len(returned_answers["spans"]) |
|
if not _len: |
|
self._raise("Empty answer.") |
|
if any(len(l) != _len for _, l in returned_answers.items()): |
|
self._raise("Something went wrong while parsing answer values/types") |
|
|
|
return returned_answers |
|
|