Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
sentiment-classification
Languages:
Turkish
Size:
10K - 100K
Tags:
sentiment
License:
File size: 10,368 Bytes
5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 61f7125 5e5b162 cc8657e 5e5b162 b08f474 465a7f1 fee37f0 b08f474 fee37f0 b08f474 60d89a9 b08f474 60d89a9 b08f474 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 |
---
annotations_creators:
- Duygu Altinok
language:
- tr
license:
- cc-by-sa-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: TurkishHateMap (Hate Map of Türkiye)
config_names:
- animals
- cities
- ethnicity
- lgbt
- misogyny
- occupations
- politics
- political-orientation
- refugees
- religion
- sects
- veganism
tags:
- sentiment
dataset_info:
- config_name: animals
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: train
num_bytes: 1346938
num_examples: 996
- name: validation
num_bytes: 133450
num_examples: 113
- name: test
num_bytes: 176992
num_examples: 115
- config_name: cities
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 118338
num_examples: 121
- name: train
num_bytes: 979370
num_examples: 1042
- name: validation
num_bytes: 100464
num_examples: 103
- config_name: ethnicity
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 417886
num_examples: 456
- name: train
num_bytes: 3765287
num_examples: 3519
- name: validation
num_bytes: 375519
num_examples: 432
- config_name: lgbt
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 120004
num_examples: 114
- name: train
num_bytes: 1105912
num_examples: 949
- name: validation
num_bytes: 125561
num_examples: 105
- config_name: misogyny
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 1688127
num_examples: 1960
- name: train
num_bytes: 15222910
num_examples: 16136
- name: validation
num_bytes: 1787328
num_examples: 1902
- config_name: occupations
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 90756
num_examples: 81
- name: train
num_bytes: 785293
num_examples: 712
- name: validation
num_bytes: 82215
num_examples: 79
- config_name: politics
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 1247514
num_examples: 1182
- name: train
num_bytes: 11384519
num_examples: 10249
- name: validation
num_bytes: 1285706
num_examples: 1228
- config_name: political-orientation
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 300627
num_examples: 305
- name: train
num_bytes: 2949075
num_examples: 2772
- name: validation
num_bytes: 343262
num_examples: 342
- config_name: refugees
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 249765
num_examples: 203
- name: train
num_bytes: 2012525
num_examples: 1688
- name: validation
num_bytes: 245659
num_examples: 220
- config_name: religion
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 322690
num_examples: 197
- name: train
num_bytes: 2439952
num_examples: 1734
- name: validation
num_bytes: 341733
num_examples: 213
- config_name: sects
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 153362
num_examples: 145
- name: train
num_bytes: 1423249
num_examples: 1278
- name: validation
num_bytes: 132721
num_examples: 148
- config_name: veganism
features:
- name: baslik
dtype: string
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
0: offensive
1: hate
2: neutral
3: civilized
splits:
- name: test
num_bytes: 191878
num_examples: 121
- name: train
num_bytes: 1772770
num_examples: 1100
- name: validation
num_bytes: 200298
num_examples: 115
configs:
- config_name: animals
data_files:
- split: train
path: animals/train*
- split: validation
path: animals/valid*
- split: test
path: animals/test*
- config_name: cities
data_files:
- split: train
path: cities/train*
- split: validation
path: cities/valid*
- split: test
path: cities/test*
- config_name: ethnicity
data_files:
- split: train
path: ethnicity/train*
- split: validation
path: ethnicity/valid*
- split: test
path: ethnicity/test*
- config_name: lgbt
data_files:
- split: train
path: lgbt/train*
- split: validation
path: lgbt/valid*
- split: test
path: lgbt/test*
- config_name: misogyny
data_files:
- split: train
path: misogyny/train*
- split: validation
path: misogyny/valid*
- split: test
path: misogyny/test*
- config_name: occupations
data_files:
- split: train
path: occupations/train*
- split: validation
path: occupations/valid*
- split: test
path: occupations/test*
- config_name: politics
data_files:
- split: train
path: politics/train*
- split: validation
path: politics/valid*
- split: test
path: politics/test*
- config_name: political-orientation
data_files:
- split: train
path: political-orientation/train*
- split: validation
path: political-orientation/valid*
- split: test
path: political-orientation/test*
- config_name: refugees
data_files:
- split: train
path: refugees/train*
- split: validation
path: refugees/valid*
- split: test
path: refugees/test*
- config_name: religion
data_files:
- split: train
path: religion/train*
- split: validation
path: religion/valid*
- split: test
path: religion/test*
- config_name: sects
data_files:
- split: train
path: sects/train*
- split: validation
path: sects/valid*
- split: test
path: sects/test*
- config_name: veganism
data_files:
- split: train
path: veganism/train*
- split: validation
path: veganism/valid*
- split: test
path: veganism/test*
---
# Turkish Hate Map - A Large Scale and Diverse Hate Speech Dataset for Turkish
<img src="https://raw.githubusercontent.com/turkish-nlp-suite/.github/main/profile/tuhamalogo.png" width="50%" height="50%">
## Dataset Summary
Turkish Hate Map (TuHaMa for short) is a big scale Turkish hate speech dataset that includes diverse target groups such as misogyny,
political animosity, animal aversion, vegan antipathy, ethnic group hostility, and more. The dataset includes a total of 52K instances with 13 target groups.
The dataset includes 4 labels, **offensive**, **hate**, **neutral** and **civilized**.
Here is the distribution of target groups:
| Target group | size |
|---|---|
| Animals | 1.2K |
| Cities | 1.2K |
| Ethnic groups | 4.4K |
| LGBT | 1.1K |
| Misogyny | 19.9K |
| Occupations | 0.8K |
| Politics | 12.6 |
| Political orientation | 3.4K |
| Refugees | 2.1K |
| Religion | 2.1K |
| Sects | 1.5K |
| Veganism | 1.3K |
| Total | 52K |
All text is scraped from Eksisozluk.com in a targeted manner and sampled. The annotations are done by the data company [Co-one](https://www.co-one.co/). For more details please refer to the [research paper]()
## Dataset Instances
An instance looks like:
```
{
"baslik": "soyleyecek-cok-seyi-oldugu-halde-susan-kadin",
"text": "her susuşunda anlatmak istediği şeyi içine atan kadındır, zamanla hissettiği her şeyi tüketir. aynı zamanda çok cookdur kendisi.",
"label": 2
}
```
## Data Split
| name |train|validation|test|
|---------|----:|---:|---:|
|Turkish Hate Map|42175|5000|5000|
## Benchmarking
This dataset is a part of [SentiTurca](https://huggingface.co/datasets/turkish-nlp-suite/SentiTurca) benchmark, in the benchmark the subset name is **hate**, named according to the GLUE tasks.
Model benchmarking information can be found under SentiTurca HF repo and benchmarking scripts can be found under [SentiTurca Github repo](https://github.com/turkish-nlp-suite/SentiTurca).
For this dataset we benchmarked a transformer based model BERTurk and a handful of LLMs. Success of each model is follows:
| Model | acc./F1 |
|---|---|
| Gemini 1.0 Pro | 0.33/0.29 |
| GPT-4 Turbo | 0.38/0.32 |
| Claude 3 Sonnet | 0.16/0.29 |
| Llama 3 70B | 0.55/0.35 |
| Qwen2-72B | 0.70/0.35 |
| BERTurk | 0.61/0.58 |
For a critique of the results, misclassified instances and more please consult to the [research paper]().
## Citation
Coming soon!! |