trojblue commited on
Commit
df9cc8d
·
verified ·
1 Parent(s): a1093ca

Upload hdf5_getters.py

Browse files
Files changed (1) hide show
  1. hdf5_getters.py +476 -0
hdf5_getters.py ADDED
@@ -0,0 +1,476 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Thierry Bertin-Mahieux (2010) Columbia University
3
4
+
5
+
6
+ This code contains a set of getters functions to access the fields
7
+ from an HDF5 song file (regular file with one song or
8
+ aggregate / summary file with many songs)
9
+
10
+ This is part of the Million Song Dataset project from
11
+ LabROSA (Columbia University) and The Echo Nest.
12
+
13
+
14
+ Copyright 2010, Thierry Bertin-Mahieux
15
+
16
+ This program is free software: you can redistribute it and/or modify
17
+ it under the terms of the GNU General Public License as published by
18
+ the Free Software Foundation, either version 3 of the License, or
19
+ (at your option) any later version.
20
+
21
+ This program is distributed in the hope that it will be useful,
22
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
23
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24
+ GNU General Public License for more details.
25
+
26
+ You should have received a copy of the GNU General Public License
27
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
28
+ """
29
+
30
+
31
+ import tables
32
+
33
+
34
+ def open_h5_file_read(h5filename):
35
+ """
36
+ Open an existing H5 in read mode.
37
+ Same function as in hdf5_utils, here so we avoid one import
38
+ """
39
+ return tables.open_file(h5filename, mode='r')
40
+
41
+
42
+ def get_num_songs(h5):
43
+ """
44
+ Return the number of songs contained in this h5 file, i.e. the number of rows
45
+ for all basic informations like name, artist, ...
46
+ """
47
+ return h5.root.metadata.songs.nrows
48
+
49
+ def get_artist_familiarity(h5,songidx=0):
50
+ """
51
+ Get artist familiarity from a HDF5 song file, by default the first song in it
52
+ """
53
+ return h5.root.metadata.songs.cols.artist_familiarity[songidx]
54
+
55
+ def get_artist_hotttnesss(h5,songidx=0):
56
+ """
57
+ Get artist hotttnesss from a HDF5 song file, by default the first song in it
58
+ """
59
+ return h5.root.metadata.songs.cols.artist_hotttnesss[songidx]
60
+
61
+ def get_artist_id(h5,songidx=0):
62
+ """
63
+ Get artist id from a HDF5 song file, by default the first song in it
64
+ """
65
+ return h5.root.metadata.songs.cols.artist_id[songidx]
66
+
67
+ def get_artist_mbid(h5,songidx=0):
68
+ """
69
+ Get artist musibrainz id from a HDF5 song file, by default the first song in it
70
+ """
71
+ return h5.root.metadata.songs.cols.artist_mbid[songidx]
72
+
73
+ def get_artist_playmeid(h5,songidx=0):
74
+ """
75
+ Get artist playme id from a HDF5 song file, by default the first song in it
76
+ """
77
+ return h5.root.metadata.songs.cols.artist_playmeid[songidx]
78
+
79
+ def get_artist_7digitalid(h5,songidx=0):
80
+ """
81
+ Get artist 7digital id from a HDF5 song file, by default the first song in it
82
+ """
83
+ return h5.root.metadata.songs.cols.artist_7digitalid[songidx]
84
+
85
+ def get_artist_latitude(h5,songidx=0):
86
+ """
87
+ Get artist latitude from a HDF5 song file, by default the first song in it
88
+ """
89
+ return h5.root.metadata.songs.cols.artist_latitude[songidx]
90
+
91
+ def get_artist_longitude(h5,songidx=0):
92
+ """
93
+ Get artist longitude from a HDF5 song file, by default the first song in it
94
+ """
95
+ return h5.root.metadata.songs.cols.artist_longitude[songidx]
96
+
97
+ def get_artist_location(h5,songidx=0):
98
+ """
99
+ Get artist location from a HDF5 song file, by default the first song in it
100
+ """
101
+ return h5.root.metadata.songs.cols.artist_location[songidx]
102
+
103
+ def get_artist_name(h5,songidx=0):
104
+ """
105
+ Get artist name from a HDF5 song file, by default the first song in it
106
+ """
107
+ return h5.root.metadata.songs.cols.artist_name[songidx]
108
+
109
+ def get_release(h5,songidx=0):
110
+ """
111
+ Get release from a HDF5 song file, by default the first song in it
112
+ """
113
+ return h5.root.metadata.songs.cols.release[songidx]
114
+
115
+ def get_release_7digitalid(h5,songidx=0):
116
+ """
117
+ Get release 7digital id from a HDF5 song file, by default the first song in it
118
+ """
119
+ return h5.root.metadata.songs.cols.release_7digitalid[songidx]
120
+
121
+ def get_song_id(h5,songidx=0):
122
+ """
123
+ Get song id from a HDF5 song file, by default the first song in it
124
+ """
125
+ return h5.root.metadata.songs.cols.song_id[songidx]
126
+
127
+ def get_song_hotttnesss(h5,songidx=0):
128
+ """
129
+ Get song hotttnesss from a HDF5 song file, by default the first song in it
130
+ """
131
+ return h5.root.metadata.songs.cols.song_hotttnesss[songidx]
132
+
133
+ def get_title(h5,songidx=0):
134
+ """
135
+ Get title from a HDF5 song file, by default the first song in it
136
+ """
137
+ return h5.root.metadata.songs.cols.title[songidx]
138
+
139
+ def get_track_7digitalid(h5,songidx=0):
140
+ """
141
+ Get track 7digital id from a HDF5 song file, by default the first song in it
142
+ """
143
+ return h5.root.metadata.songs.cols.track_7digitalid[songidx]
144
+
145
+ def get_similar_artists(h5,songidx=0):
146
+ """
147
+ Get similar artists array. Takes care of the proper indexing if we are in aggregate
148
+ file. By default, return the array for the first song in the h5 file.
149
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
150
+ """
151
+ if h5.root.metadata.songs.nrows == songidx + 1:
152
+ return h5.root.metadata.similar_artists[h5.root.metadata.songs.cols.idx_similar_artists[songidx]:]
153
+ return h5.root.metadata.similar_artists[h5.root.metadata.songs.cols.idx_similar_artists[songidx]:
154
+ h5.root.metadata.songs.cols.idx_similar_artists[songidx+1]]
155
+
156
+ def get_artist_terms(h5,songidx=0):
157
+ """
158
+ Get artist terms array. Takes care of the proper indexing if we are in aggregate
159
+ file. By default, return the array for the first song in the h5 file.
160
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
161
+ """
162
+ if h5.root.metadata.songs.nrows == songidx + 1:
163
+ return h5.root.metadata.artist_terms[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:]
164
+ return h5.root.metadata.artist_terms[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:
165
+ h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]]
166
+
167
+ def get_artist_terms_freq(h5,songidx=0):
168
+ """
169
+ Get artist terms array frequencies. Takes care of the proper indexing if we are in aggregate
170
+ file. By default, return the array for the first song in the h5 file.
171
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
172
+ """
173
+ if h5.root.metadata.songs.nrows == songidx + 1:
174
+ return h5.root.metadata.artist_terms_freq[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:]
175
+ return h5.root.metadata.artist_terms_freq[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:
176
+ h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]]
177
+
178
+ def get_artist_terms_weight(h5,songidx=0):
179
+ """
180
+ Get artist terms array frequencies. Takes care of the proper indexing if we are in aggregate
181
+ file. By default, return the array for the first song in the h5 file.
182
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
183
+ """
184
+ if h5.root.metadata.songs.nrows == songidx + 1:
185
+ return h5.root.metadata.artist_terms_weight[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:]
186
+ return h5.root.metadata.artist_terms_weight[h5.root.metadata.songs.cols.idx_artist_terms[songidx]:
187
+ h5.root.metadata.songs.cols.idx_artist_terms[songidx+1]]
188
+
189
+ def get_analysis_sample_rate(h5,songidx=0):
190
+ """
191
+ Get analysis sample rate from a HDF5 song file, by default the first song in it
192
+ """
193
+ return h5.root.analysis.songs.cols.analysis_sample_rate[songidx]
194
+
195
+ def get_audio_md5(h5,songidx=0):
196
+ """
197
+ Get audio MD5 from a HDF5 song file, by default the first song in it
198
+ """
199
+ return h5.root.analysis.songs.cols.audio_md5[songidx]
200
+
201
+ def get_danceability(h5,songidx=0):
202
+ """
203
+ Get danceability from a HDF5 song file, by default the first song in it
204
+ """
205
+ return h5.root.analysis.songs.cols.danceability[songidx]
206
+
207
+ def get_duration(h5,songidx=0):
208
+ """
209
+ Get duration from a HDF5 song file, by default the first song in it
210
+ """
211
+ return h5.root.analysis.songs.cols.duration[songidx]
212
+
213
+ def get_end_of_fade_in(h5,songidx=0):
214
+ """
215
+ Get end of fade in from a HDF5 song file, by default the first song in it
216
+ """
217
+ return h5.root.analysis.songs.cols.end_of_fade_in[songidx]
218
+
219
+ def get_energy(h5,songidx=0):
220
+ """
221
+ Get energy from a HDF5 song file, by default the first song in it
222
+ """
223
+ return h5.root.analysis.songs.cols.energy[songidx]
224
+
225
+ def get_key(h5,songidx=0):
226
+ """
227
+ Get key from a HDF5 song file, by default the first song in it
228
+ """
229
+ return h5.root.analysis.songs.cols.key[songidx]
230
+
231
+ def get_key_confidence(h5,songidx=0):
232
+ """
233
+ Get key confidence from a HDF5 song file, by default the first song in it
234
+ """
235
+ return h5.root.analysis.songs.cols.key_confidence[songidx]
236
+
237
+ def get_loudness(h5,songidx=0):
238
+ """
239
+ Get loudness from a HDF5 song file, by default the first song in it
240
+ """
241
+ return h5.root.analysis.songs.cols.loudness[songidx]
242
+
243
+ def get_mode(h5,songidx=0):
244
+ """
245
+ Get mode from a HDF5 song file, by default the first song in it
246
+ """
247
+ return h5.root.analysis.songs.cols.mode[songidx]
248
+
249
+ def get_mode_confidence(h5,songidx=0):
250
+ """
251
+ Get mode confidence from a HDF5 song file, by default the first song in it
252
+ """
253
+ return h5.root.analysis.songs.cols.mode_confidence[songidx]
254
+
255
+ def get_start_of_fade_out(h5,songidx=0):
256
+ """
257
+ Get start of fade out from a HDF5 song file, by default the first song in it
258
+ """
259
+ return h5.root.analysis.songs.cols.start_of_fade_out[songidx]
260
+
261
+ def get_tempo(h5,songidx=0):
262
+ """
263
+ Get tempo from a HDF5 song file, by default the first song in it
264
+ """
265
+ return h5.root.analysis.songs.cols.tempo[songidx]
266
+
267
+ def get_time_signature(h5,songidx=0):
268
+ """
269
+ Get signature from a HDF5 song file, by default the first song in it
270
+ """
271
+ return h5.root.analysis.songs.cols.time_signature[songidx]
272
+
273
+ def get_time_signature_confidence(h5,songidx=0):
274
+ """
275
+ Get signature confidence from a HDF5 song file, by default the first song in it
276
+ """
277
+ return h5.root.analysis.songs.cols.time_signature_confidence[songidx]
278
+
279
+ def get_track_id(h5,songidx=0):
280
+ """
281
+ Get track id from a HDF5 song file, by default the first song in it
282
+ """
283
+ return h5.root.analysis.songs.cols.track_id[songidx]
284
+
285
+ def get_segments_start(h5,songidx=0):
286
+ """
287
+ Get segments start array. Takes care of the proper indexing if we are in aggregate
288
+ file. By default, return the array for the first song in the h5 file.
289
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
290
+ """
291
+ if h5.root.analysis.songs.nrows == songidx + 1:
292
+ return h5.root.analysis.segments_start[h5.root.analysis.songs.cols.idx_segments_start[songidx]:]
293
+ return h5.root.analysis.segments_start[h5.root.analysis.songs.cols.idx_segments_start[songidx]:
294
+ h5.root.analysis.songs.cols.idx_segments_start[songidx+1]]
295
+
296
+ def get_segments_confidence(h5,songidx=0):
297
+ """
298
+ Get segments confidence array. Takes care of the proper indexing if we are in aggregate
299
+ file. By default, return the array for the first song in the h5 file.
300
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
301
+ """
302
+ if h5.root.analysis.songs.nrows == songidx + 1:
303
+ return h5.root.analysis.segments_confidence[h5.root.analysis.songs.cols.idx_segments_confidence[songidx]:]
304
+ return h5.root.analysis.segments_confidence[h5.root.analysis.songs.cols.idx_segments_confidence[songidx]:
305
+ h5.root.analysis.songs.cols.idx_segments_confidence[songidx+1]]
306
+
307
+ def get_segments_pitches(h5,songidx=0):
308
+ """
309
+ Get segments pitches array. Takes care of the proper indexing if we are in aggregate
310
+ file. By default, return the array for the first song in the h5 file.
311
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
312
+ """
313
+ if h5.root.analysis.songs.nrows == songidx + 1:
314
+ return h5.root.analysis.segments_pitches[h5.root.analysis.songs.cols.idx_segments_pitches[songidx]:,:]
315
+ return h5.root.analysis.segments_pitches[h5.root.analysis.songs.cols.idx_segments_pitches[songidx]:
316
+ h5.root.analysis.songs.cols.idx_segments_pitches[songidx+1],:]
317
+
318
+ def get_segments_timbre(h5,songidx=0):
319
+ """
320
+ Get segments timbre array. Takes care of the proper indexing if we are in aggregate
321
+ file. By default, return the array for the first song in the h5 file.
322
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
323
+ """
324
+ if h5.root.analysis.songs.nrows == songidx + 1:
325
+ return h5.root.analysis.segments_timbre[h5.root.analysis.songs.cols.idx_segments_timbre[songidx]:,:]
326
+ return h5.root.analysis.segments_timbre[h5.root.analysis.songs.cols.idx_segments_timbre[songidx]:
327
+ h5.root.analysis.songs.cols.idx_segments_timbre[songidx+1],:]
328
+
329
+ def get_segments_loudness_max(h5,songidx=0):
330
+ """
331
+ Get segments loudness max array. Takes care of the proper indexing if we are in aggregate
332
+ file. By default, return the array for the first song in the h5 file.
333
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
334
+ """
335
+ if h5.root.analysis.songs.nrows == songidx + 1:
336
+ return h5.root.analysis.segments_loudness_max[h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx]:]
337
+ return h5.root.analysis.segments_loudness_max[h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx]:
338
+ h5.root.analysis.songs.cols.idx_segments_loudness_max[songidx+1]]
339
+
340
+ def get_segments_loudness_max_time(h5,songidx=0):
341
+ """
342
+ Get segments loudness max time array. Takes care of the proper indexing if we are in aggregate
343
+ file. By default, return the array for the first song in the h5 file.
344
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
345
+ """
346
+ if h5.root.analysis.songs.nrows == songidx + 1:
347
+ return h5.root.analysis.segments_loudness_max_time[h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx]:]
348
+ return h5.root.analysis.segments_loudness_max_time[h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx]:
349
+ h5.root.analysis.songs.cols.idx_segments_loudness_max_time[songidx+1]]
350
+
351
+ def get_segments_loudness_start(h5,songidx=0):
352
+ """
353
+ Get segments loudness start array. Takes care of the proper indexing if we are in aggregate
354
+ file. By default, return the array for the first song in the h5 file.
355
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
356
+ """
357
+ if h5.root.analysis.songs.nrows == songidx + 1:
358
+ return h5.root.analysis.segments_loudness_start[h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx]:]
359
+ return h5.root.analysis.segments_loudness_start[h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx]:
360
+ h5.root.analysis.songs.cols.idx_segments_loudness_start[songidx+1]]
361
+
362
+ def get_sections_start(h5,songidx=0):
363
+ """
364
+ Get sections start array. Takes care of the proper indexing if we are in aggregate
365
+ file. By default, return the array for the first song in the h5 file.
366
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
367
+ """
368
+ if h5.root.analysis.songs.nrows == songidx + 1:
369
+ return h5.root.analysis.sections_start[h5.root.analysis.songs.cols.idx_sections_start[songidx]:]
370
+ return h5.root.analysis.sections_start[h5.root.analysis.songs.cols.idx_sections_start[songidx]:
371
+ h5.root.analysis.songs.cols.idx_sections_start[songidx+1]]
372
+
373
+ def get_sections_confidence(h5,songidx=0):
374
+ """
375
+ Get sections confidence array. Takes care of the proper indexing if we are in aggregate
376
+ file. By default, return the array for the first song in the h5 file.
377
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
378
+ """
379
+ if h5.root.analysis.songs.nrows == songidx + 1:
380
+ return h5.root.analysis.sections_confidence[h5.root.analysis.songs.cols.idx_sections_confidence[songidx]:]
381
+ return h5.root.analysis.sections_confidence[h5.root.analysis.songs.cols.idx_sections_confidence[songidx]:
382
+ h5.root.analysis.songs.cols.idx_sections_confidence[songidx+1]]
383
+
384
+ def get_beats_start(h5,songidx=0):
385
+ """
386
+ Get beats start array. Takes care of the proper indexing if we are in aggregate
387
+ file. By default, return the array for the first song in the h5 file.
388
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
389
+ """
390
+ if h5.root.analysis.songs.nrows == songidx + 1:
391
+ return h5.root.analysis.beats_start[h5.root.analysis.songs.cols.idx_beats_start[songidx]:]
392
+ return h5.root.analysis.beats_start[h5.root.analysis.songs.cols.idx_beats_start[songidx]:
393
+ h5.root.analysis.songs.cols.idx_beats_start[songidx+1]]
394
+
395
+ def get_beats_confidence(h5,songidx=0):
396
+ """
397
+ Get beats confidence array. Takes care of the proper indexing if we are in aggregate
398
+ file. By default, return the array for the first song in the h5 file.
399
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
400
+ """
401
+ if h5.root.analysis.songs.nrows == songidx + 1:
402
+ return h5.root.analysis.beats_confidence[h5.root.analysis.songs.cols.idx_beats_confidence[songidx]:]
403
+ return h5.root.analysis.beats_confidence[h5.root.analysis.songs.cols.idx_beats_confidence[songidx]:
404
+ h5.root.analysis.songs.cols.idx_beats_confidence[songidx+1]]
405
+
406
+ def get_bars_start(h5,songidx=0):
407
+ """
408
+ Get bars start array. Takes care of the proper indexing if we are in aggregate
409
+ file. By default, return the array for the first song in the h5 file.
410
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
411
+ """
412
+ if h5.root.analysis.songs.nrows == songidx + 1:
413
+ return h5.root.analysis.bars_start[h5.root.analysis.songs.cols.idx_bars_start[songidx]:]
414
+ return h5.root.analysis.bars_start[h5.root.analysis.songs.cols.idx_bars_start[songidx]:
415
+ h5.root.analysis.songs.cols.idx_bars_start[songidx+1]]
416
+
417
+ def get_bars_confidence(h5,songidx=0):
418
+ """
419
+ Get bars start array. Takes care of the proper indexing if we are in aggregate
420
+ file. By default, return the array for the first song in the h5 file.
421
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
422
+ """
423
+ if h5.root.analysis.songs.nrows == songidx + 1:
424
+ return h5.root.analysis.bars_confidence[h5.root.analysis.songs.cols.idx_bars_confidence[songidx]:]
425
+ return h5.root.analysis.bars_confidence[h5.root.analysis.songs.cols.idx_bars_confidence[songidx]:
426
+ h5.root.analysis.songs.cols.idx_bars_confidence[songidx+1]]
427
+
428
+ def get_tatums_start(h5,songidx=0):
429
+ """
430
+ Get tatums start array. Takes care of the proper indexing if we are in aggregate
431
+ file. By default, return the array for the first song in the h5 file.
432
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
433
+ """
434
+ if h5.root.analysis.songs.nrows == songidx + 1:
435
+ return h5.root.analysis.tatums_start[h5.root.analysis.songs.cols.idx_tatums_start[songidx]:]
436
+ return h5.root.analysis.tatums_start[h5.root.analysis.songs.cols.idx_tatums_start[songidx]:
437
+ h5.root.analysis.songs.cols.idx_tatums_start[songidx+1]]
438
+
439
+ def get_tatums_confidence(h5,songidx=0):
440
+ """
441
+ Get tatums confidence array. Takes care of the proper indexing if we are in aggregate
442
+ file. By default, return the array for the first song in the h5 file.
443
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
444
+ """
445
+ if h5.root.analysis.songs.nrows == songidx + 1:
446
+ return h5.root.analysis.tatums_confidence[h5.root.analysis.songs.cols.idx_tatums_confidence[songidx]:]
447
+ return h5.root.analysis.tatums_confidence[h5.root.analysis.songs.cols.idx_tatums_confidence[songidx]:
448
+ h5.root.analysis.songs.cols.idx_tatums_confidence[songidx+1]]
449
+
450
+ def get_artist_mbtags(h5,songidx=0):
451
+ """
452
+ Get artist musicbrainz tag array. Takes care of the proper indexing if we are in aggregate
453
+ file. By default, return the array for the first song in the h5 file.
454
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
455
+ """
456
+ if h5.root.musicbrainz.songs.nrows == songidx + 1:
457
+ return h5.root.musicbrainz.artist_mbtags[h5.root.musicbrainz.songs.cols.idx_artist_mbtags[songidx]:]
458
+ return h5.root.musicbrainz.artist_mbtags[h5.root.metadata.songs.cols.idx_artist_mbtags[songidx]:
459
+ h5.root.metadata.songs.cols.idx_artist_mbtags[songidx+1]]
460
+
461
+ def get_artist_mbtags_count(h5,songidx=0):
462
+ """
463
+ Get artist musicbrainz tag count array. Takes care of the proper indexing if we are in aggregate
464
+ file. By default, return the array for the first song in the h5 file.
465
+ To get a regular numpy ndarray, cast the result to: numpy.array( )
466
+ """
467
+ if h5.root.musicbrainz.songs.nrows == songidx + 1:
468
+ return h5.root.musicbrainz.artist_mbtags_count[h5.root.musicbrainz.songs.cols.idx_artist_mbtags[songidx]:]
469
+ return h5.root.musicbrainz.artist_mbtags_count[h5.root.metadata.songs.cols.idx_artist_mbtags[songidx]:
470
+ h5.root.metadata.songs.cols.idx_artist_mbtags[songidx+1]]
471
+
472
+ def get_year(h5,songidx=0):
473
+ """
474
+ Get release year from a HDF5 song file, by default the first song in it
475
+ """
476
+ return h5.root.musicbrainz.songs.cols.year[songidx]