Upload convert_million_songs_dataset.ipynb
Browse files
convert_million_songs_dataset.ipynb
ADDED
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"see: http://millionsongdataset.com/pages/getting-dataset/#subset"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"# !wget http://labrosa.ee.columbia.edu/~dpwe/tmp/millionsongsubset.tar.gz\n",
|
17 |
+
"# !tar -xvzf millionsongsubset.tar.gz"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": null,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [],
|
25 |
+
"source": [
|
26 |
+
"# !pip install pandas h5py pyarrow fastparquet"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": 2,
|
32 |
+
"metadata": {},
|
33 |
+
"outputs": [],
|
34 |
+
"source": [
|
35 |
+
"import os\n",
|
36 |
+
"import h5py\n",
|
37 |
+
"import pandas as pd\n",
|
38 |
+
"from tqdm.auto import tqdm\n",
|
39 |
+
"\n",
|
40 |
+
"import unibox as ub"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": null,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [
|
48 |
+
{
|
49 |
+
"data": {
|
50 |
+
"application/vnd.jupyter.widget-view+json": {
|
51 |
+
"model_id": "a7418816c46f4f5b95a8c7e307b6e569",
|
52 |
+
"version_major": 2,
|
53 |
+
"version_minor": 0
|
54 |
+
},
|
55 |
+
"text/plain": [
|
56 |
+
"Listing local files: 0files [00:00, ?files/s]"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
"metadata": {},
|
60 |
+
"output_type": "display_data"
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"data": {
|
64 |
+
"text/plain": [
|
65 |
+
"10000"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
"execution_count": 4,
|
69 |
+
"metadata": {},
|
70 |
+
"output_type": "execute_result"
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"source": [
|
74 |
+
"len(ub.ls(\"../data/MillionSongSubset\", [\".h5\"]))"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"cell_type": "code",
|
79 |
+
"execution_count": 5,
|
80 |
+
"metadata": {},
|
81 |
+
"outputs": [
|
82 |
+
{
|
83 |
+
"name": "stderr",
|
84 |
+
"output_type": "stream",
|
85 |
+
"text": [
|
86 |
+
"100%|██████████| 10000/10000 [00:39<00:00, 250.36it/s]\n"
|
87 |
+
]
|
88 |
+
}
|
89 |
+
],
|
90 |
+
"source": [
|
91 |
+
"import os\n",
|
92 |
+
"import pandas as pd\n",
|
93 |
+
"import numpy as np\n",
|
94 |
+
"import hdf5_getters\n",
|
95 |
+
"import h5py\n",
|
96 |
+
"from tqdm import tqdm\n",
|
97 |
+
"from concurrent.futures import ProcessPoolExecutor\n",
|
98 |
+
"\n",
|
99 |
+
"# Define dataset path\n",
|
100 |
+
"dataset_path = \"/lv0/yada/dataproc5/data/MillionSongSubset\"\n",
|
101 |
+
"\n",
|
102 |
+
"# Function to extract all available fields from an HDF5 file\n",
|
103 |
+
"def extract_song_data(file_path):\n",
|
104 |
+
" \"\"\"Extracts all available fields from an HDF5 song file using hdf5_getters.\"\"\"\n",
|
105 |
+
" song_data = {}\n",
|
106 |
+
"\n",
|
107 |
+
" try:\n",
|
108 |
+
" with hdf5_getters.open_h5_file_read(file_path) as h5:\n",
|
109 |
+
" # Get all getter functions from hdf5_getters\n",
|
110 |
+
" getters = [func for func in dir(hdf5_getters) if func.startswith(\"get_\")]\n",
|
111 |
+
"\n",
|
112 |
+
" for getter in getters:\n",
|
113 |
+
" try:\n",
|
114 |
+
" # Dynamically call each getter function\n",
|
115 |
+
" value = getattr(hdf5_getters, getter)(h5)\n",
|
116 |
+
"\n",
|
117 |
+
" # Optimize conversions\n",
|
118 |
+
" if isinstance(value, np.ndarray):\n",
|
119 |
+
" value = value.tolist()\n",
|
120 |
+
" elif isinstance(value, bytes):\n",
|
121 |
+
" value = value.decode()\n",
|
122 |
+
"\n",
|
123 |
+
" # Store in dictionary with a cleaned-up key name\n",
|
124 |
+
" song_data[getter[4:]] = value\n",
|
125 |
+
"\n",
|
126 |
+
" except Exception:\n",
|
127 |
+
" continue # Skip errors but don't slow down\n",
|
128 |
+
"\n",
|
129 |
+
" except Exception as e:\n",
|
130 |
+
" print(f\"Error processing {file_path}: {e}\")\n",
|
131 |
+
" \n",
|
132 |
+
" return song_data\n",
|
133 |
+
"\n",
|
134 |
+
"# Function to process multiple files in parallel\n",
|
135 |
+
"def process_files_in_parallel(h5_files, num_workers=8):\n",
|
136 |
+
" \"\"\"Processes multiple .h5 files in parallel.\"\"\"\n",
|
137 |
+
" all_songs = []\n",
|
138 |
+
"\n",
|
139 |
+
" with ProcessPoolExecutor(max_workers=num_workers) as executor:\n",
|
140 |
+
" for song_data in tqdm(executor.map(extract_song_data, h5_files), total=len(h5_files)):\n",
|
141 |
+
" if song_data:\n",
|
142 |
+
" all_songs.append(song_data)\n",
|
143 |
+
" \n",
|
144 |
+
" return all_songs\n",
|
145 |
+
"\n",
|
146 |
+
"# Find all .h5 files\n",
|
147 |
+
"h5_files = [os.path.join(root, file) for root, _, files in os.walk(dataset_path) for file in files if file.endswith(\".h5\")]\n",
|
148 |
+
"\n",
|
149 |
+
"# Process files in parallel\n",
|
150 |
+
"all_songs = process_files_in_parallel(h5_files, num_workers=24)\n",
|
151 |
+
"\n",
|
152 |
+
"# Convert to Pandas DataFrame\n",
|
153 |
+
"df = pd.DataFrame(all_songs)"
|
154 |
+
]
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"cell_type": "code",
|
158 |
+
"execution_count": 9,
|
159 |
+
"metadata": {},
|
160 |
+
"outputs": [
|
161 |
+
{
|
162 |
+
"name": "stdout",
|
163 |
+
"output_type": "stream",
|
164 |
+
"text": [
|
165 |
+
"(10000, 55)\n",
|
166 |
+
"Index(['analysis_sample_rate', 'artist_7digitalid', 'artist_familiarity',\n",
|
167 |
+
" 'artist_hotttnesss', 'artist_id', 'artist_latitude', 'artist_location',\n",
|
168 |
+
" 'artist_longitude', 'artist_mbid', 'artist_mbtags',\n",
|
169 |
+
" 'artist_mbtags_count', 'artist_name', 'artist_playmeid', 'artist_terms',\n",
|
170 |
+
" 'artist_terms_freq', 'artist_terms_weight', 'audio_md5',\n",
|
171 |
+
" 'bars_confidence', 'bars_start', 'beats_confidence', 'beats_start',\n",
|
172 |
+
" 'danceability', 'duration', 'end_of_fade_in', 'energy', 'key',\n",
|
173 |
+
" 'key_confidence', 'loudness', 'mode', 'mode_confidence', 'num_songs',\n",
|
174 |
+
" 'release', 'release_7digitalid', 'sections_confidence',\n",
|
175 |
+
" 'sections_start', 'segments_confidence', 'segments_loudness_max',\n",
|
176 |
+
" 'segments_loudness_max_time', 'segments_loudness_start',\n",
|
177 |
+
" 'segments_pitches', 'segments_start', 'segments_timbre',\n",
|
178 |
+
" 'similar_artists', 'song_hotttnesss', 'song_id', 'start_of_fade_out',\n",
|
179 |
+
" 'tatums_confidence', 'tatums_start', 'tempo', 'time_signature',\n",
|
180 |
+
" 'time_signature_confidence', 'title', 'track_7digitalid', 'track_id',\n",
|
181 |
+
" 'year'],\n",
|
182 |
+
" dtype='object')\n"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"data": {
|
187 |
+
"text/html": [
|
188 |
+
"<div>\n",
|
189 |
+
"<style scoped>\n",
|
190 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
191 |
+
" vertical-align: middle;\n",
|
192 |
+
" }\n",
|
193 |
+
"\n",
|
194 |
+
" .dataframe tbody tr th {\n",
|
195 |
+
" vertical-align: top;\n",
|
196 |
+
" }\n",
|
197 |
+
"\n",
|
198 |
+
" .dataframe thead th {\n",
|
199 |
+
" text-align: right;\n",
|
200 |
+
" }\n",
|
201 |
+
"</style>\n",
|
202 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
203 |
+
" <thead>\n",
|
204 |
+
" <tr style=\"text-align: right;\">\n",
|
205 |
+
" <th></th>\n",
|
206 |
+
" <th>analysis_sample_rate</th>\n",
|
207 |
+
" <th>artist_7digitalid</th>\n",
|
208 |
+
" <th>artist_familiarity</th>\n",
|
209 |
+
" <th>artist_hotttnesss</th>\n",
|
210 |
+
" <th>artist_id</th>\n",
|
211 |
+
" <th>artist_latitude</th>\n",
|
212 |
+
" <th>artist_location</th>\n",
|
213 |
+
" <th>artist_longitude</th>\n",
|
214 |
+
" <th>artist_mbid</th>\n",
|
215 |
+
" <th>artist_mbtags</th>\n",
|
216 |
+
" <th>...</th>\n",
|
217 |
+
" <th>start_of_fade_out</th>\n",
|
218 |
+
" <th>tatums_confidence</th>\n",
|
219 |
+
" <th>tatums_start</th>\n",
|
220 |
+
" <th>tempo</th>\n",
|
221 |
+
" <th>time_signature</th>\n",
|
222 |
+
" <th>time_signature_confidence</th>\n",
|
223 |
+
" <th>title</th>\n",
|
224 |
+
" <th>track_7digitalid</th>\n",
|
225 |
+
" <th>track_id</th>\n",
|
226 |
+
" <th>year</th>\n",
|
227 |
+
" </tr>\n",
|
228 |
+
" </thead>\n",
|
229 |
+
" <tbody>\n",
|
230 |
+
" <tr>\n",
|
231 |
+
" <th>0</th>\n",
|
232 |
+
" <td>22050</td>\n",
|
233 |
+
" <td>174717</td>\n",
|
234 |
+
" <td>0.450743</td>\n",
|
235 |
+
" <td>0.331215</td>\n",
|
236 |
+
" <td>AR1DGSO1187FB59B15</td>\n",
|
237 |
+
" <td>NaN</td>\n",
|
238 |
+
" <td></td>\n",
|
239 |
+
" <td>NaN</td>\n",
|
240 |
+
" <td>fe4e71a9-ddb9-47b5-9e2e-ec53862a91c6</td>\n",
|
241 |
+
" <td>[]</td>\n",
|
242 |
+
" <td>...</td>\n",
|
243 |
+
" <td>266.879</td>\n",
|
244 |
+
" <td>[0.0, 0.0, 0.896, 0.819, 0.664, 0.693, 0.67, 0...</td>\n",
|
245 |
+
" <td>[0.16738, 0.44887, 0.73036, 1.09072, 1.44407, ...</td>\n",
|
246 |
+
" <td>107.053</td>\n",
|
247 |
+
" <td>4</td>\n",
|
248 |
+
" <td>0.657</td>\n",
|
249 |
+
" <td>Jody</td>\n",
|
250 |
+
" <td>2555900</td>\n",
|
251 |
+
" <td>TRAHHUN128F4227029</td>\n",
|
252 |
+
" <td>0</td>\n",
|
253 |
+
" </tr>\n",
|
254 |
+
" <tr>\n",
|
255 |
+
" <th>1</th>\n",
|
256 |
+
" <td>22050</td>\n",
|
257 |
+
" <td>7173</td>\n",
|
258 |
+
" <td>0.392710</td>\n",
|
259 |
+
" <td>0.311789</td>\n",
|
260 |
+
" <td>ARO6WZY1187FB3A86E</td>\n",
|
261 |
+
" <td>NaN</td>\n",
|
262 |
+
" <td></td>\n",
|
263 |
+
" <td>NaN</td>\n",
|
264 |
+
" <td>23f7ad3f-a189-4a1c-9991-4763ded495a7</td>\n",
|
265 |
+
" <td>[]</td>\n",
|
266 |
+
" <td>...</td>\n",
|
267 |
+
" <td>321.300</td>\n",
|
268 |
+
" <td>[0.451, 0.426, 0.396, 0.32, 0.255, 0.204, 0.15...</td>\n",
|
269 |
+
" <td>[0.05024, 0.25641, 0.46357, 0.66974, 0.87691, ...</td>\n",
|
270 |
+
" <td>149.853</td>\n",
|
271 |
+
" <td>3</td>\n",
|
272 |
+
" <td>1.000</td>\n",
|
273 |
+
" <td>Turntable Terrorist</td>\n",
|
274 |
+
" <td>5591259</td>\n",
|
275 |
+
" <td>TRAHHMM128F932D5D9</td>\n",
|
276 |
+
" <td>1995</td>\n",
|
277 |
+
" </tr>\n",
|
278 |
+
" <tr>\n",
|
279 |
+
" <th>2</th>\n",
|
280 |
+
" <td>22050</td>\n",
|
281 |
+
" <td>2759</td>\n",
|
282 |
+
" <td>0.602767</td>\n",
|
283 |
+
" <td>0.463193</td>\n",
|
284 |
+
" <td>ARH1LE01187B98D68D</td>\n",
|
285 |
+
" <td>NaN</td>\n",
|
286 |
+
" <td></td>\n",
|
287 |
+
" <td>NaN</td>\n",
|
288 |
+
" <td>3df3a779-a7b1-4362-a8b4-9ae6c7eb623d</td>\n",
|
289 |
+
" <td>[b'american', b'soundtrack']</td>\n",
|
290 |
+
" <td>...</td>\n",
|
291 |
+
" <td>67.895</td>\n",
|
292 |
+
" <td>[0.056, 0.058, 0.056, 0.059, 0.097, 0.093, 0.0...</td>\n",
|
293 |
+
" <td>[0.54095, 0.86496, 1.20205, 1.52933, 1.85662, ...</td>\n",
|
294 |
+
" <td>91.249</td>\n",
|
295 |
+
" <td>4</td>\n",
|
296 |
+
" <td>0.568</td>\n",
|
297 |
+
" <td>Porcelain Man</td>\n",
|
298 |
+
" <td>7341937</td>\n",
|
299 |
+
" <td>TRAHHJY12903CA73BD</td>\n",
|
300 |
+
" <td>1999</td>\n",
|
301 |
+
" </tr>\n",
|
302 |
+
" </tbody>\n",
|
303 |
+
"</table>\n",
|
304 |
+
"<p>3 rows × 55 columns</p>\n",
|
305 |
+
"</div>"
|
306 |
+
],
|
307 |
+
"text/plain": [
|
308 |
+
" analysis_sample_rate artist_7digitalid artist_familiarity \\\n",
|
309 |
+
"0 22050 174717 0.450743 \n",
|
310 |
+
"1 22050 7173 0.392710 \n",
|
311 |
+
"2 22050 2759 0.602767 \n",
|
312 |
+
"\n",
|
313 |
+
" artist_hotttnesss artist_id artist_latitude artist_location \\\n",
|
314 |
+
"0 0.331215 AR1DGSO1187FB59B15 NaN \n",
|
315 |
+
"1 0.311789 ARO6WZY1187FB3A86E NaN \n",
|
316 |
+
"2 0.463193 ARH1LE01187B98D68D NaN \n",
|
317 |
+
"\n",
|
318 |
+
" artist_longitude artist_mbid \\\n",
|
319 |
+
"0 NaN fe4e71a9-ddb9-47b5-9e2e-ec53862a91c6 \n",
|
320 |
+
"1 NaN 23f7ad3f-a189-4a1c-9991-4763ded495a7 \n",
|
321 |
+
"2 NaN 3df3a779-a7b1-4362-a8b4-9ae6c7eb623d \n",
|
322 |
+
"\n",
|
323 |
+
" artist_mbtags ... start_of_fade_out \\\n",
|
324 |
+
"0 [] ... 266.879 \n",
|
325 |
+
"1 [] ... 321.300 \n",
|
326 |
+
"2 [b'american', b'soundtrack'] ... 67.895 \n",
|
327 |
+
"\n",
|
328 |
+
" tatums_confidence \\\n",
|
329 |
+
"0 [0.0, 0.0, 0.896, 0.819, 0.664, 0.693, 0.67, 0... \n",
|
330 |
+
"1 [0.451, 0.426, 0.396, 0.32, 0.255, 0.204, 0.15... \n",
|
331 |
+
"2 [0.056, 0.058, 0.056, 0.059, 0.097, 0.093, 0.0... \n",
|
332 |
+
"\n",
|
333 |
+
" tatums_start tempo time_signature \\\n",
|
334 |
+
"0 [0.16738, 0.44887, 0.73036, 1.09072, 1.44407, ... 107.053 4 \n",
|
335 |
+
"1 [0.05024, 0.25641, 0.46357, 0.66974, 0.87691, ... 149.853 3 \n",
|
336 |
+
"2 [0.54095, 0.86496, 1.20205, 1.52933, 1.85662, ... 91.249 4 \n",
|
337 |
+
"\n",
|
338 |
+
" time_signature_confidence title track_7digitalid \\\n",
|
339 |
+
"0 0.657 Jody 2555900 \n",
|
340 |
+
"1 1.000 Turntable Terrorist 5591259 \n",
|
341 |
+
"2 0.568 Porcelain Man 7341937 \n",
|
342 |
+
"\n",
|
343 |
+
" track_id year \n",
|
344 |
+
"0 TRAHHUN128F4227029 0 \n",
|
345 |
+
"1 TRAHHMM128F932D5D9 1995 \n",
|
346 |
+
"2 TRAHHJY12903CA73BD 1999 \n",
|
347 |
+
"\n",
|
348 |
+
"[3 rows x 55 columns]"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
"metadata": {},
|
352 |
+
"output_type": "display_data"
|
353 |
+
}
|
354 |
+
],
|
355 |
+
"source": [
|
356 |
+
"ub.peeks(df)"
|
357 |
+
]
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"cell_type": "code",
|
361 |
+
"execution_count": 8,
|
362 |
+
"metadata": {},
|
363 |
+
"outputs": [
|
364 |
+
{
|
365 |
+
"name": "stdout",
|
366 |
+
"output_type": "stream",
|
367 |
+
"text": [
|
368 |
+
"\u001b[37m2025-02-19 14:01:45 [INFO] HuggingFaceDatasetsBackend.data_to_hub: Uploading dataset to HF repo trojblue/million-song-subset\u001b[0m\n"
|
369 |
+
]
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"data": {
|
373 |
+
"application/vnd.jupyter.widget-view+json": {
|
374 |
+
"model_id": "c6e47a2259e54cb19dc37e6762883cbc",
|
375 |
+
"version_major": 2,
|
376 |
+
"version_minor": 0
|
377 |
+
},
|
378 |
+
"text/plain": [
|
379 |
+
"Uploading the dataset shards: 0%| | 0/5 [00:00<?, ?it/s]"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
"metadata": {},
|
383 |
+
"output_type": "display_data"
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"data": {
|
387 |
+
"application/vnd.jupyter.widget-view+json": {
|
388 |
+
"model_id": "f69f061bad16497ca9f9bac1ab4500c2",
|
389 |
+
"version_major": 2,
|
390 |
+
"version_minor": 0
|
391 |
+
},
|
392 |
+
"text/plain": [
|
393 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
394 |
+
]
|
395 |
+
},
|
396 |
+
"metadata": {},
|
397 |
+
"output_type": "display_data"
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"data": {
|
401 |
+
"application/vnd.jupyter.widget-view+json": {
|
402 |
+
"model_id": "1d998490521645edb6d4e462de6045f4",
|
403 |
+
"version_major": 2,
|
404 |
+
"version_minor": 0
|
405 |
+
},
|
406 |
+
"text/plain": [
|
407 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
"metadata": {},
|
411 |
+
"output_type": "display_data"
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"data": {
|
415 |
+
"application/vnd.jupyter.widget-view+json": {
|
416 |
+
"model_id": "389e657da20c4a3c8e18899e57642b96",
|
417 |
+
"version_major": 2,
|
418 |
+
"version_minor": 0
|
419 |
+
},
|
420 |
+
"text/plain": [
|
421 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
422 |
+
]
|
423 |
+
},
|
424 |
+
"metadata": {},
|
425 |
+
"output_type": "display_data"
|
426 |
+
},
|
427 |
+
{
|
428 |
+
"data": {
|
429 |
+
"application/vnd.jupyter.widget-view+json": {
|
430 |
+
"model_id": "767913f1d6134a888edea631657fce58",
|
431 |
+
"version_major": 2,
|
432 |
+
"version_minor": 0
|
433 |
+
},
|
434 |
+
"text/plain": [
|
435 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
436 |
+
]
|
437 |
+
},
|
438 |
+
"metadata": {},
|
439 |
+
"output_type": "display_data"
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"data": {
|
443 |
+
"application/vnd.jupyter.widget-view+json": {
|
444 |
+
"model_id": "b59fd321ef98408880ec22deb55498c6",
|
445 |
+
"version_major": 2,
|
446 |
+
"version_minor": 0
|
447 |
+
},
|
448 |
+
"text/plain": [
|
449 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
450 |
+
]
|
451 |
+
},
|
452 |
+
"metadata": {},
|
453 |
+
"output_type": "display_data"
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"name": "stdout",
|
457 |
+
"output_type": "stream",
|
458 |
+
"text": [
|
459 |
+
"\u001b[37m2025-02-19 14:02:47 [INFO] saves: DataFrame saved (HF dataset) to \"hf://trojblue/million-song-subset\" in 62.75s\u001b[0m\n"
|
460 |
+
]
|
461 |
+
}
|
462 |
+
],
|
463 |
+
"source": [
|
464 |
+
"ub.saves(df, \"hf://trojblue/million-song-subset\", private=False)"
|
465 |
+
]
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"metadata": {
|
469 |
+
"kernelspec": {
|
470 |
+
"display_name": "base",
|
471 |
+
"language": "python",
|
472 |
+
"name": "python3"
|
473 |
+
},
|
474 |
+
"language_info": {
|
475 |
+
"codemirror_mode": {
|
476 |
+
"name": "ipython",
|
477 |
+
"version": 3
|
478 |
+
},
|
479 |
+
"file_extension": ".py",
|
480 |
+
"mimetype": "text/x-python",
|
481 |
+
"name": "python",
|
482 |
+
"nbconvert_exporter": "python",
|
483 |
+
"pygments_lexer": "ipython3",
|
484 |
+
"version": "3.10.16"
|
485 |
+
}
|
486 |
+
},
|
487 |
+
"nbformat": 4,
|
488 |
+
"nbformat_minor": 2
|
489 |
+
}
|