File size: 16,407 Bytes
7914e2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"see: http://millionsongdataset.com/pages/getting-dataset/#subset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !wget http://labrosa.ee.columbia.edu/~dpwe/tmp/millionsongsubset.tar.gz\n",
"# !tar -xvzf millionsongsubset.tar.gz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# !pip install pandas h5py pyarrow fastparquet"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import h5py\n",
"import pandas as pd\n",
"from tqdm.auto import tqdm\n",
"\n",
"import unibox as ub"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a7418816c46f4f5b95a8c7e307b6e569",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Listing local files: 0files [00:00, ?files/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"10000"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(ub.ls(\"../data/MillionSongSubset\", [\".h5\"]))"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 10000/10000 [00:39<00:00, 250.36it/s]\n"
]
}
],
"source": [
"import os\n",
"import pandas as pd\n",
"import numpy as np\n",
"import hdf5_getters\n",
"import h5py\n",
"from tqdm import tqdm\n",
"from concurrent.futures import ProcessPoolExecutor\n",
"\n",
"# Define dataset path\n",
"dataset_path = \"/lv0/yada/dataproc5/data/MillionSongSubset\"\n",
"\n",
"# Function to extract all available fields from an HDF5 file\n",
"def extract_song_data(file_path):\n",
" \"\"\"Extracts all available fields from an HDF5 song file using hdf5_getters.\"\"\"\n",
" song_data = {}\n",
"\n",
" try:\n",
" with hdf5_getters.open_h5_file_read(file_path) as h5:\n",
" # Get all getter functions from hdf5_getters\n",
" getters = [func for func in dir(hdf5_getters) if func.startswith(\"get_\")]\n",
"\n",
" for getter in getters:\n",
" try:\n",
" # Dynamically call each getter function\n",
" value = getattr(hdf5_getters, getter)(h5)\n",
"\n",
" # Optimize conversions\n",
" if isinstance(value, np.ndarray):\n",
" value = value.tolist()\n",
" elif isinstance(value, bytes):\n",
" value = value.decode()\n",
"\n",
" # Store in dictionary with a cleaned-up key name\n",
" song_data[getter[4:]] = value\n",
"\n",
" except Exception:\n",
" continue # Skip errors but don't slow down\n",
"\n",
" except Exception as e:\n",
" print(f\"Error processing {file_path}: {e}\")\n",
" \n",
" return song_data\n",
"\n",
"# Function to process multiple files in parallel\n",
"def process_files_in_parallel(h5_files, num_workers=8):\n",
" \"\"\"Processes multiple .h5 files in parallel.\"\"\"\n",
" all_songs = []\n",
"\n",
" with ProcessPoolExecutor(max_workers=num_workers) as executor:\n",
" for song_data in tqdm(executor.map(extract_song_data, h5_files), total=len(h5_files)):\n",
" if song_data:\n",
" all_songs.append(song_data)\n",
" \n",
" return all_songs\n",
"\n",
"# Find all .h5 files\n",
"h5_files = [os.path.join(root, file) for root, _, files in os.walk(dataset_path) for file in files if file.endswith(\".h5\")]\n",
"\n",
"# Process files in parallel\n",
"all_songs = process_files_in_parallel(h5_files, num_workers=24)\n",
"\n",
"# Convert to Pandas DataFrame\n",
"df = pd.DataFrame(all_songs)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(10000, 55)\n",
"Index(['analysis_sample_rate', 'artist_7digitalid', 'artist_familiarity',\n",
" 'artist_hotttnesss', 'artist_id', 'artist_latitude', 'artist_location',\n",
" 'artist_longitude', 'artist_mbid', 'artist_mbtags',\n",
" 'artist_mbtags_count', 'artist_name', 'artist_playmeid', 'artist_terms',\n",
" 'artist_terms_freq', 'artist_terms_weight', 'audio_md5',\n",
" 'bars_confidence', 'bars_start', 'beats_confidence', 'beats_start',\n",
" 'danceability', 'duration', 'end_of_fade_in', 'energy', 'key',\n",
" 'key_confidence', 'loudness', 'mode', 'mode_confidence', 'num_songs',\n",
" 'release', 'release_7digitalid', 'sections_confidence',\n",
" 'sections_start', 'segments_confidence', 'segments_loudness_max',\n",
" 'segments_loudness_max_time', 'segments_loudness_start',\n",
" 'segments_pitches', 'segments_start', 'segments_timbre',\n",
" 'similar_artists', 'song_hotttnesss', 'song_id', 'start_of_fade_out',\n",
" 'tatums_confidence', 'tatums_start', 'tempo', 'time_signature',\n",
" 'time_signature_confidence', 'title', 'track_7digitalid', 'track_id',\n",
" 'year'],\n",
" dtype='object')\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>analysis_sample_rate</th>\n",
" <th>artist_7digitalid</th>\n",
" <th>artist_familiarity</th>\n",
" <th>artist_hotttnesss</th>\n",
" <th>artist_id</th>\n",
" <th>artist_latitude</th>\n",
" <th>artist_location</th>\n",
" <th>artist_longitude</th>\n",
" <th>artist_mbid</th>\n",
" <th>artist_mbtags</th>\n",
" <th>...</th>\n",
" <th>start_of_fade_out</th>\n",
" <th>tatums_confidence</th>\n",
" <th>tatums_start</th>\n",
" <th>tempo</th>\n",
" <th>time_signature</th>\n",
" <th>time_signature_confidence</th>\n",
" <th>title</th>\n",
" <th>track_7digitalid</th>\n",
" <th>track_id</th>\n",
" <th>year</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>22050</td>\n",
" <td>174717</td>\n",
" <td>0.450743</td>\n",
" <td>0.331215</td>\n",
" <td>AR1DGSO1187FB59B15</td>\n",
" <td>NaN</td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td>fe4e71a9-ddb9-47b5-9e2e-ec53862a91c6</td>\n",
" <td>[]</td>\n",
" <td>...</td>\n",
" <td>266.879</td>\n",
" <td>[0.0, 0.0, 0.896, 0.819, 0.664, 0.693, 0.67, 0...</td>\n",
" <td>[0.16738, 0.44887, 0.73036, 1.09072, 1.44407, ...</td>\n",
" <td>107.053</td>\n",
" <td>4</td>\n",
" <td>0.657</td>\n",
" <td>Jody</td>\n",
" <td>2555900</td>\n",
" <td>TRAHHUN128F4227029</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>22050</td>\n",
" <td>7173</td>\n",
" <td>0.392710</td>\n",
" <td>0.311789</td>\n",
" <td>ARO6WZY1187FB3A86E</td>\n",
" <td>NaN</td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td>23f7ad3f-a189-4a1c-9991-4763ded495a7</td>\n",
" <td>[]</td>\n",
" <td>...</td>\n",
" <td>321.300</td>\n",
" <td>[0.451, 0.426, 0.396, 0.32, 0.255, 0.204, 0.15...</td>\n",
" <td>[0.05024, 0.25641, 0.46357, 0.66974, 0.87691, ...</td>\n",
" <td>149.853</td>\n",
" <td>3</td>\n",
" <td>1.000</td>\n",
" <td>Turntable Terrorist</td>\n",
" <td>5591259</td>\n",
" <td>TRAHHMM128F932D5D9</td>\n",
" <td>1995</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>22050</td>\n",
" <td>2759</td>\n",
" <td>0.602767</td>\n",
" <td>0.463193</td>\n",
" <td>ARH1LE01187B98D68D</td>\n",
" <td>NaN</td>\n",
" <td></td>\n",
" <td>NaN</td>\n",
" <td>3df3a779-a7b1-4362-a8b4-9ae6c7eb623d</td>\n",
" <td>[b'american', b'soundtrack']</td>\n",
" <td>...</td>\n",
" <td>67.895</td>\n",
" <td>[0.056, 0.058, 0.056, 0.059, 0.097, 0.093, 0.0...</td>\n",
" <td>[0.54095, 0.86496, 1.20205, 1.52933, 1.85662, ...</td>\n",
" <td>91.249</td>\n",
" <td>4</td>\n",
" <td>0.568</td>\n",
" <td>Porcelain Man</td>\n",
" <td>7341937</td>\n",
" <td>TRAHHJY12903CA73BD</td>\n",
" <td>1999</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3 rows Γ 55 columns</p>\n",
"</div>"
],
"text/plain": [
" analysis_sample_rate artist_7digitalid artist_familiarity \\\n",
"0 22050 174717 0.450743 \n",
"1 22050 7173 0.392710 \n",
"2 22050 2759 0.602767 \n",
"\n",
" artist_hotttnesss artist_id artist_latitude artist_location \\\n",
"0 0.331215 AR1DGSO1187FB59B15 NaN \n",
"1 0.311789 ARO6WZY1187FB3A86E NaN \n",
"2 0.463193 ARH1LE01187B98D68D NaN \n",
"\n",
" artist_longitude artist_mbid \\\n",
"0 NaN fe4e71a9-ddb9-47b5-9e2e-ec53862a91c6 \n",
"1 NaN 23f7ad3f-a189-4a1c-9991-4763ded495a7 \n",
"2 NaN 3df3a779-a7b1-4362-a8b4-9ae6c7eb623d \n",
"\n",
" artist_mbtags ... start_of_fade_out \\\n",
"0 [] ... 266.879 \n",
"1 [] ... 321.300 \n",
"2 [b'american', b'soundtrack'] ... 67.895 \n",
"\n",
" tatums_confidence \\\n",
"0 [0.0, 0.0, 0.896, 0.819, 0.664, 0.693, 0.67, 0... \n",
"1 [0.451, 0.426, 0.396, 0.32, 0.255, 0.204, 0.15... \n",
"2 [0.056, 0.058, 0.056, 0.059, 0.097, 0.093, 0.0... \n",
"\n",
" tatums_start tempo time_signature \\\n",
"0 [0.16738, 0.44887, 0.73036, 1.09072, 1.44407, ... 107.053 4 \n",
"1 [0.05024, 0.25641, 0.46357, 0.66974, 0.87691, ... 149.853 3 \n",
"2 [0.54095, 0.86496, 1.20205, 1.52933, 1.85662, ... 91.249 4 \n",
"\n",
" time_signature_confidence title track_7digitalid \\\n",
"0 0.657 Jody 2555900 \n",
"1 1.000 Turntable Terrorist 5591259 \n",
"2 0.568 Porcelain Man 7341937 \n",
"\n",
" track_id year \n",
"0 TRAHHUN128F4227029 0 \n",
"1 TRAHHMM128F932D5D9 1995 \n",
"2 TRAHHJY12903CA73BD 1999 \n",
"\n",
"[3 rows x 55 columns]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"ub.peeks(df)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[37m2025-02-19 14:01:45 [INFO] HuggingFaceDatasetsBackend.data_to_hub: Uploading dataset to HF repo trojblue/million-song-subset\u001b[0m\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6e47a2259e54cb19dc37e6762883cbc",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Uploading the dataset shards: 0%| | 0/5 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f69f061bad16497ca9f9bac1ab4500c2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1d998490521645edb6d4e462de6045f4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "389e657da20c4a3c8e18899e57642b96",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "767913f1d6134a888edea631657fce58",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b59fd321ef98408880ec22deb55498c6",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[37m2025-02-19 14:02:47 [INFO] saves: DataFrame saved (HF dataset) to \"hf://trojblue/million-song-subset\" in 62.75s\u001b[0m\n"
]
}
],
"source": [
"ub.saves(df, \"hf://trojblue/million-song-subset\", private=False)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|