Datasets:

ArXiv:
File size: 11,063 Bytes
cb715ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd8c2
cb715ae
 
 
 
fbbd8c2
cb715ae
 
 
 
bfc4da1
cb715ae
e1fc14b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
 
fbbd8c2
cb715ae
 
 
 
 
fbbd8c2
 
 
cb715ae
 
 
 
 
fbbd8c2
 
24ca8bc
fbbd8c2
24ca8bc
fbbd8c2
 
24ca8bc
fbbd8c2
24ca8bc
fbbd8c2
 
cb715ae
 
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
cb715ae
357d568
 
fde171d
 
 
 
357d568
 
 
fbbd8c2
 
357d568
 
 
 
 
fbbd8c2
 
357d568
 
 
 
 
 
 
 
 
fbbd8c2
 
 
357d568
 
 
 
 
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357d568
fbbd8c2
 
357d568
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
357d568
fbbd8c2
357d568
fbbd8c2
cb715ae
fbbd8c2
 
cb715ae
 
 
 
 
fbbd8c2
 
 
cb715ae
 
 
 
357d568
bfc4da1
357d568
 
 
 
fbbd8c2
 
 
cb715ae
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6472f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbd8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2023 Together Computer
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""RedPajama V2: Quality annotated Web Text Documents."""

import json

import datasets
import traceback
import os
import gzip
from typing import List

logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
RedPajama V2: an Open Dataset for Training Large Language Models
"""

_URL_BASE = 'https://data.together.xyz/redpajama-data-v2/v1.0.0'
_LANGUAGES = ("en", "de", "fr", "es", "it")
_LISTINGS_PATTERN = "listings/{language}-{snapshot}-{partition}.txt"

_CC_SNAPSHOT_IDS = (
    "2014-15",
    "2014-23",
    "2014-35",
    "2014-41",
    "2014-42",
    "2014-49",
    "2014-52",
    "2015-14",
    "2015-22",
    "2015-27",
    "2015-32",
    "2015-35",
    "2015-40",
    "2015-48",
    "2016-07",
    "2016-18",
    "2016-22",
    "2016-26",
    "2016-30",
    "2016-36",
    "2016-40",
    "2016-44",
    "2016-50",
    "2017-04",
    "2017-09",
    "2017-17",
    "2017-22",
    "2017-26",
    "2017-30",
    "2017-34",
    "2017-39",
    "2017-43",
    "2017-47",
    "2017-51",
    "2018-05",
    "2018-09",
    "2018-13",
    "2018-17",
    "2018-22",
    "2018-26",
    "2018-30",
    "2018-34",
    "2018-39",
    "2018-43",
    "2018-47",
    "2018-51",
    "2019-04",
    "2019-09",
    "2019-13",
    "2019-18",
    "2019-22",
    "2019-26",
    "2019-30",
    "2019-35",
    "2019-39",
    "2019-43",
    "2019-47",
    "2019-51",
    "2020-05",
    "2020-10",
    "2020-16",
    "2020-24",
    "2020-29",
    "2020-34",
    "2020-40",
    "2020-45",
    "2020-50",
    "2021-04",
    "2021-10",
    "2021-17",
    "2021-21",
    "2021-25",
    "2021-31",
    "2021-39",
    "2021-43",
    "2021-49",
    "2022-05",
    "2022-21",
    "2022-27",
    "2022-33",
    "2022-40",
    "2022-49",
    "2023-06",
    "2023-14"
)


class RedPajamaDataV2Config(datasets.BuilderConfig):
    """BuilderConfig for RedPajama."""

    def __init__(self, *args, **kwargs):
        """BuilderConfig for RedPajama.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(RedPajamaDataV2Config, self).__init__(**kwargs)
        self.partition: str = kwargs.pop("partition", "all")
        self.snapshots: List[str] = kwargs.pop("snapshots", _CC_SNAPSHOT_IDS)
        self.languages: List[str] = kwargs.pop("languages", _LANGUAGES)


class RedPajamaV2(datasets.GeneratorBasedBuilder):
    """ RedPajama V2: Quality annotated Web Text Documents. """

    BUILDER_CONFIGS = [
        RedPajamaDataV2Config(
            name='sample',
            version=datasets.Version("1.0.0", ""),
            description=f"RedPajamaV2 Sample",
        ),
        RedPajamaDataV2Config(
            name='default',
            version=datasets.Version("1.0.0", ""),
            description=f"RedPajamaV2",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "raw_content": datasets.Value("string"),
                    "doc_id": datasets.Value("string"),
                    "meta": datasets.Value("string"),
                    "quality_signals": datasets.Value("string")
                }
            ),
            supervised_keys=None,
        )

    def _split_generators_sample(self, dl_manager):
        # fetch documents
        sample_listings = dl_manager.download_and_extract(
            "sample/sample_listings.txt"
        )
        with open(sample_listings, "r") as fd:
            listings = [line.strip() for line in fd]

        # fetch documents
        documents_files = dl_manager.download({
            "head_middle": [
                f"sample/documents/{lst}.json.gz" for lst in listings
            ]
        })

        # fetch quality signals
        quality_signals_files = dl_manager.download({
            "head_middle": [
                f"sample/quality_signals/{lst}.signals.json.gz"
                for lst in listings
            ]
        })

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "listings_ids": {"head_middle": listings},
                    "documents_files": documents_files,
                    "quality_signals_files": quality_signals_files
                }
            )
        ]

    def _split_generators_full(self, dl_manager):
        snapshots = getattr(self.config, 'snapshots', _CC_SNAPSHOT_IDS)
        languages = getattr(self.config, 'languages', _LANGUAGES)
        partition = getattr(self.config, 'partition', 'all')

        partitions = {
            "all": ["head_middle", "tail"]
        }.get(partition, [partition])

        # nested structure: partition -> urls
        listings_files_urls = {}
        for part in partitions:
            listings_files_urls[part] = []
            for snapshot_id in snapshots:
                for lang in languages:
                    listings_files_urls[part].append(
                        _LISTINGS_PATTERN.format(
                            language=lang,
                            snapshot=snapshot_id,
                            partition=part,
                        )
                    )

        # fetch listings from hub
        listings_files = dl_manager.download_and_extract(listings_files_urls)

        # fetch listings
        listings_ids = {}
        for part, part_listings_files in listings_files.items():
            listings_ids[part] = []
            for listings_file in part_listings_files:
                with open(listings_file, encoding="utf-8") as f:
                    listings_ids[part].extend([
                        line.strip() for line in f
                    ])

        # build urls pointing to documents and quality signals
        document_urls = {}
        quality_signals_urls = {}
        for part, part_listings_ids in listings_ids.items():
            document_urls[part] = []
            quality_signals_urls[part] = []
            for lst_id in part_listings_ids:
                document_urls[part].append(
                    os.path.join(_URL_BASE, f"documents/{lst_id}.json.gz")
                )
                if part != "head_middle":
                    continue

                quality_signals_urls[part].append(
                    os.path.join(
                        _URL_BASE, f"quality_signals/{lst_id}.signals.json.gz"
                    )
                )

        documents_files = dl_manager.download(document_urls)
        quality_signals_files = dl_manager.download(quality_signals_urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "listings_ids": listings_ids,
                    "documents_files": documents_files,
                    "quality_signals_files": quality_signals_files
                }
            )
        ]

    def _split_generators(self, dl_manager):
        if self.config.name.endswith("sample"):
            return self._split_generators_sample(dl_manager)

        return self._split_generators_full(dl_manager)

    def _generate_examples(
            self, listings_ids, documents_files, quality_signals_files
    ):
        key = 0
        for part in documents_files.keys():
            part_docs_files = documents_files[part]
            part_qs_files = quality_signals_files[part]
            part_listings_ids = listings_ids[part]

            if len(part_qs_files) == 0:
                for sample in self._handle_tail_partition(
                        part, part_docs_files, part_listings_ids
                ):
                    yield key, sample
                    key += 1
                continue

            for sample in self._handle_head_middle_partition(
                    part, part_docs_files, part_qs_files, part_listings_ids
            ):
                yield key, sample
                key += 1

    def _handle_tail_partition(self, part, docs_files, listings_ids):
        for doc_file, listing_id in zip(docs_files, listings_ids):
            with gzip.open(doc_file, "rt", encoding="utf-8") as df:
                for row, doc in enumerate(df):
                    doc_id = f"{listing_id}.json.gz/{row}"
                    try:
                        yield self.handle_record(part, doc_id, doc, None)
                    except Exception as e:
                        print(f'doc_file: {doc_file}')
                        print(f'row: {row}')
                        traceback.print_exc()
                        raise e

    def _handle_head_middle_partition(
            self, part, docs_files, qs_files, listings_ids
    ):
        assert len(docs_files) == len(qs_files)

        listings_ids = listings_ids[:len(docs_files)]

        for doc_file, qs_file, listings_id in zip(
                docs_files, qs_files, listings_ids
        ):
            try:
                with gzip.open(doc_file, "rt", encoding="utf-8") as df:
                    with gzip.open(qs_file, "rt", encoding="utf-8") as qf:
                        for row, (doc, qs) in enumerate(zip(df, qf)):
                            doc_id = f"{listings_id}.json.gz/{row}"
                            try:
                                yield self.handle_record(part, doc_id, doc, qs)
                            except Exception as e:
                                print(f'failed handling row {row} in '
                                      f'{doc_file} ({qs_file})')
                                traceback.print_exc()
                                continue
            except gzip.BadGzipFile as e:
                # skip broken gzip files
                print(f'BadGzipFile: {doc_file, qs_file}')
                traceback.print_exc()
                continue

    @staticmethod
    def handle_record(part, doc_id, doc, qs):
        doc = json.loads(doc)
        qs = json.loads(qs) if qs is not None else {}

        meta = {
            "url": doc["url"],
            "partition": part,
            "language": doc["language"],
            "source_domain": doc["source_domain"],
            "date_download": doc["date_download"],
            "digest": doc["digest"],
        }

        quality_signals = json.dumps(qs.get("quality_signals", {}))

        return {
            "raw_content": doc["raw_content"],
            "doc_id": doc_id,
            "meta": json.dumps(meta),
            "quality_signals": quality_signals,
        }