Datasets:

ArXiv:
File size: 41,749 Bytes
cb715ae
 
 
 
 
 
 
 
 
f5f282b
cb715ae
 
 
 
9f80578
fdaf637
 
bd77c17
1a99058
84a48e2
1a4d6db
 
84a48e2
2c09767
 
 
 
 
34b0752
84a48e2
cb715ae
 
 
84a48e2
cb715ae
 
2c09767
 
 
 
 
 
 
34b0752
 
 
 
 
9a4c320
34b0752
 
 
 
 
2c09767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
bc6bd35
 
cb715ae
84a48e2
 
 
43250a0
cb715ae
968c26b
 
 
 
cb715ae
84a48e2
 
 
 
 
c4b24b2
43250a0
84a48e2
bc6bd35
 
bd77c17
bc6bd35
 
 
 
 
 
 
 
 
 
 
 
968c26b
 
 
 
 
 
 
 
 
84a48e2
968c26b
84a48e2
 
968c26b
 
84a48e2
43250a0
 
84a48e2
cb715ae
 
167a6e2
8b3730f
 
167a6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3730f
167a6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3730f
167a6e2
 
 
 
 
 
 
8b3730f
 
 
 
167a6e2
 
 
 
 
 
8b3730f
 
 
 
 
167a6e2
 
cb715ae
 
1a99058
 
34b0752
 
 
f5f282b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a4d6db
bbd9b4f
 
 
f5f282b
bd77c17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
 
 
 
 
4214d2c
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f282b
 
 
 
 
 
 
 
 
816154f
 
f5f282b
 
 
 
816154f
 
 
 
 
 
 
 
 
 
f5f282b
 
 
 
 
 
 
 
cb715ae
 
 
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
34b0752
f5f282b
cb715ae
84a48e2
cb715ae
f5f282b
 
 
 
 
4214d2c
 
cb715ae
7d6032b
cb715ae
 
7d6032b
cb715ae
167a6e2
cb715ae
 
 
 
 
 
923e66a
3654bf8
1a4d6db
 
 
 
 
 
 
 
 
 
923e66a
4214d2c
cb715ae
4214d2c
 
cb715ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
---
task_categories:
  - text-generation
language:
  - en
  - de
  - fr
  - es
  - it
pretty_name: Red Pajama V2 Dataset
---

### Getting Started

RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text
documents coming from 84 CommonCrawl snapshots and processed using
the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus
that additionally come with quality signals. In addition, we also provide the ids of duplicated documents which can be
used to create a dataset with 20B deduplicated documents.

Check out our [blog post](https://together.ai/blog/redpajama-data-v2) for more details on the build process, dataset
structure and schema.

A full set of scripts to recreate the dataset, including the quality signals, can be
found [here](https://github.com/togethercomputer/RedPajama-Data).

#### Downloading the raw Dataset with Quality Annotations

To familiarize yourself with the dataset, you can load the sample dataset using:

```python
from datasets import load_dataset

ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample") 
```

To download a the dataset for a specific combination of `{partition} x {snapshot_id} x {language}`, you can use the
following command which downloads the raw (i.e., *not* deduplicated) part of the dataset and the corresponding quality
signals. In the example below, we use English and German data from the `head_middle` partition of the 2023-06 and the
2022-49 snapshots. The full set of available snapshots is specified in `_CC_SNAPSHOT_IDS`. The available partitions
are `tail` and `head_middle`. The available language tags are `en`, `de`, `fr`, `es`, `it`.
_Note that this will download the entire snapshots specified in the `snapshots` argument and requires ~1TB of disk space
per snapshot_.

```python
from datasets import load_dataset

ds = load_dataset("togethercomputer/RedPajama-Data-V2",
                  name="default",
                  partition="head_middle",
                  snapshots=["2023-06", "2022-49"],
                  languages=["en", "de"]) 
```

#### Downloading the dataset via wget

If you prefer to download the full dataset via wget, you can download the following lists of urls and use them to
download the dataset:

```bash
# get list of urls pointing to the text documents
wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/document-urls.txt" -O "document-urls.txt"

# get list of urls pointing to the quality signals
wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/quality_signals-urls.txt" -O "quality_signals-urls.txt"

# get list of urls pointing to the ids of duplicate documents
wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/duplicates-urls.txt" -O "duplicates-urls.txt"

# get list of urls pointing to the minhash signatures
wget "https://data.together.xyz/redpajama-data-v2/v1.0.0/urls/minhash-urls.txt" -O "minhash-urls.txt"
```

You can also directly download subsets of the dataset using the following instructions. Here we use English
data from the `2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in
the dataset is given in `_CC_SNAPSHOT_IDS`. The available partitions are `tail` and `head_middle`. The available
language tags are `en`, `de`, `fr`, `es`, `it`.

To download the plain text data, available for both the `head_middle` and `tail` partitions, you can run

```bash
CC_SNAPSHOT="2023-06"
LANG="en"
PARTITION="head_middle"
BASE_URL="https://data.together.xyz/redpajama-data-v2/v1.0.0"

listings_tag="${LANG}-${CC_SNAPSHOT}-${PARTITION}"
mkdir listings
wget "${BASE_URL}/listings/${listings_tag}.txt" -O "listings/${listings_tag}.txt"
listings_file="listings/${listings_tag}.txt"

# download documents
while read line; do
  url="${BASE_URL}/documents/${line}.json.gz"
  dest="documents/${line}.json.gz"
  mkdir -p $(dirname $dest)
  wget "$url" -O "$dest"
done <"$listings_file"

```

In addition, for the `head_middle` partition, you can also download the quality signals, minhash signatures and
duplicate ids using the following commands:

```bash
CC_SNAPSHOT="2023-06"
LANG="en"
BASE_URL="https://data.together.xyz/redpajama-data-v2/v1.0.0"

listings_tag="${LANG}-${CC_SNAPSHOT}-head_middle"
mkdir listings
wget "${BASE_URL}/listings/${listings_tag}.txt" -O "listings/${listings_tag}.txt"
listings_file="listings/${listings_tag}.txt"

# download quality signals
while read line; do
  url="${BASE_URL}/quality_signals/${line}.signals.json.gz"
  dest="quality_signals/${line}.signals.json.gz"
  mkdir -p $(dirname $dest)
  wget "$url" -O "$dest"
done <"$listings_file"


# download other components
COMPS=("minhash" "duplicates")
for comp in "${COMPS[@]}"; do
  while read line; do
    url="${BASE_URL}/${comp}/${line}.${comp}.parquet"
    dest="${comp}/${line}.${comp}.parquet"
    mkdir -p $(dirname $dest)
    wget "$url" -O "$dest"
  done <"$listings_file"
done
```

### Applying Filtering Rules

You can use the quality signals to filter the raw RedPajama-V2 dataset for a given set of rules. For example, consider
the following set of rules used in Gopher:

```python
def gopher_rules_pass(sample) -> bool:
    """ function returns True if the sample complies with Gopher rules """
    signals = json.loads(sample["quality_signals"])

    # rule 1: number of words between 50 and 10'000
    word_count = signals["rps_doc_word_count"][0][2]
    if word_count < 50 or word_count > 10_000:
        return False

    # rule 2: mean word length between 3 and 10
    mean_word_length = signals["rps_doc_mean_word_length"][0][2]
    if mean_word_length < 3 or mean_word_length > 10:
        return False

    # rule 2: symbol to word ratio below 0.1
    symbol_word_ratio = signals["rps_doc_symbol_to_word_ratio"][0][2]
    if symbol_word_ratio > 0.1:
        return False

    # rule 3: 90% of lines need to start without a bullet point
    n_lines = signals["ccnet_nlines"][0][2]
    n_lines_bulletpoint_start = sum(map(lambda ln: ln[2], signals["rps_lines_start_with_bulletpoint"]))
    if n_lines_bulletpoint_start / n_lines > 0.9:
        return False

    # rule 4: the ratio between characters in the most frequent 2-gram and the total number 
    # of characters must be below 0.2
    top_2_gram_frac = signals["rps_doc_frac_chars_top_2gram"][0][2]
    if top_2_gram_frac > 0.2:
        return False

    # rule 5: ...

    return True
```

Filtering the RedPajama-V2 dataset with this set of rules is then as easy as:

```python
ds_iterator = load_dataset(
    "togethercomputer/RedPajama-Data-V2",
    snapshots=["2023-14"],
    languages=["en"],
    name="default",
    streaming=True
)

filtered_dataset = []

for sample in ds_iterator["train"]:

    if not gopher_rules_pass(sample):
        continue

    filtered_dataset.append(sample)
```

### Dataset Summary

RedPajama-V2 is an open dataset for training large language models and includes over 100B text documents. Out of these,
30B documents come with quality annotations. Out of these, there are 20B unique documents.

#### Quality Annotations

| Annotation Tag                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Category         | Reference                                                                                                                     |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ccnet_bucket                                   | head, middle or tail bucket of the perplexity score                                                                                                                                                                                                                                                                                                                                                                  | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_language_score                           | score of the language identification model                                                                                                                                                                                                                                                                                                                                                                           | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_length                                   | number of characters                                                                                                                                                                                                                                                                                                                                                                                                 | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_nlines                                   | number of lines                                                                                                                                                                                                                                                                                                                                                                                                      | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_original_length                          | number of characters before in-document line deduplication                                                                                                                                                                                                                                                                                                                                                           | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_original_nlines                          | number of lines before in-document line deduplication                                                                                                                                                                                                                                                                                                                                                                | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_perplexity                               | perplexity of an LM trained on Wikipedia                                                                                                                                                                                                                                                                                                                                                                             | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| rps_doc_books_importance                       | Given a bag of {1,2}-wordgram model trained on Books p, and a model trained on the source domain q, This is the logarithm of the ratio p(doc)/q(doc).                                                                                                                                                                                                                                                                | ML Heuristics    | [Importance Resampling (Xie et al.)](https://arxiv.org/abs/2302.03169)                                                        |
| rps_doc_openwebtext_importance                 | Given a bag of {1,2}-wordgram model trained on OpenWebText p, and a model trained on the source domain q, this is the logarithm of the ratio p(doc)/q(doc).                                                                                                                                                                                                                                                          | ML Heuristics    | [Importance Resampling (Xie et al.)](https://arxiv.org/abs/2302.03169)                                                        |
| rps_doc_wikipedia_importance                   | Given a bag of {1,2}-wordgram model trained on Wikipedia articles p, and a model trained on the source domain q, this is the logarithm of the ratio p(doc)/q(doc).                                                                                                                                                                                                                                                   | ML Heuristics    | [Importance Resampling (Xie et al.)](https://arxiv.org/abs/2302.03169)                                                        |
| rps_doc_ml_wikiref_score                       | Fasttext classifier prediction for the document being a Wikipedia reference. This is the same fasttext model used in the RedPajama-1T dataset. Only applies to English data..                                                                                                                                                                                                                                        | ML Heuristics    | [LLaMA](https://arxiv.org/abs/2302.13971), [RedPajama-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) |
| rps_doc_ml_palm_score                          | Fasttext classifier prediction for the document being a Wikipedia article, OpenWebText sample or a RedPajama-V1 book. Only for English data.                                                                                                                                                                                                                                                                         | ML Heuristics    | [PALM](https://arxiv.org/abs/2204.02311), [GLaM](https://arxiv.org/abs/2112.06905)                                            |
| rps_doc_ml_wikipedia_score                     | Fasttext classifier prediction for the document being a Wikipedia article. This is used for non-English data                                                                                                                                                                                                                                                                                                         | ML Heuristics    | -                                                                                                                             |
| rps_doc_curly_bracket                          | The ratio between the number of occurrences of '{' or '}' and the number of characters in the raw text.                                                                                                                                                                                                                                                                                                              | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_frac_all_caps_words                    | The fraction of words in the content that only consist of uppercase letters. This is based on the raw content.                                                                                                                                                                                                                                                                                                       | Natural Language | [Pretrainer’s Guide](https://arxiv.org/abs/2305.13169)                                                                        |
| rps_doc_frac_lines_end_with_ellipsis           | The fraction of lines that end with an ellipsis, where an ellipsis is defined as either "..." or "…".                                                                                                                                                                                                                                                                                                                | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_no_alph_words                     | The fraction of words that contain no alphabetical character.                                                                                                                                                                                                                                                                                                                                                        | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_lorem_ipsum                            | The ratio between the number of occurrences of 'lorem ipsum' and the number of characters in the content after normalisation.                                                                                                                                                                                                                                                                                        | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_mean_word_length                       | The mean length of words in the content after normalisation.                                                                                                                                                                                                                                                                                                                                                         | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_stop_word_fraction                     | The ratio between the number of stop words and the number of words in the document. Stop words are obtained from the [stopwords-json](https://github.com/6/stopwords-json) repo.                                                                                                                                                                                                                                     | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_symbol_to_word_ratio                   | The ratio of symbols to words in the content.. Symbols are defined "#", "...", and "…".                                                                                                                                                                                                                                                                                                                              | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_unique_words                      | The fraction of unique words in the content. This is also known as the degeneracy of a text sample. Calculated based on the normalised content.                                                                                                                                                                                                                                                                      | Natural Language | [Pretrainer’s Guide](https://arxiv.org/abs/2305.13169)                                                                        |
| rps_doc_unigram_entropy                        | The entropy of the unigram distribution of the content. This measures the diversity of the content and is computed using sum(-x / total * log(x / total)) where the sum is taken over counts of unique words in the normalised content.                                                                                                                                                                              | Natural Language | -                                                                                                                             |
| rps_doc_word_count                             | The number of words in the content after normalisation.                                                                                                                                                                                                                                                                                                                                                              | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_lines_ending_with_terminal_punctution_mark | Indicates whether a line ends with a terminal punctuation mark. A terminal punctation mark is defined as one of: ".", "!", "?", "”".                                                                                                                                                                                                                                                                                 | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_lines_javascript_counts                    | The number of occurrences of the word "javascript" in each line.                                                                                                                                                                                                                                                                                                                                                     | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_lines_num_words                            | The number of words in each line. This is computed based on the normalised text.                                                                                                                                                                                                                                                                                                                                     | Natural Language | [C4](https://arxiv.org/abs/1910.10683) , [RefinedWeb](https://arxiv.org/abs/2306.01116)                                       |
| rps_lines_numerical_chars_fraction             | The ratio between the number of numerical characters and total number of characters in each line. This is based on the normalised content.                                                                                                                                                                                                                                                                           | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116)                                                                                |
| rps_lines_start_with_bulletpoint               | Whether the lines that start with a bullet point symbol. The following set of unicodes are considered a bullet point: \u2022 (bullet point), \u2023 (triangular bullet point), \u25B6 (black right pointing triangle), \u25C0 (black left pointing triangle), \u25E6 (white bullet point), \u25A0 (black square), \u25A1 (white square), \u25AA (black small square), \u25AB (white small square), \u2013 (en dash). | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_lines_uppercase_letter_fraction            | The ratio between the number of uppercase letters and total number of characters in each line. This is based on the raw text.                                                                                                                                                                                                                                                                                        | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116)                                                                                |
| rps_doc_num_sentences                          | The number of sentences in the content. This is calculated using the regular expression `r'\b[^.!?]+[.!?]*'`.                                                                                                                                                                                                                                                                                                        | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_frac_chars_dupe_10grams                | The fraction of characters in duplicate word 10grams. This operates on the lower-cased, punctuation removed content. It is also ensured that characters in overlapping ngrams are only counted once.                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_5grams                 | The fraction of characters in duplicate word 5grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_6grams                 | The fraction of characters in duplicate word 6grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_7grams                 | The fraction of characters in duplicate word 7grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_8grams                 | The fraction of characters in duplicate word 8grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_9grams                 | The fraction of characters in duplicate word 9grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_top_2gram                   | The fraction of characters in the top word 2gram.                                                                                                                                                                                                                                                                                                                                                                    | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_top_3gram                   | The fraction of characters in the top word 3gram.                                                                                                                                                                                                                                                                                                                                                                    | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_top_4gram                   | The fraction of characters in the top word 4gram.                                                                                                                                                                                                                                                                                                                                                                    | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_ldnoobw_words                          | The number of sequences of words that are contained in the List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words blocklist. The blocklist is obtained from the [LDNOOBW](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) repo.                                                                                                                                                     | toxicity         | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_ut1_blacklist                          | A categorical id corresponding to the list of categories of the domain of the document. Categories are obtained from the UT1 blacklist. The list is obtained from [UT-Capitole](https://dsi.ut-capitole.fr/blacklists/).                                                                                                                                                                                             | toxicictiy       | [RefinedWeb](https://arxiv.org/abs/2306.01116)                                                                                |
| minhash_signature_0.7                          | Banded minhash signature of the document, for fuzzy deduplication at Jaccard similarity 0.7. The signature is based on 128 hash functions and grouped into 14 bands and 9 rows for LSH.                                                                                                                                                                                                                              | Deduplication    |
| minhash_signature_0.8                          | Banded minhash signature of the document, for fuzzy deduplication at Jaccard similarity 0.8. The signature is based on 128 hash functions and grouped into 9 bands and 13 rows for LSH.                                                                                                                                                                                                                              | Deduplication    |
| minhash_signature_0.9                          | Banded minhash signature of the document, for fuzzy deduplication at Jaccard similarity 0.9. The signature is based on 128 hash functions and grouped into 5 bands and 25 rows for LSH..                                                                                                                                                                                                                             | Deduplication    |
| minhash_signature_1.0                          | Banded minhash signature of the document, for fuzzy deduplication at Jaccard similarity 1.0. The signature is based on 128 hash functions and grouped into 1 band and 128 rows for LSH.                                                                                                                                                                                                                              | Deduplication    |

#### Raw Document and Token Counts (`head_middle`)

|       | # Documents (deduped) | Estimated Token count (deduped) |
|-------|-----------------------|---------------------------------|
| en    | 24.5B                 | 37.0T                           |
| de    | 2.7B                  | 4.1T                            |
| fr    | 2.2B                  | 3.7T                            |  
| es    | 2.3B                  | 3.9T                            |
| it    | 1.2B                  | 1.9T                            |
| Total | 32.9B                 | 50.6T                           |

#### Deduplicated Document and Token Counts (`head_middle`)

|       | # Documents (total) | Estimated Token count (total) |
|-------|---------------------|-------------------------------|
| en    | 14.5B               | 20.5T                         |
| de    | 1.9B                | 3.0T                          |
| fr    | 1.6B                | 2.7T                          |  
| es    | 1.8B                | 2.8T                          |
| it    | 0.9B                | 1.5T                          |
| Total | 20.8B               | 30.4T                         |

### Languages

English, German, French, Italian, Spanish

## Dataset Structure

The dataset is structured into four components, each following the same key structure:

```
β”œβ”€β”€ documents
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.json.gz
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.json.gz
β”œβ”€β”€ quality_signals
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.signals.json.gz
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.json.gz
β”œβ”€β”€ duplicates
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.duplicates.parquet
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.duplicates.parquet
β”œβ”€β”€ minhash
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.minhash.parquet
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.minhash.parquet
```

Documents files, which contain the text, folow the schema defined by CCNet:

```json
{
  "url": "...",
  "date_download": "2014-08-20T06:48:26Z",
  "digest": "sha1:46OPKWZ7MAG5624VYYA3U3YH2MJ727B6",
  "length": 1095,
  "nlines": 8,
  "source_domain": "...",
  "title": "...",
  "raw_content": "Dear ...",
  "cc_segment": "crawl-data/CC-MAIN-2014-35/...",
  "original_nlines": 11,
  "original_length": 1174,
  "line_ids": [
    0,
    1,
    3,
    4,
    6,
    7,
    8,
    9
  ],
  "language": "en",
  "language_score": 0.92,
  "perplexity": 217.2,
  "bucket": "head"
}
```

The quality signals follow the schema

```json
{
  "id": "2018-43/0000/en_head.json.gz/0",
  "id_int": 7972430436813205988,
  "metadata": {
    "cc_segment": "crawl-data/...",
    "cc_net_source": "2018-43/0000/en_head.json.gz",
    "url": "...",
    "source_domain": "...",
    "language": "en",
    "snapshot_id": "2018-43"
  },
  "quality_signals": {
    "ccnet_original_length": [
      [
        0,
        7033,
        8711.0
      ]
    ],
    ...,
    "rps_doc_stop_word_fraction": [
      [
        0,
        7033,
        0.45121107
      ]
    ],
    "rps_lines_num_words": [
      [
        0,
        25,
        2
      ],
      ...,
      [
        6980,
        7033,
        10
      ]
    ]
  }
}
```

where signal scores are encoded as a list of tuples `(start, end, score)`, where `start` and `end` are the locations in
the `raw_content` string where the `score` applies.

## Dataset Creation

The dataset is based on 84 snapshots provided by Common Crawl. Each snapshot was processed using the CCNet pipeline and
split into `head` `middle` `tail` buckets, depending on the perplexity score. In a second step, the documents in the
`head` and `middle` buckets were annotated with the quality signals described above. Finally, the documents were
deduplicated based on the text, using a Bloomfilter. The duplicates were kept in the dataset, but are marked in the
`duplicates` component.

## Citation

To cite RedPajama, please use:

```
@software{together2023redpajama,
  author = {Together Computer},
  title = {RedPajama: an Open Dataset for Training Large Language Models},
  month = October,
  year = 2023,
  url = {https://github.com/togethercomputer/RedPajama-Data}
}
```

## Acknowledgements

We are appreciative to so many partners and collaborators that together are pushing forward the frontier of open LLM
models.

- Thank you to the OLMo team at AI2 and friends at OpenGPT-X for the insightful discussions about datasets and data
  quality! Also for everyone who builds on the RedPajama dataset, including Cerebras for their SlimPajama efforts, and
  the over 500 models built on RedPajam to date by the open-source AI community.
- We are grateful to the great team at EleutherAI for paving the path on open training datasets with The Pile and for
  open-sourcing code we use in training some of the RedPajama models.
- Thank you to our partners of RedPajama-v1, including Ontocord.ai, MILA QuΓ©bec AI Institute, ETH DS3Lab, UniversitΓ© de
  MontrΓ©al, Stanford Center for Research on Foundation Models (CRFM), Stanford Hazy Research research group and LAION.

## License

Please refer to the [Common Crawl Foundation Terms of Use](https://commoncrawl.org/terms-of-use) for the data.
The code used to load and process the dataset is licensed under the Apache 2.0 license.

<!--
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
-->