Datasets:

ArXiv:
File size: 35,927 Bytes
cb715ae
 
 
 
 
 
 
 
 
f5f282b
cb715ae
 
 
 
9f80578
fdaf637
 
 
84a48e2
 
 
34b0752
84a48e2
cb715ae
 
 
84a48e2
cb715ae
 
34b0752
 
 
 
 
 
 
 
 
 
 
 
4214d2c
84a48e2
34b0752
 
cb715ae
 
84a48e2
 
 
43250a0
cb715ae
84a48e2
 
cb715ae
84a48e2
 
 
 
 
c4b24b2
43250a0
84a48e2
 
 
 
 
 
 
 
43250a0
 
84a48e2
cb715ae
 
 
4214d2c
cb715ae
 
167a6e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
34b0752
3654bf8
34b0752
 
 
f5f282b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6218229
f5f282b
 
 
816154f
 
 
 
 
 
cb715ae
 
 
 
 
 
 
4214d2c
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f282b
 
 
 
 
 
 
 
 
816154f
 
f5f282b
 
 
 
816154f
 
 
 
 
 
 
 
 
 
f5f282b
 
 
 
 
 
 
 
cb715ae
 
 
84a48e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb715ae
 
 
34b0752
f5f282b
cb715ae
84a48e2
cb715ae
f5f282b
 
 
 
 
4214d2c
 
cb715ae
84a48e2
cb715ae
 
84a48e2
cb715ae
167a6e2
cb715ae
 
 
 
 
 
923e66a
3654bf8
923e66a
 
4214d2c
cb715ae
4214d2c
 
cb715ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
---
task_categories:
  - text-generation
language:
  - en
  - de
  - fr
  - es
  - it
pretty_name: Red Pajama V2 Dataset
---

### Getting Started

RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text
documents coming from 84 CommonCrawl snapshots and processed using
the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus
that additionally come with quality signals, and 20B documents that are deduplicated.

Check out our [blog post](XXXXX) for more details on the build process, dataset structure and schema.

To familiarize yourself with the dataset, you can load the sample dataset using:

```python
from datasets import load_dataset

ds = load_dataset("togethercomputer/RedPajama-Data-V2", name="sample") 
```

To download a the dataset for a specific combination of `{partition} x {snapshot_id} x {language}`, you can run

```python
from datasets import load_dataset

ds = load_dataset("togethercomputer/RedPajama-Data-V2",
                  name="sample",
                  partition="head_middle",
                  snapshots=["2023-06", "2022-49"],
                  languages=["en", "de"]) 
```

Alternatively, you can also directly download the files using the following instructions, using English data from the
`2023-06` snapshot and the `head_middle` partition as an example. The full set of CC snapshots included in the dataset
is given in `_CC_SNAPSHOT_IDS`, and the available partitions are `tail` and `head_middle`. The available language tags
are `en`, `de`, `fr`, `es`, `it`.

```bash
CC_SNAPSHOT="2023-06"
LANG="en"
PARTITION="head_middle"
BASE_URL="https://data.together.xyz/redpajama-data-v2/v1.0.0"

listings_file="${LANG}-${CC_SNAPSHOT}-${PARTITION}.txt"
wget "${BASE_URL}/listings/${listings_file}"

# download documents
while read line; do
  url="${BASE_URL}/documents/${line}.json.gz"
  dest="documents/${line}.json.gz"
  mkdir -p $(dirname $dest)
  wget "$url" -O "$dest"
done <"$listings_file"

# download other components
COMPS=("quality_signals" "minhash" "duplicates")
for comp in "${COMPS[@]}"; do
  while read line; do
    url="${BASE_URL}/${comp}/${line}.${comp}.json.gz"
    dest="${comp}/${line}.${comp}.json.gz"
    mkdir -p $(dirname $dest)
    wget "$url" -O "$dest"
  done <"$listings_file"
done

```

A full set of scripts to recreate the dataset, including the quality signals, can be
found [here](https://github.com/togethercomputer/RedPajama-Data).

### Applying Filtering Rules
You can use the quality signals to filter the raw RedPajama-V2 dataset for a given set of rules. For example, consider 
the following set of rules used in Gopher:

```python
def gopher_rules_pass(sample) -> bool:
    """ function returns True if the sample complies with Gopher rules """
    signals = json.loads(sample["quality_signals"])

    # rule 1: number of words between 50 and 10'000
    word_count = signals["rps_doc_word_count"][0][2]
    if word_count < 50 or word_count > 10_000:
        return False

    # rule 2: mean word length between 3 and 10
    mean_word_length = signals["rps_doc_mean_word_length"][0][2]
    if mean_word_length < 3 or mean_word_length > 10:
        return False

    # rule 2: symbol to word ratio below 0.1
    symbol_word_ratio = signals["rps_doc_symbol_to_word_ratio"][0][2]
    if  symbol_word_ratio > 0.1:
        return False

    # rule 3: 90% of lines need to start without a bullet point
    n_lines = signals["ccnet_nlines"][0][2]
    n_lines_bulletpoint_start = sum(map(lambda ln: ln[2], signals["rps_lines_start_with_bulletpoint"]))
    if n_lines_bulletpoint_start / n_lines > 0.9:
        return False

    # rule 4: the ratio between characters in the most frequent 2-gram and the total number 
    # of characters must be below 0.2
    top_2_gram_frac = signals["rps_doc_frac_chars_top_2gram"][0][2]
    if top_2_gram_frac > 0.2:
        return False

    # rule 5: ...
    
        
    return True
```

Filtering the RedPajama-V2 dataset with this set of rules is then as easy as:

```python
ds_iterator = load_dataset(
    "togethercomputer/RedPajama-Data-V2", 
    snapshots=["2023-14"], 
    languages=["en"], 
    name="default", 
    streaming=True
)

filtered_dataset = []

for sample in ds_iterator["train"]:
  
  if not gopher_rules_pass(sample):
    continue
  
  filtered_dataset.append(sample)
```

### Dataset Summary

RedPajama-V2 is an open dataset for training large laguage models and includes over 100B text documents. Out of these,
30B documents come with quality annotations. Out of the 30B quality annotated documents, 20B are deduplicated.

#### Quality Annotations

| Annotation Tag                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                          | Category         | Reference                                                                                                                     |
|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|
| ccnet_bucket                                   | head, middle or tail bucket of the perplexity score                                                                                                                                                                                                                                                                                                                                                                  | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_language_score                           | score of the language identification model                                                                                                                                                                                                                                                                                                                                                                           | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_length                                   | number of characters                                                                                                                                                                                                                                                                                                                                                                                                 | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_nlines                                   | number of lines                                                                                                                                                                                                                                                                                                                                                                                                      | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_original_length                          | number of characters before in-document line deduplication                                                                                                                                                                                                                                                                                                                                                           | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_original_nlines                          | number of lines before in-document line deduplication                                                                                                                                                                                                                                                                                                                                                                | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| ccnet_perplexity                               | perplexity of an LM trained on Wikipedia                                                                                                                                                                                                                                                                                                                                                                             | CCNet            | [CCNet](https://github.com/facebookresearch/cc_net)                                                                           |
| rps_doc_books_importance                       | Given a bag of {1,2}-wordgram model trained on Books p, and a model trained on the source domain q, This is the logarithm of the ratio p(doc)/q(doc).                                                                                                                                                                                                                                                                | ML Heuristics    | [Importance Resampling (Xie et al.)](https://arxiv.org/abs/2302.03169)                                                        |
| rps_doc_openwebtext_importance                 | Given a bag of {1,2}-wordgram model trained on OpenWebText p, and a model trained on the source domain q, this is the logarithm of the ratio p(doc)/q(doc).                                                                                                                                                                                                                                                          | ML Heuristics    | [Importance Resampling (Xie et al.)](https://arxiv.org/abs/2302.03169)                                                        |
| rps_doc_wikipedia_importance                   | Given a bag of {1,2}-wordgram model trained on Wikipedia articles p, and a model trained on the source domain q, this is the logarithm of the ratio p(doc)/q(doc).                                                                                                                                                                                                                                                   | ML Heuristics    | [Importance Resampling (Xie et al.)](https://arxiv.org/abs/2302.03169)                                                        |
| rps_doc_ml_wikiref_score                       | Fasttext classifier prediction for the document being a Wikipedia reference. This is the same fasttext model used in the RedPajama-1T dataset. Only applies to English data..                                                                                                                                                                                                                                        | ML Heuristics    | [LLaMA](https://arxiv.org/abs/2302.13971), [RedPajama-1T](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T) |
| rps_doc_ml_palm_score                          | Fasttext classifier prediction for the document being a Wikipedia article, OpenWebText sample or a RedPajama-V1 book. Only for English data.                                                                                                                                                                                                                                                                         | ML Heuristics    | [PALM](https://arxiv.org/abs/2204.02311), [GLaM](https://arxiv.org/abs/2112.06905)                                            |
| rps_doc_ml_wikipedia_score                     | Fasttext classifier prediction for the document being a Wikipedia article. This is used for non-English data                                                                                                                                                                                                                                                                                                         | ML Heuristics    | -                                                                                                                             |
| rps_doc_curly_bracket                          | The ratio between the number of occurrences of '{' or '}' and the number of characters in the raw text.                                                                                                                                                                                                                                                                                                              | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_frac_all_caps_words                    | The fraction of words in the content that only consist of uppercase letters. This is based on the raw content.                                                                                                                                                                                                                                                                                                       | Natural Language | [Pretrainer’s Guide](https://arxiv.org/abs/2305.13169)                                                                        |
| rps_doc_frac_lines_end_with_ellipsis           | The fraction of lines that end with an ellipsis, where an ellipsis is defined as either "..." or "…".                                                                                                                                                                                                                                                                                                                | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_no_alph_words                     | The fraction of words that contain no alphabetical character.                                                                                                                                                                                                                                                                                                                                                        | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_lorem_ipsum                            | The ratio between the number of occurrences of 'lorem ipsum' and the number of characters in the content after normalisation.                                                                                                                                                                                                                                                                                        | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_mean_word_length                       | The mean length of words in the content after normalisation.                                                                                                                                                                                                                                                                                                                                                         | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_stop_word_fraction                     | The ratio between the number of stop words and the number of words in the document. Stop words are obtained from the [stopwords-json](https://github.com/6/stopwords-json) repo.                                                                                                                                                                                                                                     | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_symbol_to_word_ratio                   | The ratio of symbols to words in the content.. Symbols are defined "#", "...", and "…".                                                                                                                                                                                                                                                                                                                              | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_unique_words                      | The fraction of unique words in the content. This is also known as the degeneracy of a text sample. Calculated based on the normalised content.                                                                                                                                                                                                                                                                      | Natural Language | [Pretrainer’s Guide](https://arxiv.org/abs/2305.13169)                                                                        |
| rps_doc_unigram_entropy                        | The entropy of the unigram distribution of the content. This measures the diversity of the content and is computed using sum(-x / total * log(x / total)) where the sum is taken over counts of unique words in the normalised content.                                                                                                                                                                              | Natural Language | -                                                                                                                             |
| rps_doc_word_count                             | The number of words in the content after normalisation.                                                                                                                                                                                                                                                                                                                                                              | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_lines_ending_with_terminal_punctution_mark | Indicates whether a line ends with a terminal punctuation mark. A terminal punctation mark is defined as one of: ".", "!", "?", "”".                                                                                                                                                                                                                                                                                 | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_lines_javascript_counts                    | The number of occurrences of the word "javascript" in each line.                                                                                                                                                                                                                                                                                                                                                     | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_lines_num_words                            | The number of words in each line. This is computed based on the normalised text.                                                                                                                                                                                                                                                                                                                                     | Natural Language | [C4](https://arxiv.org/abs/1910.10683) , [RefinedWeb](https://arxiv.org/abs/2306.01116)                                       |
| rps_lines_numerical_chars_fraction             | The ratio between the number of numerical characters and total number of characters in each line. This is based on the normalised content.                                                                                                                                                                                                                                                                           | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116)                                                                                |
| rps_lines_start_with_bulletpoint               | Whether the lines that start with a bullet point symbol. The following set of unicodes are considered a bullet point: \u2022 (bullet point), \u2023 (triangular bullet point), \u25B6 (black right pointing triangle), \u25C0 (black left pointing triangle), \u25E6 (white bullet point), \u25A0 (black square), \u25A1 (white square), \u25AA (black small square), \u25AB (white small square), \u2013 (en dash). | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_lines_uppercase_letter_fraction            | The ratio between the number of uppercase letters and total number of characters in each line. This is based on the raw text.                                                                                                                                                                                                                                                                                        | Natural Language | [RefinedWeb](https://arxiv.org/abs/2306.01116)                                                                                |
| rps_doc_num_sentences                          | The number of sentences in the content. This is calculated using the regular expression `r'\b[^.!?]+[.!?]*'`.                                                                                                                                                                                                                                                                                                        | Natural Language | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_frac_chars_dupe_10grams                | The fraction of characters in duplicate word 10grams. This operates on the lower-cased, punctuation removed content. It is also ensured that characters in overlapping ngrams are only counted once.                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_5grams                 | The fraction of characters in duplicate word 5grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_6grams                 | The fraction of characters in duplicate word 6grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_7grams                 | The fraction of characters in duplicate word 7grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_8grams                 | The fraction of characters in duplicate word 8grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_dupe_9grams                 | The fraction of characters in duplicate word 9grams.                                                                                                                                                                                                                                                                                                                                                                 | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_top_2gram                   | The fraction of characters in the top word 2gram.                                                                                                                                                                                                                                                                                                                                                                    | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_top_3gram                   | The fraction of characters in the top word 3gram.                                                                                                                                                                                                                                                                                                                                                                    | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_frac_chars_top_4gram                   | The fraction of characters in the top word 4gram.                                                                                                                                                                                                                                                                                                                                                                    | Repetitiveness   | [RefinedWeb](https://arxiv.org/abs/2306.01116), [Gopher](https://arxiv.org/abs/2112.11446)                                    |
| rps_doc_ldnoobw_words                          | The number of sequences of words that are contained in the List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words blocklist. The blocklist is obtained from the [LDNOOBW](https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words) repo.                                                                                                                                                     | toxicity         | [C4](https://arxiv.org/abs/1910.10683)                                                                                        |
| rps_doc_ut1_blacklist                          | A categorical id corresponding to the list of categories of the domain of the document. Categories are obtained from the UT1 blacklist. The list is obtained from [UT-Capitole](https://dsi.ut-capitole.fr/blacklists/).                                                                                                                                                                                             | toxicictiy       | [RefinedWeb](https://arxiv.org/abs/2306.01116)                                                                                |

#### Document and Token Counts for the Annotated and deduplicated `head_middle` part of the dataset

|       | # Documents | Estimated Token count (deduped) |
|-------|-------------|---------------------------------|
| en    | 14.5B       | 20.5T                           |
| de    | 1.9B        | 3.0T                            |
| fr    | 1.6B        | 2.7T                            |  
| es    | 1.8B        | 2.8T                            |
| it    | 0.9B        | 1.5T                            |
| Total | 20.8B       | 30.4T                           |

### Languages

English, German, French, Italian, Spanish

## Dataset Structure

The dataset is structured into four components, each following the same key structure:

```
β”œβ”€β”€ documents
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.json.gz
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.json.gz
β”œβ”€β”€ quality_signals
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.signals.json.gz
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.json.gz
β”œβ”€β”€ duplicates
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.duplicates.parquet
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.duplicates.parquet
β”œβ”€β”€ minhash
    β”œβ”€β”€ 2018-43
        β”œβ”€β”€ 0000
            β”œβ”€β”€ en_head.minhash.parquet
            β”œβ”€β”€ ...
            β”œβ”€β”€ it_middle.minhash.parquet
```

Documents files, which contain the text, folow the schema defined by CCNet:

```json
{
  "url": "...",
  "date_download": "2014-08-20T06:48:26Z",
  "digest": "sha1:46OPKWZ7MAG5624VYYA3U3YH2MJ727B6",
  "length": 1095,
  "nlines": 8,
  "source_domain": "...",
  "title": "...",
  "raw_content": "Dear ...",
  "cc_segment": "crawl-data/CC-MAIN-2014-35/...",
  "original_nlines": 11,
  "original_length": 1174,
  "line_ids": [
    0,
    1,
    3,
    4,
    6,
    7,
    8,
    9
  ],
  "language": "en",
  "language_score": 0.92,
  "perplexity": 217.2,
  "bucket": "head"
}
```

The quality signals follow the schema

```json
{
  "id": "2018-43/0000/en_head.json.gz/0",
  "id_int": 7972430436813205988,
  "metadata": {
    "cc_segment": "crawl-data/...",
    "cc_net_source": "2018-43/0000/en_head.json.gz",
    "url": "...",
    "source_domain": "...",
    "language": "en",
    "snapshot_id": "2018-43"
  },
  "quality_signals": {
    "ccnet_original_length": [
      [
        0,
        7033,
        8711.0
      ]
    ],
    ...,
    "rps_doc_stop_word_fraction": [
      [
        0,
        7033,
        0.45121107
      ]
    ],
    "rps_lines_num_words": [
      [
        0,
        25,
        2
      ],
      ...,
      [
        6980,
        7033,
        10
      ]
    ]
  }
}
```

where signal scores are encoded as a list of tuples `(start, end, score)`, where `start` and `end` are the locations in
the `raw_content` string where the `score` applies.

## Dataset Creation

The dataset is based on 84 snapshots provided by Common Crawl. Each snapshot was processed using the CCNet pipeline and
split into `head` `middle` `tail` buckets, depending on the perplexity score. In a second step, the documents in the
`head` and `middle` buckets were annotated with the quality signals described above. Finally, the documents were
deduplicated based on the text, using a Bloomfilter. The duplicates were kept in the dataset, but are marked in the
`duplicates` component.

## Citation

To cite RedPajama-V2, please use:

```
@software{together2023redpajama-v2,
  author = {Together Computer},
  title = {RedPajama: an Open Dataset for Training Large Language Models},
  month = October,
  year = 2023,
  url = {https://github.com/togethercomputer/RedPajama-Data}
}
```

## Acknowledgements

-- TODO --

## License

Please refer to the [Common Crawl Foundation Terms of Use](https://commoncrawl.org/terms-of-use) for the data.
The code used to load and process the dataset is licensed under the Apache 2.0 license.

<!--
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
[More Information Needed]
-->