thewall commited on
Commit
6367823
·
1 Parent(s): 0a3f2c2

Upload 3 files

Browse files
Files changed (4) hide show
  1. .gitattributes +2 -0
  2. jolma_subset.py +165 -0
  3. min_count_10.gz.csv +3 -0
  4. min_count_3.gz.csv +3 -0
.gitattributes CHANGED
@@ -52,3 +52,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
55
+ min_count_10.gz.csv filter=lfs diff=lfs merge=lfs -text
56
+ min_count_3.gz.csv filter=lfs diff=lfs merge=lfs -text
jolma_subset.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import pandas as pd
4
+ import numpy as np
5
+ import datasets
6
+
7
+
8
+ logger = datasets.logging.get_logger(__name__)
9
+
10
+
11
+ _CITATION = """\
12
+ @article{jolma2010multiplexed,
13
+ title={Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities},
14
+ author={Jolma, Arttu and Kivioja, Teemu and Toivonen, Jarkko and Cheng, Lu and Wei, Gonghong and Enge, Martin and \
15
+ Taipale, Mikko and Vaquerizas, Juan M and Yan, Jian and Sillanp{\"a}{\"a}, Mikko J and others},
16
+ journal={Genome research},
17
+ volume={20},
18
+ number={6},
19
+ pages={861--873},
20
+ year={2010},
21
+ publisher={Cold Spring Harbor Lab}
22
+ }
23
+ """
24
+
25
+ _DESCRIPTION = """\
26
+ PRJEB3289
27
+ https://www.ebi.ac.uk/ena/browser/view/PRJEB3289
28
+ Data that has been generated by HT-SELEX experiments (see Jolma et al. 2010. PMID: 20378718 for description of method) \
29
+ that has been now used to generate transcription factor binding specificity models for most of the high confidence \
30
+ human transcription factors. Sequence data is composed of reads generated with Illumina Genome Analyzer IIX and \
31
+ HiSeq2000 instruments. Samples are composed of single read sequencing of synthetic DNA fragments with a fixed length \
32
+ randomized region or samples derived from such a initial library by selection with a sequence specific DNA binding \
33
+ protein. Originally multiple samples with different "barcode" tag sequences were run on the same Illumina sequencing \
34
+ lane but the released files have been already de-multiplexed, and the constant regions and "barcodes" of each sequence \
35
+ have been cut out of the sequencing reads to facilitate the use of data. Some of the files are composed of reads from \
36
+ multiple different sequencing lanes and due to this each of the names of the individual reads have been edited to show \
37
+ the flowcell and lane that was used to generate it. Barcodes and oligonucleotide designs are indicated in the names of \
38
+ individual entries. Depending of the selection ligand design, the sequences in each of these fastq-files are either \
39
+ 14, 20, 30 or 40 bases long and had different flanking regions in both sides of the sequence. Each run entry is named \
40
+ in either of the following ways: Example 1) "BCL6B_DBD_AC_TGCGGG20NGA_1", where name is composed of following fields \
41
+ ProteinName_CloneType_Batch_BarcodeDesign_SelectionCycle. This experiment used barcode ligand TGCGGG20NGA, where both \
42
+ of the variable flanking constant regions are indicated as they were on the original sequence-reads. This ligand has \
43
+ been selected for one round of HT-SELEX using recombinant protein that contained the DNA binding domain of \
44
+ human transcription factor BCL6B. It also tells that the experiment was performed on batch of experiments named as "AC".\
45
+ Example 2) 0_TGCGGG20NGA_0 where name is composed of (zero)_BarcodeDesign_(zero) These sequences have been generated \
46
+ from sequencing of the initial non-selected pool. Same initial pools have been used in multiple experiments that were \
47
+ on different batches, thus for example this background sequence pool is the shared background for all of the following \
48
+ samples. BCL6B_DBD_AC_TGCGGG20NGA_1, ZNF784_full_AE_TGCGGG20NGA_3, DLX6_DBD_Y_TGCGGG20NGA_4 and MSX2_DBD_W_TGCGGG20NGA_2
49
+ """
50
+
51
+ _URL = "ftp://ftp.sra.ebi.ac.uk/vol1/run/"
52
+ "ftp://ftp.sra.ebi.ac.uk/vol1/run/ERR173/ERR173154/CTCF_full_AJ_TAGCGA20NGCT_1.fastq.gz"
53
+ # _FORWARD_PRIMER = "TAATACGACTCACTATAGGGAGCAGGAGAGAGGTCAGATG"
54
+ # _REVERSE_PRIMER = "CCTATGCGTGCTAGTGTGA"
55
+ # _DESIGN_LENGTH = 30
56
+
57
+ import datasets
58
+
59
+ config = datasets.load_dataset(path="thewall/deepbindweight", split="all")
60
+ info = pd.read_excel(config['selex'][0])
61
+ protein_info = pd.read_excel(config['tf'][0], index_col=0)
62
+ _URLS = {"min_count_10": "",
63
+ "min_count_3": ""}
64
+ _DESIGN_LENGTH = {"min_count_10": None,
65
+ "min_count_3": None}
66
+ pattern = re.compile("(\d+)")
67
+ for idx, row in info.iterrows():
68
+ sra_id = row["SRA ID"]
69
+ file = row["file"]
70
+ _URLS[sra_id] = "/".join([_URL, sra_id[:6], sra_id, file])
71
+ _DESIGN_LENGTH[sra_id] = int(pattern.search(row["Ligand"]).group(0))
72
+
73
+ URL = "https://huggingface.co/datasets/thewall/jolma_subset/resolve/main"
74
+
75
+ class JolmaSubsetConfig(datasets.BuilderConfig):
76
+ def __init__(self, length_match=True, design_length=None, filter_N=True,
77
+ protein_prefix="1", protein_suffix="2", max_length=1000, max_gene_num=1,
78
+ aptamer_prefix="[BOS]", aptamer_suffix="[EOS]", **kwargs):
79
+ super(JolmaSubsetConfig, self).__init__(**kwargs)
80
+ self.length_match = length_match
81
+ self.design_length = design_length
82
+ self.filter_N = filter_N
83
+ self.data_dir = kwargs.get("data_dir")
84
+ self.protein_prefix = protein_prefix
85
+ self.protein_suffix = protein_suffix
86
+ self.aptamer_prefix = aptamer_prefix
87
+ self.aptamer_suffix = aptamer_suffix
88
+ self.max_length = max_length
89
+ self.max_gene_num = max_gene_num
90
+
91
+
92
+ class JolmaSubset(datasets.GeneratorBasedBuilder):
93
+ BUILDER_CONFIGS = [
94
+ JolmaSubsetConfig(name=key, design_length=_DESIGN_LENGTH[key]) for key in ["min_count_3", "min_count_10"]
95
+ ]
96
+
97
+ DEFAULT_CONFIG_NAME = "min_count_10"
98
+
99
+ def _info(self):
100
+ return datasets.DatasetInfo(
101
+ description=_DESCRIPTION,
102
+ features=datasets.Features(
103
+ {
104
+ "id": datasets.Value("int32"),
105
+ "identifier": datasets.Value("string"),
106
+ "seq": datasets.Value("string"),
107
+ "quality": datasets.Value("string"),
108
+ "count": datasets.Value("int32"),
109
+ "protein": datasets.Value("string"),
110
+ "protein_id": datasets.Value("string"),
111
+ }
112
+ ),
113
+ homepage="https://www.ebi.ac.uk/ena/browser/view/PRJEB3289",
114
+ citation=_CITATION,
115
+ )
116
+
117
+ def _split_generators(self, dl_manager):
118
+ # downloaded_files = dl_manager.download_and_extract(self.config.url)
119
+ # logger.info(f"Download from {self.config.url}")
120
+ file = dl_manager.download(f"{URL}/{self.config.name}.gz.csv")
121
+ # file = os.path.join(filepath, os.listdir(filepath)[0])
122
+ return [
123
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": file}),
124
+ ]
125
+
126
+ def _generate_examples(self, filepath):
127
+ """This function returns the examples in the raw (text) form."""
128
+ logger.info("generating examples from = %s", filepath)
129
+ proteins = protein_info["Sequence"]
130
+ protein_id = protein_info["Entry"]
131
+ gene_num = protein_info["Unique Gene"]
132
+ data = pd.read_csv(filepath)
133
+ for key, row in data.iterrows():
134
+ sra_id = row["identifier"].split(":")[0]
135
+ protein_seq = f"{self.config.protein_prefix}{proteins.loc[sra_id]}{self.config.protein_suffix}"
136
+ aptamer_seq = f'{self.config.aptamer_prefix}{row["seq"]}{self.config.aptamer_suffix}'
137
+ if len(protein_seq)>self.config.max_length:
138
+ continue
139
+ if gene_num.loc[sra_id]>self.config.max_gene_num:
140
+ continue
141
+ if str(proteins.loc[sra_id])=="nan":
142
+ continue
143
+ ans = {"id": key,
144
+ "protein": protein_seq,
145
+ "protein_id": protein_id.loc[sra_id],
146
+ "seq": aptamer_seq,
147
+ "identifier": row["identifier"],
148
+ "count": int(row["count"]),
149
+ "quality": row['quality']}
150
+ yield key, ans
151
+
152
+
153
+ def filter_fn(self, example):
154
+ seq = example["seq"]
155
+ if self.config.length_match and len(seq)!=self.config.design_length:
156
+ return False
157
+ if self.config.filter_N and "N" in seq:
158
+ return False
159
+ return True
160
+
161
+
162
+ if __name__=="__main__":
163
+ from datasets import load_dataset
164
+ dataset = load_dataset("jolma_subset.py", split="all")
165
+
min_count_10.gz.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c00b5be7a892592b04442dacd1933484dd9eef411d712be9a4d36fa9a05b30e
3
+ size 4734761
min_count_3.gz.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40974c75ea46e0e728af19a8b6955502495e97838c543b5110ef0b0b3dbccc67
3
+ size 31087291