tgokhale commited on
Commit
49c145f
·
1 Parent(s): f235a0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +43 -0
README.md CHANGED
@@ -1,3 +1,46 @@
1
  ---
2
  license: cc-by-nc-nd-4.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-nd-4.0
3
  ---
4
+ # Benchmarking Spatial Relationships in Text-to-Image Generation
5
+ *Tejas Gokhale, Hamid Palangi, Besmira Nushi, Vibhav Vineet, Eric Horvitz, Ece Kamar, Chitta Baral, Yezhou Yang*
6
+
7
+ <!-- ![](assets/motivating_example_4.png "") -->
8
+ <p align=center>
9
+ <img src="assets/visor_example_detailed_new.png" height=400px/>
10
+ </p>
11
+
12
+ - We introduce a large-scale challenge dataset SR<sub>2D</sub> that contains sentences describing two objects and the spatial relationship between them.
13
+ - We introduce a metric called VISOR (short for **V**erify**I**ng **S**patial **O**bject **R**elationships) to quantify spatial reasoning performance.
14
+ - VISOR and SR<sub>2D</sub> can be used off-the-shelf with any text-to-image model.
15
+
16
+ ## SR<sub>2D</sub> Dataset
17
+ Our dataset is hosted as [here](https://huggingface.co/datasets/tgokhale/sr2d_visor). This contains
18
+ 1. The text prompt dataset in `.json` format (`text_spatial_rel_phrases.json`)
19
+ 2. Images generated using 7 models (GLIDE, CogView2, DALLE-mini, Stable Diffusion, GLIDE + Stable Diffusion + CDM, and Stable Diffusion v2.1)
20
+
21
+ Alternatively, the text prompt dataset can also accessed from [`text_spatial_rel_phrases.json`](https://github.com/microsoft/VISOR/blob/main/text_spatial_rel_phrases.json). It contains all examples from the current version of the dataset (31680 text prompts) accompanied by the corresponding metadata.
22
+ This dataset can also be generated by running the script `python create_spatial_phrases.py`
23
+
24
+ ## GitHub repository
25
+ The GitHub repository for [VISOR](https://github.com/microsoft/VISOR/) contains code for generating images with prompts from the SR<sub>2D</sub> dataset and evaluating the generated images using VISOR.
26
+
27
+
28
+ ## References
29
+ Code for text-to-image generation:
30
+ 1. GLIDE: https://github.com/openai/glide-text2im
31
+ 2. DALLE-mini: https://github.com/borisdayma/dalle-mini
32
+ 3. CogView2: https://github.com/THUDM/CogView2
33
+ 4. Stable Diffusion: https://github.com/CompVis/stable-diffusion
34
+ 5. Composable Diffusion Models: https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
35
+ 6. OpenAI API for DALLE-2: https://openai.com/api/
36
+
37
+ ## Citation
38
+ If you find SR<sub>2D</sub> or VISOR useful in your research, please use the following citation:
39
+ ```
40
+ @article{gokhale2022benchmarking,
41
+ title={Benchmarking Spatial Relationships in Text-to-Image Generation},
42
+ author={Gokhale, Tejas and Palangi, Hamid and Nushi, Besmira and Vineet, Vibhav and Horvitz, Eric and Kamar, Ece and Baral, Chitta and Yang, Yezhou},
43
+ journal={arXiv preprint arXiv:2212.10015},
44
+ year={2022}
45
+ }
46
+ ```