Datasets:
Tasks:
Multiple Choice
Modalities:
Text
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K - 100K
License:
Commit
·
da6d020
1
Parent(s):
ca5c18f
Delete loading script
Browse files
quail.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
import xml.etree.ElementTree as ET
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
|
6 |
-
logger = datasets.logging.get_logger(__name__)
|
7 |
-
|
8 |
-
|
9 |
-
_CITATION = """\
|
10 |
-
@inproceedings{DBLP:conf/aaai/RogersKDR20,
|
11 |
-
author = {Anna Rogers and
|
12 |
-
Olga Kovaleva and
|
13 |
-
Matthew Downey and
|
14 |
-
Anna Rumshisky},
|
15 |
-
title = {Getting Closer to {AI} Complete Question Answering: {A} Set of Prerequisite
|
16 |
-
Real Tasks},
|
17 |
-
booktitle = {The Thirty-Fourth {AAAI} Conference on Artificial Intelligence, {AAAI}
|
18 |
-
2020, The Thirty-Second Innovative Applications of Artificial Intelligence
|
19 |
-
Conference, {IAAI} 2020, The Tenth {AAAI} Symposium on Educational
|
20 |
-
Advances in Artificial Intelligence, {EAAI} 2020, New York, NY, USA,
|
21 |
-
February 7-12, 2020},
|
22 |
-
pages = {8722--8731},
|
23 |
-
publisher = {{AAAI} Press},
|
24 |
-
year = {2020},
|
25 |
-
url = {https://aaai.org/ojs/index.php/AAAI/article/view/6398},
|
26 |
-
timestamp = {Thu, 04 Jun 2020 13:18:48 +0200},
|
27 |
-
biburl = {https://dblp.org/rec/conf/aaai/RogersKDR20.bib},
|
28 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
29 |
-
}
|
30 |
-
"""
|
31 |
-
|
32 |
-
_DESCRIPTION = """\
|
33 |
-
QuAIL is a reading comprehension dataset. \
|
34 |
-
QuAIL contains 15K multi-choice questions in texts 300-350 tokens \
|
35 |
-
long 4 domains (news, user stories, fiction, blogs).\
|
36 |
-
QuAIL is balanced and annotated for question types.\
|
37 |
-
"""
|
38 |
-
|
39 |
-
|
40 |
-
class QuailConfig(datasets.BuilderConfig):
|
41 |
-
"""BuilderConfig for QuAIL."""
|
42 |
-
|
43 |
-
def __init__(self, **kwargs):
|
44 |
-
"""BuilderConfig for QuAIL.
|
45 |
-
Args:
|
46 |
-
**kwargs: keyword arguments forwarded to super.
|
47 |
-
"""
|
48 |
-
super(QuailConfig, self).__init__(**kwargs)
|
49 |
-
|
50 |
-
|
51 |
-
class Quail(datasets.GeneratorBasedBuilder):
|
52 |
-
"""QuAIL: The Stanford Question Answering Dataset. Version 1.1."""
|
53 |
-
|
54 |
-
_CHALLENGE_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_challenge_randomized.xml"
|
55 |
-
_DEV_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_dev_randomized.xml"
|
56 |
-
_TRAIN_SET = "https://raw.githubusercontent.com/text-machine-lab/quail/master/quail_v1.3/xml/randomized/quail_1.3_train_randomized.xml"
|
57 |
-
|
58 |
-
BUILDER_CONFIGS = [
|
59 |
-
QuailConfig(
|
60 |
-
name="quail",
|
61 |
-
version=datasets.Version("1.3.0", ""),
|
62 |
-
description="Quail dataset 1.3.0",
|
63 |
-
),
|
64 |
-
]
|
65 |
-
|
66 |
-
def _info(self):
|
67 |
-
return datasets.DatasetInfo(
|
68 |
-
description=_DESCRIPTION,
|
69 |
-
features=datasets.Features(
|
70 |
-
{
|
71 |
-
"id": datasets.Value("string"),
|
72 |
-
"context_id": datasets.Value("string"),
|
73 |
-
"question_id": datasets.Value("string"),
|
74 |
-
"domain": datasets.Value("string"),
|
75 |
-
"metadata": {
|
76 |
-
"author": datasets.Value("string"),
|
77 |
-
"title": datasets.Value("string"),
|
78 |
-
"url": datasets.Value("string"),
|
79 |
-
},
|
80 |
-
"context": datasets.Value("string"),
|
81 |
-
"question": datasets.Value("string"),
|
82 |
-
"question_type": datasets.Value("string"),
|
83 |
-
"answers": datasets.features.Sequence(
|
84 |
-
datasets.Value("string"),
|
85 |
-
),
|
86 |
-
"correct_answer_id": datasets.Value("int32"),
|
87 |
-
}
|
88 |
-
),
|
89 |
-
# No default supervised_keys (as we have to pass both question
|
90 |
-
# and context as input).
|
91 |
-
supervised_keys=None,
|
92 |
-
homepage="https://text-machine-lab.github.io/blog/2020/quail/",
|
93 |
-
citation=_CITATION,
|
94 |
-
)
|
95 |
-
|
96 |
-
def _split_generators(self, dl_manager):
|
97 |
-
urls_to_download = {"train": self._TRAIN_SET, "dev": self._DEV_SET, "challenge": self._CHALLENGE_SET}
|
98 |
-
downloaded_files = dl_manager.download_and_extract(urls_to_download)
|
99 |
-
|
100 |
-
return [
|
101 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
102 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
103 |
-
datasets.SplitGenerator(name="challenge", gen_kwargs={"filepath": downloaded_files["challenge"]}),
|
104 |
-
]
|
105 |
-
|
106 |
-
def _generate_examples(self, filepath):
|
107 |
-
"""This function returns the examples in the raw (text) form."""
|
108 |
-
logger.info("generating examples from = %s", filepath)
|
109 |
-
root = ET.parse(filepath).getroot()
|
110 |
-
for text_tag in root.iterfind("text"):
|
111 |
-
text_id = text_tag.get("id")
|
112 |
-
domain = text_tag.get("domain")
|
113 |
-
metadata_tag = text_tag.find("metadata")
|
114 |
-
author = metadata_tag.find("author").text.strip()
|
115 |
-
title = metadata_tag.find("title").text.strip()
|
116 |
-
url = metadata_tag.find("url").text.strip()
|
117 |
-
text_body = text_tag.find("text_body").text.strip()
|
118 |
-
questions_tag = text_tag.find("questions")
|
119 |
-
for q_tag in questions_tag.iterfind("q"):
|
120 |
-
question_type = q_tag.get("type", None)
|
121 |
-
question_text = q_tag.text.strip()
|
122 |
-
question_id = q_tag.get("id")
|
123 |
-
answers = []
|
124 |
-
answer_id = None
|
125 |
-
for i, a_tag in enumerate(q_tag.iterfind("a")):
|
126 |
-
if a_tag.get("correct") == "True":
|
127 |
-
answer_id = i
|
128 |
-
answers.append(a_tag.text.strip())
|
129 |
-
|
130 |
-
id_ = f"{text_id}_{question_id}"
|
131 |
-
yield id_, {
|
132 |
-
"id": id_,
|
133 |
-
"context_id": text_id,
|
134 |
-
"question_id": question_id,
|
135 |
-
"question_type": question_type,
|
136 |
-
"domain": domain,
|
137 |
-
"metadata": {"author": author, "title": title, "url": url},
|
138 |
-
"context": text_body,
|
139 |
-
"question": question_text,
|
140 |
-
"answers": answers,
|
141 |
-
"correct_answer_id": answer_id,
|
142 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|