File size: 8,364 Bytes
eb89fd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4dc7027
d981f6f
4dc7027
eb89fd8
 
 
4dc7027
 
eb89fd8
 
 
 
 
 
 
4dc7027
 
 
 
 
 
 
 
 
 
eb89fd8
 
 
 
 
 
d981f6f
7dde76e
ffe27f9
7e6f949
951a3da
c3ffc33
a155bbd
7ef8239
ece55df
241aab8
f4f56af
6ec3797
cba01e8
619f90e
240f5e1
e1a268e
4801f01
6c19497
97c4146
c8ae04e
da0705e
1a9c5dd
ef18b19
315fa38
68b766d
6144eb0
ece763a
91ad8f8
946f68d
 
7bd6f2b
8a59799
3c6d785
fba193a
364fd53
063a9f2
f238644
deb0838
22149dd
9cdd734
9840d3d
14fc58c
c706394
bea4c6b
3c5aefc
25014b0
b9ccdb1
23fa0a3
1f70b45
34c5587
9cd38d0
494845b
38a81e8
05fccf0
bb8a798
def1c5c
07c6024
12ae9d4
814d05f
adea243
30de331
cacd95c
5a4b261
231419b
dad5575
36f2ed9
33191cc
3fac72b
683f283
13cdf48
4dc7027
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
---
license: mit
multilinguality:
  - multilingual
source_datasets:
  - original
task_categories:
  - text-classification
  - token-classification
  - question-answering
  - summarization
  - text-generation
task_ids:
  - sentiment-analysis
  - topic-classification
  - named-entity-recognition
  - language-modeling
  - text-scoring
  - multi-class-classification
  - multi-label-classification
  - extractive-qa
  - news-articles-summarization
---


# Bittensor Subnet 13 Reddit Dataset

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>

<center>
    <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>


## Dataset Description

- **Repository:** tensorshield/reddit_dataset_217
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5GQcotswAC2zF1JspHCefwSXfKruDxovUhV1Dsgm5oj3x9N9

### Dataset Summary

This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).

### Supported Tasks

The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:

- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization

### Languages

Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.

## Dataset Structure

### Data Instances

Each instance represents a single Reddit post or comment with the following fields:


### Data Fields

- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.

### Data Splits

This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.

## Dataset Creation

### Source Data

Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.

### Personal and Sensitive Information

All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.

## Considerations for Using the Data

### Social Impact and Biases

Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.

### Limitations

- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.

## Additional Information

### Licensing Information

The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.

### Citation Information

If you use this dataset in your research, please cite it as follows:

```
@misc{tensorshield2025datauniversereddit_dataset_217,
        title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
        author={tensorshield},
        year={2025},
        url={https://huggingface.co/datasets/tensorshield/reddit_dataset_217},
        }
```

### Contributions

To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.

## Dataset Statistics

[This section is automatically updated]

- **Total Instances:** 141134
- **Date Range:** 2025-03-24T00:00:00Z to 2025-03-24T00:00:00Z
- **Last Updated:** 2025-03-31T01:46:30Z

### Data Distribution

- Posts: 12.11%
- Comments: 87.89%

### Top 10 Subreddits

For full statistics, please refer to the `stats.json` file in the repository.

| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/CollegeBasketball | 5425 | 3.84% |
| 2 | r/AskReddit | 3590 | 2.54% |
| 3 | r/AITAH | 1814 | 1.29% |
| 4 | r/mildlyinfuriating | 1120 | 0.79% |
| 5 | r/90DayFiance | 773 | 0.55% |
| 6 | r/denvernuggets | 745 | 0.53% |
| 7 | r/tennis | 687 | 0.49% |
| 8 | r/politics | 680 | 0.48% |
| 9 | r/Advice | 648 | 0.46% |
| 10 | r/moviecritic | 645 | 0.46% |


## Update History

| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-03-31T00:16:24Z | 1501 | 1501 |
| 2025-03-31T00:17:15Z | 1484 | 2985 |
| 2025-03-31T00:19:13Z | 3033 | 6018 |
| 2025-03-31T00:20:28Z | 1673 | 7691 |
| 2025-03-31T00:21:15Z | 1395 | 9086 |
| 2025-03-31T00:22:22Z | 1603 | 10689 |
| 2025-03-31T00:23:18Z | 1452 | 12141 |
| 2025-03-31T00:24:30Z | 1587 | 13728 |
| 2025-03-31T00:25:36Z | 1813 | 15541 |
| 2025-03-31T00:26:15Z | 1140 | 16681 |
| 2025-03-31T00:27:15Z | 1453 | 18134 |
| 2025-03-31T00:28:19Z | 1463 | 19597 |
| 2025-03-31T00:29:24Z | 1578 | 21175 |
| 2025-03-31T00:30:16Z | 1332 | 22507 |
| 2025-03-31T00:31:23Z | 1550 | 24057 |
| 2025-03-31T00:32:22Z | 1492 | 25549 |
| 2025-03-31T00:33:20Z | 1532 | 27081 |
| 2025-03-31T00:34:17Z | 1528 | 28609 |
| 2025-03-31T00:35:12Z | 1318 | 29927 |
| 2025-03-31T00:36:13Z | 1541 | 31468 |
| 2025-03-31T00:37:15Z | 1615 | 33083 |
| 2025-03-31T00:38:16Z | 1516 | 34599 |
| 2025-03-31T00:39:13Z | 1422 | 36021 |
| 2025-03-31T00:40:14Z | 1554 | 37575 |
| 2025-03-31T00:41:14Z | 1475 | 39050 |
| 2025-03-31T00:42:14Z | 1546 | 40596 |
| 2025-03-31T00:43:13Z | 1578 | 42174 |
| 2025-03-31T00:44:14Z | 1529 | 43703 |
| 2025-03-31T00:45:19Z | 1579 | 45282 |
| 2025-03-31T01:04:21Z | 30940 | 76222 |
| 2025-03-31T01:05:15Z | 1489 | 77711 |
| 2025-03-31T01:06:16Z | 1578 | 79289 |
| 2025-03-31T01:07:16Z | 1587 | 80876 |
| 2025-03-31T01:08:16Z | 1462 | 82338 |
| 2025-03-31T01:09:12Z | 1450 | 83788 |
| 2025-03-31T01:10:15Z | 1606 | 85394 |
| 2025-03-31T01:11:14Z | 1561 | 86955 |
| 2025-03-31T01:12:15Z | 1511 | 88466 |
| 2025-03-31T01:13:15Z | 1702 | 90168 |
| 2025-03-31T01:14:16Z | 1634 | 91802 |
| 2025-03-31T01:16:53Z | 4498 | 96300 |
| 2025-03-31T01:17:41Z | 1222 | 97522 |
| 2025-03-31T01:18:32Z | 1113 | 98635 |
| 2025-03-31T01:19:14Z | 1592 | 100227 |
| 2025-03-31T01:20:17Z | 1779 | 102006 |
| 2025-03-31T01:21:15Z | 1510 | 103516 |
| 2025-03-31T01:22:17Z | 1530 | 105046 |
| 2025-03-31T01:23:17Z | 1517 | 106563 |
| 2025-03-31T01:24:15Z | 1426 | 107989 |
| 2025-03-31T01:25:30Z | 1869 | 109858 |
| 2025-03-31T01:26:18Z | 1161 | 111019 |
| 2025-03-31T01:27:16Z | 1467 | 112486 |
| 2025-03-31T01:28:12Z | 1329 | 113815 |
| 2025-03-31T01:29:12Z | 1502 | 115317 |
| 2025-03-31T01:30:12Z | 1537 | 116854 |
| 2025-03-31T01:31:11Z | 1501 | 118355 |
| 2025-03-31T01:32:11Z | 1526 | 119881 |
| 2025-03-31T01:33:12Z | 1519 | 121400 |
| 2025-03-31T01:34:16Z | 1398 | 122798 |
| 2025-03-31T01:35:12Z | 1507 | 124305 |
| 2025-03-31T01:36:25Z | 1834 | 126139 |
| 2025-03-31T01:37:17Z | 1304 | 127443 |
| 2025-03-31T01:38:17Z | 1463 | 128906 |
| 2025-03-31T01:39:14Z | 1413 | 130319 |
| 2025-03-31T01:40:14Z | 1529 | 131848 |
| 2025-03-31T01:41:13Z | 1491 | 133339 |
| 2025-03-31T01:42:14Z | 1536 | 134875 |
| 2025-03-31T01:44:01Z | 2695 | 137570 |
| 2025-03-31T01:44:35Z | 878 | 138448 |
| 2025-03-31T01:45:15Z | 977 | 139425 |
| 2025-03-31T01:46:30Z | 1709 | 141134 |