Datasets:
tau
/

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
94630fe
·
1 Parent(s): 2cb02c2

Convert dataset to Parquet (#4)

Browse files

- Convert dataset to Parquet (34986e86317f29c06cc232315de682a88959f89f)
- Delete loading script (04646bb1beff89c6f31e7c0be00303f9370661d4)
- Delete legacy dataset_infos.json (39d3baf7e6177071430f84335a7085e2f429ff9e)

README.md CHANGED
@@ -9,7 +9,6 @@ license:
9
  - mit
10
  multilinguality:
11
  - monolingual
12
- pretty_name: CommonsenseQA
13
  size_categories:
14
  - 1K<n<10K
15
  source_datasets:
@@ -19,6 +18,7 @@ task_categories:
19
  task_ids:
20
  - open-domain-qa
21
  paperswithcode_id: commonsenseqa
 
22
  dataset_info:
23
  features:
24
  - name: id
@@ -37,16 +37,25 @@ dataset_info:
37
  dtype: string
38
  splits:
39
  - name: train
40
- num_bytes: 2209044
41
  num_examples: 9741
42
  - name: validation
43
- num_bytes: 274033
44
  num_examples: 1221
45
  - name: test
46
- num_bytes: 258017
47
  num_examples: 1140
48
- download_size: 4680691
49
- dataset_size: 2741094
 
 
 
 
 
 
 
 
 
50
  ---
51
 
52
  # Dataset Card for "commonsense_qa"
 
9
  - mit
10
  multilinguality:
11
  - monolingual
 
12
  size_categories:
13
  - 1K<n<10K
14
  source_datasets:
 
18
  task_ids:
19
  - open-domain-qa
20
  paperswithcode_id: commonsenseqa
21
+ pretty_name: CommonsenseQA
22
  dataset_info:
23
  features:
24
  - name: id
 
37
  dtype: string
38
  splits:
39
  - name: train
40
+ num_bytes: 2207794
41
  num_examples: 9741
42
  - name: validation
43
+ num_bytes: 273848
44
  num_examples: 1221
45
  - name: test
46
+ num_bytes: 257842
47
  num_examples: 1140
48
+ download_size: 1558570
49
+ dataset_size: 2739484
50
+ configs:
51
+ - config_name: default
52
+ data_files:
53
+ - split: train
54
+ path: data/train-*
55
+ - split: validation
56
+ path: data/validation-*
57
+ - split: test
58
+ path: data/test-*
59
  ---
60
 
61
  # Dataset Card for "commonsense_qa"
commonsense_qa.py DELETED
@@ -1,102 +0,0 @@
1
- """CommonsenseQA dataset."""
2
-
3
-
4
- import json
5
-
6
- import datasets
7
-
8
-
9
- _HOMEPAGE = "https://www.tau-nlp.org/commonsenseqa"
10
-
11
- _DESCRIPTION = """\
12
- CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge
13
- to predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.
14
- The dataset is provided in two major training/validation/testing set splits: "Random split" which is the main evaluation
15
- split, and "Question token split", see paper for details.
16
- """
17
-
18
- _CITATION = """\
19
- @inproceedings{talmor-etal-2019-commonsenseqa,
20
- title = "{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge",
21
- author = "Talmor, Alon and
22
- Herzig, Jonathan and
23
- Lourie, Nicholas and
24
- Berant, Jonathan",
25
- booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)",
26
- month = jun,
27
- year = "2019",
28
- address = "Minneapolis, Minnesota",
29
- publisher = "Association for Computational Linguistics",
30
- url = "https://aclanthology.org/N19-1421",
31
- doi = "10.18653/v1/N19-1421",
32
- pages = "4149--4158",
33
- archivePrefix = "arXiv",
34
- eprint = "1811.00937",
35
- primaryClass = "cs",
36
- }
37
- """
38
-
39
- _URL = "https://s3.amazonaws.com/commensenseqa"
40
- _URLS = {
41
- "train": f"{_URL}/train_rand_split.jsonl",
42
- "validation": f"{_URL}/dev_rand_split.jsonl",
43
- "test": f"{_URL}/test_rand_split_no_answers.jsonl",
44
- }
45
-
46
-
47
- class CommonsenseQa(datasets.GeneratorBasedBuilder):
48
- """CommonsenseQA dataset."""
49
-
50
- VERSION = datasets.Version("1.0.0")
51
-
52
- def _info(self):
53
- features = datasets.Features(
54
- {
55
- "id": datasets.Value("string"),
56
- "question": datasets.Value("string"),
57
- "question_concept": datasets.Value("string"),
58
- "choices": datasets.features.Sequence(
59
- {
60
- "label": datasets.Value("string"),
61
- "text": datasets.Value("string"),
62
- }
63
- ),
64
- "answerKey": datasets.Value("string"),
65
- }
66
- )
67
- return datasets.DatasetInfo(
68
- description=_DESCRIPTION,
69
- features=features,
70
- homepage=_HOMEPAGE,
71
- citation=_CITATION,
72
- )
73
-
74
- def _split_generators(self, dl_manager):
75
- """Returns SplitGenerators."""
76
- filepaths = dl_manager.download_and_extract(_URLS)
77
- splits = [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]
78
- return [
79
- datasets.SplitGenerator(
80
- name=split,
81
- gen_kwargs={
82
- "filepath": filepaths[split],
83
- },
84
- )
85
- for split in splits
86
- ]
87
-
88
- def _generate_examples(self, filepath):
89
- """Yields examples."""
90
- with open(filepath, encoding="utf-8") as f:
91
- for uid, row in enumerate(f):
92
- data = json.loads(row)
93
- choices = data["question"]["choices"]
94
- labels = [label["label"] for label in choices]
95
- texts = [text["text"] for text in choices]
96
- yield uid, {
97
- "id": data["id"],
98
- "question": data["question"]["stem"],
99
- "question_concept": data["question"]["question_concept"],
100
- "choices": {"label": labels, "text": texts},
101
- "answerKey": data.get("answerKey", ""),
102
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19efe93223d1712397aaa44b3adc07f4fa50349206a611ca4f33afbec661fa5e
3
+ size 151227
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0449767ed986bfc2ca52b1244a46ef12f732756727f3cb0a4ab69ac8b3d282b
3
+ size 1247103
data/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bdbd9bf9cc4d2349b24901038b2ab2f58e10e4e507ad2fd425dca55cd3cb6660
3
+ size 160240
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "CommonsenseQA is a new multiple-choice question answering dataset that requires different types of commonsense knowledge\nto predict the correct answers . It contains 12,102 questions with one correct answer and four distractor answers.\nThe dataset is provided in two major training/validation/testing set splits: \"Random split\" which is the main evaluation\nsplit, and \"Question token split\", see paper for details.\n", "citation": "@inproceedings{talmor-etal-2019-commonsenseqa,\n title = \"{C}ommonsense{QA}: A Question Answering Challenge Targeting Commonsense Knowledge\",\n author = \"Talmor, Alon and\n Herzig, Jonathan and\n Lourie, Nicholas and\n Berant, Jonathan\",\n booktitle = \"Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)\",\n month = jun,\n year = \"2019\",\n address = \"Minneapolis, Minnesota\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/N19-1421\",\n doi = \"10.18653/v1/N19-1421\",\n pages = \"4149--4158\",\n archivePrefix = \"arXiv\",\n eprint = \"1811.00937\",\n primaryClass = \"cs\",\n}\n", "homepage": "https://www.tau-nlp.org/commonsenseqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "question_concept": {"dtype": "string", "id": null, "_type": "Value"}, "choices": {"feature": {"label": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "answerKey": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "commonsense_qa", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2209044, "num_examples": 9741, "dataset_name": "commonsense_qa"}, "validation": {"name": "validation", "num_bytes": 274033, "num_examples": 1221, "dataset_name": "commonsense_qa"}, "test": {"name": "test", "num_bytes": 258017, "num_examples": 1140, "dataset_name": "commonsense_qa"}}, "download_checksums": {"https://s3.amazonaws.com/commensenseqa/train_rand_split.jsonl": {"num_bytes": 3785890, "checksum": "58ffa3c8472410e24b8c43f423d89c8a003d8284698a6ed7874355dedd09a2fb"}, "https://s3.amazonaws.com/commensenseqa/dev_rand_split.jsonl": {"num_bytes": 471653, "checksum": "3210497fdaae614ac085d9eb873dd7f4d49b6f965a93adadc803e1229fd8a02a"}, "https://s3.amazonaws.com/commensenseqa/test_rand_split_no_answers.jsonl": {"num_bytes": 423148, "checksum": "b426896d71a9cd064cf01cfaf6e920817c51701ef66028883ac1af2e73ad5f29"}}, "download_size": 4680691, "post_processing_size": null, "dataset_size": 2741094, "size_in_bytes": 7421785}}