Datasets:
Revert
Browse files
README.md
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
|
|
|
|
4 |
- name: image
|
5 |
dtype: image
|
6 |
- name: label
|
@@ -15,1123 +17,7 @@ dataset_info:
|
|
15 |
num_examples: 10980
|
16 |
download_size: 66129324319
|
17 |
dataset_size: 70959420455.86
|
18 |
-
license: mit
|
19 |
-
task_categories:
|
20 |
-
- image-classification
|
21 |
-
language:
|
22 |
-
- en
|
23 |
-
tags:
|
24 |
-
- OOD
|
25 |
-
- ImageNet
|
26 |
-
- Out Of Distribution
|
27 |
-
pretty_name: ImageNet-Hard-4K
|
28 |
-
size_categories:
|
29 |
-
- 10K<n<100K
|
30 |
---
|
31 |
-
# Dataset Card for "
|
32 |
|
33 |
-
|
34 |
-
[Project Page](https://taesiri.github.io/ZoomIsAllYouNeed/) - [Paper](https://arxiv.org/abs/2304.05538) - [Github](https://github.com/taesiri/ZoomIsAllYouNeed)
|
35 |
-
|
36 |
-
## Dataset Summary
|
37 |
-
|
38 |
-
|
39 |
-
**ImageNet-Hard-4K** is 4K version of the original [**ImageNet-Hard**](https://huggingface.co/datasets/taesiri/imagenet-hard) dataset, which is a new benchmark that comprises 10,980 images collected from various existing ImageNet-scale benchmarks (ImageNet, ImageNet-V2, ImageNet-Sketch, ImageNet-C, ImageNet-R, ImageNet-ReaL, ImageNet-A, and ObjectNet). This dataset poses a significant challenge to state-of-the-art vision models as merely zooming in often fails to improve their ability to classify images correctly. As a result, even the most advanced models, such as `CLIP-ViT-L/14@336px`, struggle to perform well on this dataset, achieving a mere `2.02%` accuracy.
|
40 |
-
|
41 |
-
|
42 |
-
## Upscaling Procedure
|
43 |
-
|
44 |
-
We employed [GigaGAN](https://mingukkang.github.io/GigaGAN/) to upscale each image from the original ImageNet-Hard dataset to a resolution of 4K.
|
45 |
-
|
46 |
-
|
47 |
-
### Dataset Distribution
|
48 |
-
|
49 |
-
![Dataset Distribution](https://taesiri.github.io/ZoomIsAllYouNeed/static/svg/imagenet_hard_distribution.svg)
|
50 |
-
|
51 |
-
|
52 |
-
### Classifiers Performance
|
53 |
-
|
54 |
-
|
55 |
-
| Model | Accuracy |
|
56 |
-
| ------------------- | -------- |
|
57 |
-
| AlexNet | 7.08 |
|
58 |
-
| VGG-16 | 11.32 |
|
59 |
-
| ResNet-18 | 10.42 |
|
60 |
-
| ResNet-50 | 13.93 |
|
61 |
-
| ViT-B/32 | 18.12 |
|
62 |
-
| EfficientNet-B0 | 12.94 |
|
63 |
-
| EfficientNet-B7 | 18.67 |
|
64 |
-
| EfficientNet-L2-Ns | 28.42 |
|
65 |
-
| CLIP-ViT-L/14@224px | 1.81 |
|
66 |
-
| CLIP-ViT-L/14@336px | 1.88 |
|
67 |
-
| OpenCLIP-ViT-bigG-14| 14.33 |
|
68 |
-
| OpenCLIP-ViT-L-14 | 13.04 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
**Evaluation Code**
|
73 |
-
|
74 |
-
* CLIP <a target="_blank" href="https://colab.research.google.com/github/taesiri/ZoomIsAllYouNeed/blob/main/src/ImageNet_Hard/Prompt_Engineering_for_ImageNet_Hard.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a>
|
75 |
-
* Other models <a target="_blank" href="https://colab.research.google.com/github/taesiri/ZoomIsAllYouNeed/blob/main/src/ImageNet_Hard/Benchmark_ImageNet_Hard.ipynb"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> </a>
|
76 |
-
|
77 |
-
## Supported Tasks
|
78 |
-
|
79 |
-
- `image-classification`: The objective of this task is to classify an image into one or more classes, selected from 1000 ImageNet categories (allowing for multiple ground-truth labels per image).
|
80 |
-
|
81 |
-
## Languages
|
82 |
-
The `english_label` field in the dataset are in English.
|
83 |
-
|
84 |
-
## Dataset Structure
|
85 |
-
|
86 |
-
Data Instances
|
87 |
-
|
88 |
-
An example looks like this:
|
89 |
-
|
90 |
-
```python
|
91 |
-
{
|
92 |
-
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=575x409 at 0x7F09456B53A0>,
|
93 |
-
'label': [0],
|
94 |
-
'origin': 'imagenet_sketch',
|
95 |
-
'english_label': ['tench']
|
96 |
-
}
|
97 |
-
```
|
98 |
-
|
99 |
-
### Data Fields
|
100 |
-
The data instances have the following fields:
|
101 |
-
|
102 |
-
- image: A PIL.Image.Image object containing the image. Note that when accessing the image column: dataset[0]["image"] the image file is automatically decoded. Decoding of a large number of image files might take a significant amount of time. Thus it is important to first query the sample index before the "image" column, i.e. dataset[0]["image"] should always be preferred over dataset["image"][0].
|
103 |
-
- label: A List[int] collection containing the ground-truth ids.
|
104 |
-
- origin: A string containing source dataset.
|
105 |
-
- english_label: A List[str] collection containg the english labels for the ground-truth classes.
|
106 |
-
|
107 |
-
|
108 |
-
<details>
|
109 |
-
<summary>
|
110 |
-
Click here to see the full list of ImageNet class labels mapping:
|
111 |
-
</summary>
|
112 |
-
|
113 |
-
|id|Class|
|
114 |
-
|--|-----|
|
115 |
-
|0 | tench, Tinca tinca|
|
116 |
-
|1 | goldfish, Carassius auratus|
|
117 |
-
|2 | great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias|
|
118 |
-
|3 | tiger shark, Galeocerdo cuvieri|
|
119 |
-
|4 | hammerhead, hammerhead shark|
|
120 |
-
|5 | electric ray, crampfish, numbfish, torpedo|
|
121 |
-
|6 | stingray|
|
122 |
-
|7 | cock|
|
123 |
-
|8 | hen|
|
124 |
-
|9 | ostrich, Struthio camelus|
|
125 |
-
|10 | brambling, Fringilla montifringilla|
|
126 |
-
|11 | goldfinch, Carduelis carduelis|
|
127 |
-
|12 | house finch, linnet, Carpodacus mexicanus|
|
128 |
-
|13 | junco, snowbird|
|
129 |
-
|14 | indigo bunting, indigo finch, indigo bird, Passerina cyanea|
|
130 |
-
|15 | robin, American robin, Turdus migratorius|
|
131 |
-
|16 | bulbul|
|
132 |
-
|17 | jay|
|
133 |
-
|18 | magpie|
|
134 |
-
|19 | chickadee|
|
135 |
-
|20 | water ouzel, dipper|
|
136 |
-
|21 | kite|
|
137 |
-
|22 | bald eagle, American eagle, Haliaeetus leucocephalus|
|
138 |
-
|23 | vulture|
|
139 |
-
|24 | great grey owl, great gray owl, Strix nebulosa|
|
140 |
-
|25 | European fire salamander, Salamandra salamandra|
|
141 |
-
|26 | common newt, Triturus vulgaris|
|
142 |
-
|27 | eft|
|
143 |
-
|28 | spotted salamander, Ambystoma maculatum|
|
144 |
-
|29 | axolotl, mud puppy, Ambystoma mexicanum|
|
145 |
-
|30 | bullfrog, Rana catesbeiana|
|
146 |
-
|31 | tree frog, tree-frog|
|
147 |
-
|32 | tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui|
|
148 |
-
|33 | loggerhead, loggerhead turtle, Caretta caretta|
|
149 |
-
|34 | leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea|
|
150 |
-
|35 | mud turtle|
|
151 |
-
|36 | terrapin|
|
152 |
-
|37 | box turtle, box tortoise|
|
153 |
-
|38 | banded gecko|
|
154 |
-
|39 | common iguana, iguana, Iguana iguana|
|
155 |
-
|40 | American chameleon, anole, Anolis carolinensis|
|
156 |
-
|41 | whiptail, whiptail lizard|
|
157 |
-
|42 | agama|
|
158 |
-
|43 | frilled lizard, Chlamydosaurus kingi|
|
159 |
-
|44 | alligator lizard|
|
160 |
-
|45 | Gila monster, Heloderma suspectum|
|
161 |
-
|46 | green lizard, Lacerta viridis|
|
162 |
-
|47 | African chameleon, Chamaeleo chamaeleon|
|
163 |
-
|48 | Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis|
|
164 |
-
|49 | African crocodile, Nile crocodile, Crocodylus niloticus|
|
165 |
-
|50 | American alligator, Alligator mississipiensis|
|
166 |
-
|51 | triceratops|
|
167 |
-
|52 | thunder snake, worm snake, Carphophis amoenus|
|
168 |
-
|53 | ringneck snake, ring-necked snake, ring snake|
|
169 |
-
|54 | hognose snake, puff adder, sand viper|
|
170 |
-
|55 | green snake, grass snake|
|
171 |
-
|56 | king snake, kingsnake|
|
172 |
-
|57 | garter snake, grass snake|
|
173 |
-
|58 | water snake|
|
174 |
-
|59 | vine snake|
|
175 |
-
|60 | night snake, Hypsiglena torquata|
|
176 |
-
|61 | boa constrictor, Constrictor constrictor|
|
177 |
-
|62 | rock python, rock snake, Python sebae|
|
178 |
-
|63 | Indian cobra, Naja naja|
|
179 |
-
|64 | green mamba|
|
180 |
-
|65 | sea snake|
|
181 |
-
|66 | horned viper, cerastes, sand viper, horned asp, Cerastes cornutus|
|
182 |
-
|67 | diamondback, diamondback rattlesnake, Crotalus adamanteus|
|
183 |
-
|68 | sidewinder, horned rattlesnake, Crotalus cerastes|
|
184 |
-
|69 | trilobite|
|
185 |
-
|70 | harvestman, daddy longlegs, Phalangium opilio|
|
186 |
-
|71 | scorpion|
|
187 |
-
|72 | black and gold garden spider, Argiope aurantia|
|
188 |
-
|73 | barn spider, Araneus cavaticus|
|
189 |
-
|74 | garden spider, Aranea diademata|
|
190 |
-
|75 | black widow, Latrodectus mactans|
|
191 |
-
|76 | tarantula|
|
192 |
-
|77 | wolf spider, hunting spider|
|
193 |
-
|78 | tick|
|
194 |
-
|79 | centipede|
|
195 |
-
|80 | black grouse|
|
196 |
-
|81 | ptarmigan|
|
197 |
-
|82 | ruffed grouse, partridge, Bonasa umbellus|
|
198 |
-
|83 | prairie chicken, prairie grouse, prairie fowl|
|
199 |
-
|84 | peacock|
|
200 |
-
|85 | quail|
|
201 |
-
|86 | partridge|
|
202 |
-
|87 | African grey, African gray, Psittacus erithacus|
|
203 |
-
|88 | macaw|
|
204 |
-
|89 | sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita|
|
205 |
-
|90 | lorikeet|
|
206 |
-
|91 | coucal|
|
207 |
-
|92 | bee eater|
|
208 |
-
|93 | hornbill|
|
209 |
-
|94 | hummingbird|
|
210 |
-
|95 | jacamar|
|
211 |
-
|96 | toucan|
|
212 |
-
|97 | drake|
|
213 |
-
|98 | red-breasted merganser, Mergus serrator|
|
214 |
-
|99 | goose|
|
215 |
-
|100 | black swan, Cygnus atratus|
|
216 |
-
|101 | tusker|
|
217 |
-
|102 | echidna, spiny anteater, anteater|
|
218 |
-
|103 | platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus|
|
219 |
-
|104 | wallaby, brush kangaroo|
|
220 |
-
|105 | koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus|
|
221 |
-
|106 | wombat|
|
222 |
-
|107 | jellyfish|
|
223 |
-
|108 | sea anemone, anemone|
|
224 |
-
|109 | brain coral|
|
225 |
-
|110 | flatworm, platyhelminth|
|
226 |
-
|111 | nematode, nematode worm, roundworm|
|
227 |
-
|112 | conch|
|
228 |
-
|113 | snail|
|
229 |
-
|114 | slug|
|
230 |
-
|115 | sea slug, nudibranch|
|
231 |
-
|116 | chiton, coat-of-mail shell, sea cradle, polyplacophore|
|
232 |
-
|117 | chambered nautilus, pearly nautilus, nautilus|
|
233 |
-
|118 | Dungeness crab, Cancer magister|
|
234 |
-
|119 | rock crab, Cancer irroratus|
|
235 |
-
|120 | fiddler crab|
|
236 |
-
|121 | king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica|
|
237 |
-
|122 | American lobster, Northern lobster, Maine lobster, Homarus americanus|
|
238 |
-
|123 | spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish|
|
239 |
-
|124 | crayfish, crawfish, crawdad, crawdaddy|
|
240 |
-
|125 | hermit crab|
|
241 |
-
|126 | isopod|
|
242 |
-
|127 | white stork, Ciconia ciconia|
|
243 |
-
|128 | black stork, Ciconia nigra|
|
244 |
-
|129 | spoonbill|
|
245 |
-
|130 | flamingo|
|
246 |
-
|131 | little blue heron, Egretta caerulea|
|
247 |
-
|132 | American egret, great white heron, Egretta albus|
|
248 |
-
|133 | bittern|
|
249 |
-
|134 | crane|
|
250 |
-
|135 | limpkin, Aramus pictus|
|
251 |
-
|136 | European gallinule, Porphyrio porphyrio|
|
252 |
-
|137 | American coot, marsh hen, mud hen, water hen, Fulica americana|
|
253 |
-
|138 | bustard|
|
254 |
-
|139 | ruddy turnstone, Arenaria interpres|
|
255 |
-
|140 | red-backed sandpiper, dunlin, Erolia alpina|
|
256 |
-
|141 | redshank, Tringa totanus|
|
257 |
-
|142 | dowitcher|
|
258 |
-
|143 | oystercatcher, oyster catcher|
|
259 |
-
|144 | pelican|
|
260 |
-
|145 | king penguin, Aptenodytes patagonica|
|
261 |
-
|146 | albatross, mollymawk|
|
262 |
-
|147 | grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus|
|
263 |
-
|148 | killer whale, killer, orca, grampus, sea wolf, Orcinus orca|
|
264 |
-
|149 | dugong, Dugong dugon|
|
265 |
-
|150 | sea lion|
|
266 |
-
|151 | Chihuahua|
|
267 |
-
|152 | Japanese spaniel|
|
268 |
-
|153 | Maltese dog, Maltese terrier, Maltese|
|
269 |
-
|154 | Pekinese, Pekingese, Peke|
|
270 |
-
|155 | Shih-Tzu|
|
271 |
-
|156 | Blenheim spaniel|
|
272 |
-
|157 | papillon|
|
273 |
-
|158 | toy terrier|
|
274 |
-
|159 | Rhodesian ridgeback|
|
275 |
-
|160 | Afghan hound, Afghan|
|
276 |
-
|161 | basset, basset hound|
|
277 |
-
|162 | beagle|
|
278 |
-
|163 | bloodhound, sleuthhound|
|
279 |
-
|164 | bluetick|
|
280 |
-
|165 | black-and-tan coonhound|
|
281 |
-
|166 | Walker hound, Walker foxhound|
|
282 |
-
|167 | English foxhound|
|
283 |
-
|168 | redbone|
|
284 |
-
|169 | borzoi, Russian wolfhound|
|
285 |
-
|170 | Irish wolfhound|
|
286 |
-
|171 | Italian greyhound|
|
287 |
-
|172 | whippet|
|
288 |
-
|173 | Ibizan hound, Ibizan Podenco|
|
289 |
-
|174 | Norwegian elkhound, elkhound|
|
290 |
-
|175 | otterhound, otter hound|
|
291 |
-
|176 | Saluki, gazelle hound|
|
292 |
-
|177 | Scottish deerhound, deerhound|
|
293 |
-
|178 | Weimaraner|
|
294 |
-
|179 | Staffordshire bullterrier, Staffordshire bull terrier|
|
295 |
-
|180 | American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier|
|
296 |
-
|181 | Bedlington terrier|
|
297 |
-
|182 | Border terrier|
|
298 |
-
|183 | Kerry blue terrier|
|
299 |
-
|184 | Irish terrier|
|
300 |
-
|185 | Norfolk terrier|
|
301 |
-
|186 | Norwich terrier|
|
302 |
-
|187 | Yorkshire terrier|
|
303 |
-
|188 | wire-haired fox terrier|
|
304 |
-
|189 | Lakeland terrier|
|
305 |
-
|190 | Sealyham terrier, Sealyham|
|
306 |
-
|191 | Airedale, Airedale terrier|
|
307 |
-
|192 | cairn, cairn terrier|
|
308 |
-
|193 | Australian terrier|
|
309 |
-
|194 | Dandie Dinmont, Dandie Dinmont terrier|
|
310 |
-
|195 | Boston bull, Boston terrier|
|
311 |
-
|196 | miniature schnauzer|
|
312 |
-
|197 | giant schnauzer|
|
313 |
-
|198 | standard schnauzer|
|
314 |
-
|199 | Scotch terrier, Scottish terrier, Scottie|
|
315 |
-
|200 | Tibetan terrier, chrysanthemum dog|
|
316 |
-
|201 | silky terrier, Sydney silky|
|
317 |
-
|202 | soft-coated wheaten terrier|
|
318 |
-
|203 | West Highland white terrier|
|
319 |
-
|204 | Lhasa, Lhasa apso|
|
320 |
-
|205 | flat-coated retriever|
|
321 |
-
|206 | curly-coated retriever|
|
322 |
-
|207 | golden retriever|
|
323 |
-
|208 | Labrador retriever|
|
324 |
-
|209 | Chesapeake Bay retriever|
|
325 |
-
|210 | German short-haired pointer|
|
326 |
-
|211 | vizsla, Hungarian pointer|
|
327 |
-
|212 | English setter|
|
328 |
-
|213 | Irish setter, red setter|
|
329 |
-
|214 | Gordon setter|
|
330 |
-
|215 | Brittany spaniel|
|
331 |
-
|216 | clumber, clumber spaniel|
|
332 |
-
|217 | English springer, English springer spaniel|
|
333 |
-
|218 | Welsh springer spaniel|
|
334 |
-
|219 | cocker spaniel, English cocker spaniel, cocker|
|
335 |
-
|220 | Sussex spaniel|
|
336 |
-
|221 | Irish water spaniel|
|
337 |
-
|222 | kuvasz|
|
338 |
-
|223 | schipperke|
|
339 |
-
|224 | groenendael|
|
340 |
-
|225 | malinois|
|
341 |
-
|226 | briard|
|
342 |
-
|227 | kelpie|
|
343 |
-
|228 | komondor|
|
344 |
-
|229 | Old English sheepdog, bobtail|
|
345 |
-
|230 | Shetland sheepdog, Shetland sheep dog, Shetland|
|
346 |
-
|231 | collie|
|
347 |
-
|232 | Border collie|
|
348 |
-
|233 | Bouvier des Flandres, Bouviers des Flandres|
|
349 |
-
|234 | Rottweiler|
|
350 |
-
|235 | German shepherd, German shepherd dog, German police dog, alsatian|
|
351 |
-
|236 | Doberman, Doberman pinscher|
|
352 |
-
|237 | miniature pinscher|
|
353 |
-
|238 | Greater Swiss Mountain dog|
|
354 |
-
|239 | Bernese mountain dog|
|
355 |
-
|240 | Appenzeller|
|
356 |
-
|241 | EntleBucher|
|
357 |
-
|242 | boxer|
|
358 |
-
|243 | bull mastiff|
|
359 |
-
|244 | Tibetan mastiff|
|
360 |
-
|245 | French bulldog|
|
361 |
-
|246 | Great Dane|
|
362 |
-
|247 | Saint Bernard, St Bernard|
|
363 |
-
|248 | Eskimo dog, husky|
|
364 |
-
|249 | malamute, malemute, Alaskan malamute|
|
365 |
-
|250 | Siberian husky|
|
366 |
-
|251 | dalmatian, coach dog, carriage dog|
|
367 |
-
|252 | affenpinscher, monkey pinscher, monkey dog|
|
368 |
-
|253 | basenji|
|
369 |
-
|254 | pug, pug-dog|
|
370 |
-
|255 | Leonberg|
|
371 |
-
|256 | Newfoundland, Newfoundland dog|
|
372 |
-
|257 | Great Pyrenees|
|
373 |
-
|258 | Samoyed, Samoyede|
|
374 |
-
|259 | Pomeranian|
|
375 |
-
|260 | chow, chow chow|
|
376 |
-
|261 | keeshond|
|
377 |
-
|262 | Brabancon griffon|
|
378 |
-
|263 | Pembroke, Pembroke Welsh corgi|
|
379 |
-
|264 | Cardigan, Cardigan Welsh corgi|
|
380 |
-
|265 | toy poodle|
|
381 |
-
|266 | miniature poodle|
|
382 |
-
|267 | standard poodle|
|
383 |
-
|268 | Mexican hairless|
|
384 |
-
|269 | timber wolf, grey wolf, gray wolf, Canis lupus|
|
385 |
-
|270 | white wolf, Arctic wolf, Canis lupus tundrarum|
|
386 |
-
|271 | red wolf, maned wolf, Canis rufus, Canis niger|
|
387 |
-
|272 | coyote, prairie wolf, brush wolf, Canis latrans|
|
388 |
-
|273 | dingo, warrigal, warragal, Canis dingo|
|
389 |
-
|274 | dhole, Cuon alpinus|
|
390 |
-
|275 | African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus|
|
391 |
-
|276 | hyena, hyaena|
|
392 |
-
|277 | red fox, Vulpes vulpes|
|
393 |
-
|278 | kit fox, Vulpes macrotis|
|
394 |
-
|279 | Arctic fox, white fox, Alopex lagopus|
|
395 |
-
|280 | grey fox, gray fox, Urocyon cinereoargenteus|
|
396 |
-
|281 | tabby, tabby cat|
|
397 |
-
|282 | tiger cat|
|
398 |
-
|283 | Persian cat|
|
399 |
-
|284 | Siamese cat, Siamese|
|
400 |
-
|285 | Egyptian cat|
|
401 |
-
|286 | cougar, puma, catamount, mountain lion, painter, panther, Felis concolor|
|
402 |
-
|287 | lynx, catamount|
|
403 |
-
|288 | leopard, Panthera pardus|
|
404 |
-
|289 | snow leopard, ounce, Panthera uncia|
|
405 |
-
|290 | jaguar, panther, Panthera onca, Felis onca|
|
406 |
-
|291 | lion, king of beasts, Panthera leo|
|
407 |
-
|292 | tiger, Panthera tigris|
|
408 |
-
|293 | cheetah, chetah, Acinonyx jubatus|
|
409 |
-
|294 | brown bear, bruin, Ursus arctos|
|
410 |
-
|295 | American black bear, black bear, Ursus americanus, Euarctos americanus|
|
411 |
-
|296 | ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus|
|
412 |
-
|297 | sloth bear, Melursus ursinus, Ursus ursinus|
|
413 |
-
|298 | mongoose|
|
414 |
-
|299 | meerkat, mierkat|
|
415 |
-
|300 | tiger beetle|
|
416 |
-
|301 | ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle|
|
417 |
-
|302 | ground beetle, carabid beetle|
|
418 |
-
|303 | long-horned beetle, longicorn, longicorn beetle|
|
419 |
-
|304 | leaf beetle, chrysomelid|
|
420 |
-
|305 | dung beetle|
|
421 |
-
|306 | rhinoceros beetle|
|
422 |
-
|307 | weevil|
|
423 |
-
|308 | fly|
|
424 |
-
|309 | bee|
|
425 |
-
|310 | ant, emmet, pismire|
|
426 |
-
|311 | grasshopper, hopper|
|
427 |
-
|312 | cricket|
|
428 |
-
|313 | walking stick, walkingstick, stick insect|
|
429 |
-
|314 | cockroach, roach|
|
430 |
-
|315 | mantis, mantid|
|
431 |
-
|316 | cicada, cicala|
|
432 |
-
|317 | leafhopper|
|
433 |
-
|318 | lacewing, lacewing fly|
|
434 |
-
|319 | dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk|
|
435 |
-
|320 | damselfly|
|
436 |
-
|321 | admiral|
|
437 |
-
|322 | ringlet, ringlet butterfly|
|
438 |
-
|323 | monarch, monarch butterfly, milkweed butterfly, Danaus plexippus|
|
439 |
-
|324 | cabbage butterfly|
|
440 |
-
|325 | sulphur butterfly, sulfur butterfly|
|
441 |
-
|326 | lycaenid, lycaenid butterfly|
|
442 |
-
|327 | starfish, sea star|
|
443 |
-
|328 | sea urchin|
|
444 |
-
|329 | sea cucumber, holothurian|
|
445 |
-
|330 | wood rabbit, cottontail, cottontail rabbit|
|
446 |
-
|331 | hare|
|
447 |
-
|332 | Angora, Angora rabbit|
|
448 |
-
|333 | hamster|
|
449 |
-
|334 | porcupine, hedgehog|
|
450 |
-
|335 | fox squirrel, eastern fox squirrel, Sciurus niger|
|
451 |
-
|336 | marmot|
|
452 |
-
|337 | beaver|
|
453 |
-
|338 | guinea pig, Cavia cobaya|
|
454 |
-
|339 | sorrel|
|
455 |
-
|340 | zebra|
|
456 |
-
|341 | hog, pig, grunter, squealer, Sus scrofa|
|
457 |
-
|342 | wild boar, boar, Sus scrofa|
|
458 |
-
|343 | warthog|
|
459 |
-
|344 | hippopotamus, hippo, river horse, Hippopotamus amphibius|
|
460 |
-
|345 | ox|
|
461 |
-
|346 | water buffalo, water ox, Asiatic buffalo, Bubalus bubalis|
|
462 |
-
|347 | bison|
|
463 |
-
|348 | ram, tup|
|
464 |
-
|349 | bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis|
|
465 |
-
|350 | ibex, Capra ibex|
|
466 |
-
|351 | hartebeest|
|
467 |
-
|352 | impala, Aepyceros melampus|
|
468 |
-
|353 | gazelle|
|
469 |
-
|354 | Arabian camel, dromedary, Camelus dromedarius|
|
470 |
-
|355 | llama|
|
471 |
-
|356 | weasel|
|
472 |
-
|357 | mink|
|
473 |
-
|358 | polecat, fitch, foulmart, foumart, Mustela putorius|
|
474 |
-
|359 | black-footed ferret, ferret, Mustela nigripes|
|
475 |
-
|360 | otter|
|
476 |
-
|361 | skunk, polecat, wood pussy|
|
477 |
-
|362 | badger|
|
478 |
-
|363 | armadillo|
|
479 |
-
|364 | three-toed sloth, ai, Bradypus tridactylus|
|
480 |
-
|365 | orangutan, orang, orangutang, Pongo pygmaeus|
|
481 |
-
|366 | gorilla, Gorilla gorilla|
|
482 |
-
|367 | chimpanzee, chimp, Pan troglodytes|
|
483 |
-
|368 | gibbon, Hylobates lar|
|
484 |
-
|369 | siamang, Hylobates syndactylus, Symphalangus syndactylus|
|
485 |
-
|370 | guenon, guenon monkey|
|
486 |
-
|371 | patas, hussar monkey, Erythrocebus patas|
|
487 |
-
|372 | baboon|
|
488 |
-
|373 | macaque|
|
489 |
-
|374 | langur|
|
490 |
-
|375 | colobus, colobus monkey|
|
491 |
-
|376 | proboscis monkey, Nasalis larvatus|
|
492 |
-
|377 | marmoset|
|
493 |
-
|378 | capuchin, ringtail, Cebus capucinus|
|
494 |
-
|379 | howler monkey, howler|
|
495 |
-
|380 | titi, titi monkey|
|
496 |
-
|381 | spider monkey, Ateles geoffroyi|
|
497 |
-
|382 | squirrel monkey, Saimiri sciureus|
|
498 |
-
|383 | Madagascar cat, ring-tailed lemur, Lemur catta|
|
499 |
-
|384 | indri, indris, Indri indri, Indri brevicaudatus|
|
500 |
-
|385 | Indian elephant, Elephas maximus|
|
501 |
-
|386 | African elephant, Loxodonta africana|
|
502 |
-
|387 | lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens|
|
503 |
-
|388 | giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca|
|
504 |
-
|389 | barracouta, snoek|
|
505 |
-
|390 | eel|
|
506 |
-
|391 | coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch|
|
507 |
-
|392 | rock beauty, Holocanthus tricolor|
|
508 |
-
|393 | anemone fish|
|
509 |
-
|394 | sturgeon|
|
510 |
-
|395 | gar, garfish, garpike, billfish, Lepisosteus osseus|
|
511 |
-
|396 | lionfish|
|
512 |
-
|397 | puffer, pufferfish, blowfish, globefish|
|
513 |
-
|398 | abacus|
|
514 |
-
|399 | abaya|
|
515 |
-
|400 | academic gown, academic robe, judge's robe|
|
516 |
-
|401 | accordion, piano accordion, squeeze box|
|
517 |
-
|402 | acoustic guitar|
|
518 |
-
|403 | aircraft carrier, carrier, flattop, attack aircraft carrier|
|
519 |
-
|404 | airliner|
|
520 |
-
|405 | airship, dirigible|
|
521 |
-
|406 | altar|
|
522 |
-
|407 | ambulance|
|
523 |
-
|408 | amphibian, amphibious vehicle|
|
524 |
-
|409 | analog clock|
|
525 |
-
|410 | apiary, bee house|
|
526 |
-
|411 | apron|
|
527 |
-
|412 | ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin|
|
528 |
-
|413 | assault rifle, assault gun|
|
529 |
-
|414 | backpack, back pack, knapsack, packsack, rucksack, haversack|
|
530 |
-
|415 | bakery, bakeshop, bakehouse|
|
531 |
-
|416 | balance beam, beam|
|
532 |
-
|417 | balloon|
|
533 |
-
|418 | ballpoint, ballpoint pen, ballpen, Biro|
|
534 |
-
|419 | Band Aid|
|
535 |
-
|420 | banjo|
|
536 |
-
|421 | bannister, banister, balustrade, balusters, handrail|
|
537 |
-
|422 | barbell|
|
538 |
-
|423 | barber chair|
|
539 |
-
|424 | barbershop|
|
540 |
-
|425 | barn|
|
541 |
-
|426 | barometer|
|
542 |
-
|427 | barrel, cask|
|
543 |
-
|428 | barrow, garden cart, lawn cart, wheelbarrow|
|
544 |
-
|429 | baseball|
|
545 |
-
|430 | basketball|
|
546 |
-
|431 | bassinet|
|
547 |
-
|432 | bassoon|
|
548 |
-
|433 | bathing cap, swimming cap|
|
549 |
-
|434 | bath towel|
|
550 |
-
|435 | bathtub, bathing tub, bath, tub|
|
551 |
-
|436 | beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon|
|
552 |
-
|437 | beacon, lighthouse, beacon light, pharos|
|
553 |
-
|438 | beaker|
|
554 |
-
|439 | bearskin, busby, shako|
|
555 |
-
|440 | beer bottle|
|
556 |
-
|441 | beer glass|
|
557 |
-
|442 | bell cote, bell cot|
|
558 |
-
|443 | bib|
|
559 |
-
|444 | bicycle-built-for-two, tandem bicycle, tandem|
|
560 |
-
|445 | bikini, two-piece|
|
561 |
-
|446 | binder, ring-binder|
|
562 |
-
|447 | binoculars, field glasses, opera glasses|
|
563 |
-
|448 | birdhouse|
|
564 |
-
|449 | boathouse|
|
565 |
-
|450 | bobsled, bobsleigh, bob|
|
566 |
-
|451 | bolo tie, bolo, bola tie, bola|
|
567 |
-
|452 | bonnet, poke bonnet|
|
568 |
-
|453 | bookcase|
|
569 |
-
|454 | bookshop, bookstore, bookstall|
|
570 |
-
|455 | bottlecap|
|
571 |
-
|456 | bow|
|
572 |
-
|457 | bow tie, bow-tie, bowtie|
|
573 |
-
|458 | brass, memorial tablet, plaque|
|
574 |
-
|459 | brassiere, bra, bandeau|
|
575 |
-
|460 | breakwater, groin, groyne, mole, bulwark, seawall, jetty|
|
576 |
-
|461 | breastplate, aegis, egis|
|
577 |
-
|462 | broom|
|
578 |
-
|463 | bucket, pail|
|
579 |
-
|464 | buckle|
|
580 |
-
|465 | bulletproof vest|
|
581 |
-
|466 | bullet train, bullet|
|
582 |
-
|467 | butcher shop, meat market|
|
583 |
-
|468 | cab, hack, taxi, taxicab|
|
584 |
-
|469 | caldron, cauldron|
|
585 |
-
|470 | candle, taper, wax light|
|
586 |
-
|471 | cannon|
|
587 |
-
|472 | canoe|
|
588 |
-
|473 | can opener, tin opener|
|
589 |
-
|474 | cardigan|
|
590 |
-
|475 | car mirror|
|
591 |
-
|476 | carousel, carrousel, merry-go-round, roundabout, whirligig|
|
592 |
-
|477 | carpenter's kit, tool kit|
|
593 |
-
|478 | carton|
|
594 |
-
|479 | car wheel|
|
595 |
-
|480 | cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM|
|
596 |
-
|481 | cassette|
|
597 |
-
|482 | cassette player|
|
598 |
-
|483 | castle|
|
599 |
-
|484 | catamaran|
|
600 |
-
|485 | CD player|
|
601 |
-
|486 | cello, violoncello|
|
602 |
-
|487 | cellular telephone, cellular phone, cellphone, cell, mobile phone|
|
603 |
-
|488 | chain|
|
604 |
-
|489 | chainlink fence|
|
605 |
-
|490 | chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour|
|
606 |
-
|491 | chain saw, chainsaw|
|
607 |
-
|492 | chest|
|
608 |
-
|493 | chiffonier, commode|
|
609 |
-
|494 | chime, bell, gong|
|
610 |
-
|495 | china cabinet, china closet|
|
611 |
-
|496 | Christmas stocking|
|
612 |
-
|497 | church, church building|
|
613 |
-
|498 | cinema, movie theater, movie theatre, movie house, picture palace|
|
614 |
-
|499 | cleaver, meat cleaver, chopper|
|
615 |
-
|500 | cliff dwelling|
|
616 |
-
|501 | cloak|
|
617 |
-
|502 | clog, geta, patten, sabot|
|
618 |
-
|503 | cocktail shaker|
|
619 |
-
|504 | coffee mug|
|
620 |
-
|505 | coffeepot|
|
621 |
-
|506 | coil, spiral, volute, whorl, helix|
|
622 |
-
|507 | combination lock|
|
623 |
-
|508 | computer keyboard, keypad|
|
624 |
-
|509 | confectionery, confectionary, candy store|
|
625 |
-
|510 | container ship, containership, container vessel|
|
626 |
-
|511 | convertible|
|
627 |
-
|512 | corkscrew, bottle screw|
|
628 |
-
|513 | cornet, horn, trumpet, trump|
|
629 |
-
|514 | cowboy boot|
|
630 |
-
|515 | cowboy hat, ten-gallon hat|
|
631 |
-
|516 | cradle|
|
632 |
-
|517 | crane_1|
|
633 |
-
|518 | crash helmet|
|
634 |
-
|519 | crate|
|
635 |
-
|520 | crib, cot|
|
636 |
-
|521 | Crock Pot|
|
637 |
-
|522 | croquet ball|
|
638 |
-
|523 | crutch|
|
639 |
-
|524 | cuirass|
|
640 |
-
|525 | dam, dike, dyke|
|
641 |
-
|526 | desk|
|
642 |
-
|527 | desktop computer|
|
643 |
-
|528 | dial telephone, dial phone|
|
644 |
-
|529 | diaper, nappy, napkin|
|
645 |
-
|530 | digital clock|
|
646 |
-
|531 | digital watch|
|
647 |
-
|532 | dining table, board|
|
648 |
-
|533 | dishrag, dishcloth|
|
649 |
-
|534 | dishwasher, dish washer, dishwashing machine|
|
650 |
-
|535 | disk brake, disc brake|
|
651 |
-
|536 | dock, dockage, docking facility|
|
652 |
-
|537 | dogsled, dog sled, dog sleigh|
|
653 |
-
|538 | dome|
|
654 |
-
|539 | doormat, welcome mat|
|
655 |
-
|540 | drilling platform, offshore rig|
|
656 |
-
|541 | drum, membranophone, tympan|
|
657 |
-
|542 | drumstick|
|
658 |
-
|543 | dumbbell|
|
659 |
-
|544 | Dutch oven|
|
660 |
-
|545 | electric fan, blower|
|
661 |
-
|546 | electric guitar|
|
662 |
-
|547 | electric locomotive|
|
663 |
-
|548 | entertainment center|
|
664 |
-
|549 | envelope|
|
665 |
-
|550 | espresso maker|
|
666 |
-
|551 | face powder|
|
667 |
-
|552 | feather boa, boa|
|
668 |
-
|553 | file, file cabinet, filing cabinet|
|
669 |
-
|554 | fireboat|
|
670 |
-
|555 | fire engine, fire truck|
|
671 |
-
|556 | fire screen, fireguard|
|
672 |
-
|557 | flagpole, flagstaff|
|
673 |
-
|558 | flute, transverse flute|
|
674 |
-
|559 | folding chair|
|
675 |
-
|560 | football helmet|
|
676 |
-
|561 | forklift|
|
677 |
-
|562 | fountain|
|
678 |
-
|563 | fountain pen|
|
679 |
-
|564 | four-poster|
|
680 |
-
|565 | freight car|
|
681 |
-
|566 | French horn, horn|
|
682 |
-
|567 | frying pan, frypan, skillet|
|
683 |
-
|568 | fur coat|
|
684 |
-
|569 | garbage truck, dustcart|
|
685 |
-
|570 | gasmask, respirator, gas helmet|
|
686 |
-
|571 | gas pump, gasoline pump, petrol pump, island dispenser|
|
687 |
-
|572 | goblet|
|
688 |
-
|573 | go-kart|
|
689 |
-
|574 | golf ball|
|
690 |
-
|575 | golfcart, golf cart|
|
691 |
-
|576 | gondola|
|
692 |
-
|577 | gong, tam-tam|
|
693 |
-
|578 | gown|
|
694 |
-
|579 | grand piano, grand|
|
695 |
-
|580 | greenhouse, nursery, glasshouse|
|
696 |
-
|581 | grille, radiator grille|
|
697 |
-
|582 | grocery store, grocery, food market, market|
|
698 |
-
|583 | guillotine|
|
699 |
-
|584 | hair slide|
|
700 |
-
|585 | hair spray|
|
701 |
-
|586 | half track|
|
702 |
-
|587 | hammer|
|
703 |
-
|588 | hamper|
|
704 |
-
|589 | hand blower, blow dryer, blow drier, hair dryer, hair drier|
|
705 |
-
|590 | hand-held computer, hand-held microcomputer|
|
706 |
-
|591 | handkerchief, hankie, hanky, hankey|
|
707 |
-
|592 | hard disc, hard disk, fixed disk|
|
708 |
-
|593 | harmonica, mouth organ, harp, mouth harp|
|
709 |
-
|594 | harp|
|
710 |
-
|595 | harvester, reaper|
|
711 |
-
|596 | hatchet|
|
712 |
-
|597 | holster|
|
713 |
-
|598 | home theater, home theatre|
|
714 |
-
|599 | honeycomb|
|
715 |
-
|600 | hook, claw|
|
716 |
-
|601 | hoopskirt, crinoline|
|
717 |
-
|602 | horizontal bar, high bar|
|
718 |
-
|603 | horse cart, horse-cart|
|
719 |
-
|604 | hourglass|
|
720 |
-
|605 | iPod|
|
721 |
-
|606 | iron, smoothing iron|
|
722 |
-
|607 | jack-o'-lantern|
|
723 |
-
|608 | jean, blue jean, denim|
|
724 |
-
|609 | jeep, landrover|
|
725 |
-
|610 | jersey, T-shirt, tee shirt|
|
726 |
-
|611 | jigsaw puzzle|
|
727 |
-
|612 | jinrikisha, ricksha, rickshaw|
|
728 |
-
|613 | joystick|
|
729 |
-
|614 | kimono|
|
730 |
-
|615 | knee pad|
|
731 |
-
|616 | knot|
|
732 |
-
|617 | lab coat, laboratory coat|
|
733 |
-
|618 | ladle|
|
734 |
-
|619 | lampshade, lamp shade|
|
735 |
-
|620 | laptop, laptop computer|
|
736 |
-
|621 | lawn mower, mower|
|
737 |
-
|622 | lens cap, lens cover|
|
738 |
-
|623 | letter opener, paper knife, paperknife|
|
739 |
-
|624 | library|
|
740 |
-
|625 | lifeboat|
|
741 |
-
|626 | lighter, light, igniter, ignitor|
|
742 |
-
|627 | limousine, limo|
|
743 |
-
|628 | liner, ocean liner|
|
744 |
-
|629 | lipstick, lip rouge|
|
745 |
-
|630 | Loafer|
|
746 |
-
|631 | lotion|
|
747 |
-
|632 | loudspeaker, speaker, speaker unit, loudspeaker system, speaker system|
|
748 |
-
|633 | loupe, jeweler's loupe|
|
749 |
-
|634 | lumbermill, sawmill|
|
750 |
-
|635 | magnetic compass|
|
751 |
-
|636 | mailbag, postbag|
|
752 |
-
|637 | mailbox, letter box|
|
753 |
-
|638 | maillot|
|
754 |
-
|639 | maillot, tank suit|
|
755 |
-
|640 | manhole cover|
|
756 |
-
|641 | maraca|
|
757 |
-
|642 | marimba, xylophone|
|
758 |
-
|643 | mask|
|
759 |
-
|644 | matchstick|
|
760 |
-
|645 | maypole|
|
761 |
-
|646 | maze, labyrinth|
|
762 |
-
|647 | measuring cup|
|
763 |
-
|648 | medicine chest, medicine cabinet|
|
764 |
-
|649 | megalith, megalithic structure|
|
765 |
-
|650 | microphone, mike|
|
766 |
-
|651 | microwave, microwave oven|
|
767 |
-
|652 | military uniform|
|
768 |
-
|653 | milk can|
|
769 |
-
|654 | minibus|
|
770 |
-
|655 | miniskirt, mini|
|
771 |
-
|656 | minivan|
|
772 |
-
|657 | missile|
|
773 |
-
|658 | mitten|
|
774 |
-
|659 | mixing bowl|
|
775 |
-
|660 | mobile home, manufactured home|
|
776 |
-
|661 | Model T|
|
777 |
-
|662 | modem|
|
778 |
-
|663 | monastery|
|
779 |
-
|664 | monitor|
|
780 |
-
|665 | moped|
|
781 |
-
|666 | mortar|
|
782 |
-
|667 | mortarboard|
|
783 |
-
|668 | mosque|
|
784 |
-
|669 | mosquito net|
|
785 |
-
|670 | motor scooter, scooter|
|
786 |
-
|671 | mountain bike, all-terrain bike, off-roader|
|
787 |
-
|672 | mountain tent|
|
788 |
-
|673 | mouse, computer mouse|
|
789 |
-
|674 | mousetrap|
|
790 |
-
|675 | moving van|
|
791 |
-
|676 | muzzle|
|
792 |
-
|677 | nail|
|
793 |
-
|678 | neck brace|
|
794 |
-
|679 | necklace|
|
795 |
-
|680 | nipple|
|
796 |
-
|681 | notebook, notebook computer|
|
797 |
-
|682 | obelisk|
|
798 |
-
|683 | oboe, hautboy, hautbois|
|
799 |
-
|684 | ocarina, sweet potato|
|
800 |
-
|685 | odometer, hodometer, mileometer, milometer|
|
801 |
-
|686 | oil filter|
|
802 |
-
|687 | organ, pipe organ|
|
803 |
-
|688 | oscilloscope, scope, cathode-ray oscilloscope, CRO|
|
804 |
-
|689 | overskirt|
|
805 |
-
|690 | oxcart|
|
806 |
-
|691 | oxygen mask|
|
807 |
-
|692 | packet|
|
808 |
-
|693 | paddle, boat paddle|
|
809 |
-
|694 | paddlewheel, paddle wheel|
|
810 |
-
|695 | padlock|
|
811 |
-
|696 | paintbrush|
|
812 |
-
|697 | pajama, pyjama, pj's, jammies|
|
813 |
-
|698 | palace|
|
814 |
-
|699 | panpipe, pandean pipe, syrinx|
|
815 |
-
|700 | paper towel|
|
816 |
-
|701 | parachute, chute|
|
817 |
-
|702 | parallel bars, bars|
|
818 |
-
|703 | park bench|
|
819 |
-
|704 | parking meter|
|
820 |
-
|705 | passenger car, coach, carriage|
|
821 |
-
|706 | patio, terrace|
|
822 |
-
|707 | pay-phone, pay-station|
|
823 |
-
|708 | pedestal, plinth, footstall|
|
824 |
-
|709 | pencil box, pencil case|
|
825 |
-
|710 | pencil sharpener|
|
826 |
-
|711 | perfume, essence|
|
827 |
-
|712 | Petri dish|
|
828 |
-
|713 | photocopier|
|
829 |
-
|714 | pick, plectrum, plectron|
|
830 |
-
|715 | pickelhaube|
|
831 |
-
|716 | picket fence, paling|
|
832 |
-
|717 | pickup, pickup truck|
|
833 |
-
|718 | pier|
|
834 |
-
|719 | piggy bank, penny bank|
|
835 |
-
|720 | pill bottle|
|
836 |
-
|721 | pillow|
|
837 |
-
|722 | ping-pong ball|
|
838 |
-
|723 | pinwheel|
|
839 |
-
|724 | pirate, pirate ship|
|
840 |
-
|725 | pitcher, ewer|
|
841 |
-
|726 | plane, carpenter's plane, woodworking plane|
|
842 |
-
|727 | planetarium|
|
843 |
-
|728 | plastic bag|
|
844 |
-
|729 | plate rack|
|
845 |
-
|730 | plow, plough|
|
846 |
-
|731 | plunger, plumber's helper|
|
847 |
-
|732 | Polaroid camera, Polaroid Land camera|
|
848 |
-
|733 | pole|
|
849 |
-
|734 | police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria|
|
850 |
-
|735 | poncho|
|
851 |
-
|736 | pool table, billiard table, snooker table|
|
852 |
-
|737 | pop bottle, soda bottle|
|
853 |
-
|738 | pot, flowerpot|
|
854 |
-
|739 | potter's wheel|
|
855 |
-
|740 | power drill|
|
856 |
-
|741 | prayer rug, prayer mat|
|
857 |
-
|742 | printer|
|
858 |
-
|743 | prison, prison house|
|
859 |
-
|744 | projectile, missile|
|
860 |
-
|745 | projector|
|
861 |
-
|746 | puck, hockey puck|
|
862 |
-
|747 | punching bag, punch bag, punching ball, punchball|
|
863 |
-
|748 | purse|
|
864 |
-
|749 | quill, quill pen|
|
865 |
-
|750 | quilt, comforter, comfort, puff|
|
866 |
-
|751 | racer, race car, racing car|
|
867 |
-
|752 | racket, racquet|
|
868 |
-
|753 | radiator|
|
869 |
-
|754 | radio, wireless|
|
870 |
-
|755 | radio telescope, radio reflector|
|
871 |
-
|756 | rain barrel|
|
872 |
-
|757 | recreational vehicle, RV, R.V.|
|
873 |
-
|758 | reel|
|
874 |
-
|759 | reflex camera|
|
875 |
-
|760 | refrigerator, icebox|
|
876 |
-
|761 | remote control, remote|
|
877 |
-
|762 | restaurant, eating house, eating place, eatery|
|
878 |
-
|763 | revolver, six-gun, six-shooter|
|
879 |
-
|764 | rifle|
|
880 |
-
|765 | rocking chair, rocker|
|
881 |
-
|766 | rotisserie|
|
882 |
-
|767 | rubber eraser, rubber, pencil eraser|
|
883 |
-
|768 | rugby ball|
|
884 |
-
|769 | rule, ruler|
|
885 |
-
|770 | running shoe|
|
886 |
-
|771 | safe|
|
887 |
-
|772 | safety pin|
|
888 |
-
|773 | saltshaker, salt shaker|
|
889 |
-
|774 | sandal|
|
890 |
-
|775 | sarong|
|
891 |
-
|776 | sax, saxophone|
|
892 |
-
|777 | scabbard|
|
893 |
-
|778 | scale, weighing machine|
|
894 |
-
|779 | school bus|
|
895 |
-
|780 | schooner|
|
896 |
-
|781 | scoreboard|
|
897 |
-
|782 | screen, CRT screen|
|
898 |
-
|783 | screw|
|
899 |
-
|784 | screwdriver|
|
900 |
-
|785 | seat belt, seatbelt|
|
901 |
-
|786 | sewing machine|
|
902 |
-
|787 | shield, buckler|
|
903 |
-
|788 | shoe shop, shoe-shop, shoe store|
|
904 |
-
|789 | shoji|
|
905 |
-
|790 | shopping basket|
|
906 |
-
|791 | shopping cart|
|
907 |
-
|792 | shovel|
|
908 |
-
|793 | shower cap|
|
909 |
-
|794 | shower curtain|
|
910 |
-
|795 | ski|
|
911 |
-
|796 | ski mask|
|
912 |
-
|797 | sleeping bag|
|
913 |
-
|798 | slide rule, slipstick|
|
914 |
-
|799 | sliding door|
|
915 |
-
|800 | slot, one-armed bandit|
|
916 |
-
|801 | snorkel|
|
917 |
-
|802 | snowmobile|
|
918 |
-
|803 | snowplow, snowplough|
|
919 |
-
|804 | soap dispenser|
|
920 |
-
|805 | soccer ball|
|
921 |
-
|806 | sock|
|
922 |
-
|807 | solar dish, solar collector, solar furnace|
|
923 |
-
|808 | sombrero|
|
924 |
-
|809 | soup bowl|
|
925 |
-
|810 | space bar|
|
926 |
-
|811 | space heater|
|
927 |
-
|812 | space shuttle|
|
928 |
-
|813 | spatula|
|
929 |
-
|814 | speedboat|
|
930 |
-
|815 | spider web, spider's web|
|
931 |
-
|816 | spindle|
|
932 |
-
|817 | sports car, sport car|
|
933 |
-
|818 | spotlight, spot|
|
934 |
-
|819 | stage|
|
935 |
-
|820 | steam locomotive|
|
936 |
-
|821 | steel arch bridge|
|
937 |
-
|822 | steel drum|
|
938 |
-
|823 | stethoscope|
|
939 |
-
|824 | stole|
|
940 |
-
|825 | stone wall|
|
941 |
-
|826 | stopwatch, stop watch|
|
942 |
-
|827 | stove|
|
943 |
-
|828 | strainer|
|
944 |
-
|829 | streetcar, tram, tramcar, trolley, trolley car|
|
945 |
-
|830 | stretcher|
|
946 |
-
|831 | studio couch, day bed|
|
947 |
-
|832 | stupa, tope|
|
948 |
-
|833 | submarine, pigboat, sub, U-boat|
|
949 |
-
|834 | suit, suit of clothes|
|
950 |
-
|835 | sundial|
|
951 |
-
|836 | sunglass|
|
952 |
-
|837 | sunglasses, dark glasses, shades|
|
953 |
-
|838 | sunscreen, sunblock, sun blocker|
|
954 |
-
|839 | suspension bridge|
|
955 |
-
|840 | swab, swob, mop|
|
956 |
-
|841 | sweatshirt|
|
957 |
-
|842 | swimming trunks, bathing trunks|
|
958 |
-
|843 | swing|
|
959 |
-
|844 | switch, electric switch, electrical switch|
|
960 |
-
|845 | syringe|
|
961 |
-
|846 | table lamp|
|
962 |
-
|847 | tank, army tank, armored combat vehicle, armoured combat vehicle|
|
963 |
-
|848 | tape player|
|
964 |
-
|849 | teapot|
|
965 |
-
|850 | teddy, teddy bear|
|
966 |
-
|851 | television, television system|
|
967 |
-
|852 | tennis ball|
|
968 |
-
|853 | thatch, thatched roof|
|
969 |
-
|854 | theater curtain, theatre curtain|
|
970 |
-
|855 | thimble|
|
971 |
-
|856 | thresher, thrasher, threshing machine|
|
972 |
-
|857 | throne|
|
973 |
-
|858 | tile roof|
|
974 |
-
|859 | toaster|
|
975 |
-
|860 | tobacco shop, tobacconist shop, tobacconist|
|
976 |
-
|861 | toilet seat|
|
977 |
-
|862 | torch|
|
978 |
-
|863 | totem pole|
|
979 |
-
|864 | tow truck, tow car, wrecker|
|
980 |
-
|865 | toyshop|
|
981 |
-
|866 | tractor|
|
982 |
-
|867 | trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi|
|
983 |
-
|868 | tray|
|
984 |
-
|869 | trench coat|
|
985 |
-
|870 | tricycle, trike, velocipede|
|
986 |
-
|871 | trimaran|
|
987 |
-
|872 | tripod|
|
988 |
-
|873 | triumphal arch|
|
989 |
-
|874 | trolleybus, trolley coach, trackless trolley|
|
990 |
-
|875 | trombone|
|
991 |
-
|876 | tub, vat|
|
992 |
-
|877 | turnstile|
|
993 |
-
|878 | typewriter keyboard|
|
994 |
-
|879 | umbrella|
|
995 |
-
|880 | unicycle, monocycle|
|
996 |
-
|881 | upright, upright piano|
|
997 |
-
|882 | vacuum, vacuum cleaner|
|
998 |
-
|883 | vase|
|
999 |
-
|884 | vault|
|
1000 |
-
|885 | velvet|
|
1001 |
-
|886 | vending machine|
|
1002 |
-
|887 | vestment|
|
1003 |
-
|888 | viaduct|
|
1004 |
-
|889 | violin, fiddle|
|
1005 |
-
|890 | volleyball|
|
1006 |
-
|891 | waffle iron|
|
1007 |
-
|892 | wall clock|
|
1008 |
-
|893 | wallet, billfold, notecase, pocketbook|
|
1009 |
-
|894 | wardrobe, closet, press|
|
1010 |
-
|895 | warplane, military plane|
|
1011 |
-
|896 | washbasin, handbasin, washbowl, lavabo, wash-hand basin|
|
1012 |
-
|897 | washer, automatic washer, washing machine|
|
1013 |
-
|898 | water bottle|
|
1014 |
-
|899 | water jug|
|
1015 |
-
|900 | water tower|
|
1016 |
-
|901 | whiskey jug|
|
1017 |
-
|902 | whistle|
|
1018 |
-
|903 | wig|
|
1019 |
-
|904 | window screen|
|
1020 |
-
|905 | window shade|
|
1021 |
-
|906 | Windsor tie|
|
1022 |
-
|907 | wine bottle|
|
1023 |
-
|908 | wing|
|
1024 |
-
|909 | wok|
|
1025 |
-
|910 | wooden spoon|
|
1026 |
-
|911 | wool, woolen, woollen|
|
1027 |
-
|912 | worm fence, snake fence, snake-rail fence, Virginia fence|
|
1028 |
-
|913 | wreck|
|
1029 |
-
|914 | yawl|
|
1030 |
-
|915 | yurt|
|
1031 |
-
|916 | web site, website, internet site, site|
|
1032 |
-
|917 | comic book|
|
1033 |
-
|918 | crossword puzzle, crossword|
|
1034 |
-
|919 | street sign|
|
1035 |
-
|920 | traffic light, traffic signal, stoplight|
|
1036 |
-
|921 | book jacket, dust cover, dust jacket, dust wrapper|
|
1037 |
-
|922 | menu|
|
1038 |
-
|923 | plate|
|
1039 |
-
|924 | guacamole|
|
1040 |
-
|925 | consomme|
|
1041 |
-
|926 | hot pot, hotpot|
|
1042 |
-
|927 | trifle|
|
1043 |
-
|928 | ice cream, icecream|
|
1044 |
-
|929 | ice lolly, lolly, lollipop, popsicle|
|
1045 |
-
|930 | French loaf|
|
1046 |
-
|931 | bagel, beigel|
|
1047 |
-
|932 | pretzel|
|
1048 |
-
|933 | cheeseburger|
|
1049 |
-
|934 | hotdog, hot dog, red hot|
|
1050 |
-
|935 | mashed potato|
|
1051 |
-
|936 | head cabbage|
|
1052 |
-
|937 | broccoli|
|
1053 |
-
|938 | cauliflower|
|
1054 |
-
|939 | zucchini, courgette|
|
1055 |
-
|940 | spaghetti squash|
|
1056 |
-
|941 | acorn squash|
|
1057 |
-
|942 | butternut squash|
|
1058 |
-
|943 | cucumber, cuke|
|
1059 |
-
|944 | artichoke, globe artichoke|
|
1060 |
-
|945 | bell pepper|
|
1061 |
-
|946 | cardoon|
|
1062 |
-
|947 | mushroom|
|
1063 |
-
|948 | Granny Smith|
|
1064 |
-
|949 | strawberry|
|
1065 |
-
|950 | orange|
|
1066 |
-
|951 | lemon|
|
1067 |
-
|952 | fig|
|
1068 |
-
|953 | pineapple, ananas|
|
1069 |
-
|954 | banana|
|
1070 |
-
|955 | jackfruit, jak, jack|
|
1071 |
-
|956 | custard apple|
|
1072 |
-
|957 | pomegranate|
|
1073 |
-
|958 | hay|
|
1074 |
-
|959 | carbonara|
|
1075 |
-
|960 | chocolate sauce, chocolate syrup|
|
1076 |
-
|961 | dough|
|
1077 |
-
|962 | meat loaf, meatloaf|
|
1078 |
-
|963 | pizza, pizza pie|
|
1079 |
-
|964 | potpie|
|
1080 |
-
|965 | burrito|
|
1081 |
-
|966 | red wine|
|
1082 |
-
|967 | espresso|
|
1083 |
-
|968 | cup|
|
1084 |
-
|969 | eggnog|
|
1085 |
-
|970 | alp|
|
1086 |
-
|971 | bubble|
|
1087 |
-
|972 | cliff, drop, drop-off|
|
1088 |
-
|973 | coral reef|
|
1089 |
-
|974 | geyser|
|
1090 |
-
|975 | lakeside, lakeshore|
|
1091 |
-
|976 | promontory, headland, head, foreland|
|
1092 |
-
|977 | sandbar, sand bar|
|
1093 |
-
|978 | seashore, coast, seacoast, sea-coast|
|
1094 |
-
|979 | valley, vale|
|
1095 |
-
|980 | volcano|
|
1096 |
-
|981 | ballplayer, baseball player|
|
1097 |
-
|982 | groom, bridegroom|
|
1098 |
-
|983 | scuba diver|
|
1099 |
-
|984 | rapeseed|
|
1100 |
-
|985 | daisy|
|
1101 |
-
|986 | yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum|
|
1102 |
-
|987 | corn|
|
1103 |
-
|988 | acorn|
|
1104 |
-
|989 | hip, rose hip, rosehip|
|
1105 |
-
|990 | buckeye, horse chestnut, conker|
|
1106 |
-
|991 | coral fungus|
|
1107 |
-
|992 | agaric|
|
1108 |
-
|993 | gyromitra|
|
1109 |
-
|994 | stinkhorn, carrion fungus|
|
1110 |
-
|995 | earthstar|
|
1111 |
-
|996 | hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa|
|
1112 |
-
|997 | bolete|
|
1113 |
-
|998 | ear, spike, capitulum|
|
1114 |
-
|999 | toilet tissue, toilet paper, bathroom tissue|
|
1115 |
-
</details>
|
1116 |
-
|
1117 |
-
### Data Splits
|
1118 |
-
|
1119 |
-
This dataset is a validation-only set.
|
1120 |
-
|
1121 |
-
## Dataset Creation
|
1122 |
-
|
1123 |
-
|
1124 |
-
### Source Data
|
1125 |
-
|
1126 |
-
This dataset is sourced from ImageNet, ImageNet-ReaL, ImageNet-V2, ImageNet-A, ImageNet-C, ImageNet-R, ImageNet-Sketch, and ObjectNet.
|
1127 |
-
|
1128 |
-
## Citation Information
|
1129 |
-
|
1130 |
-
```
|
1131 |
-
@article{taesiri2023zoom,
|
1132 |
-
title={Zoom is what you need: An empirical study of the power of zoom and spatial biases in image classification},
|
1133 |
-
author={Taesiri, Mohammad Reza and Nguyen, Giang and Habchi, Sarra and Bezemer, Cor-Paul and Nguyen, Anh},
|
1134 |
-
journal={arXiv preprint arXiv:2304.05538},
|
1135 |
-
year={2023}
|
1136 |
-
}
|
1137 |
-
```
|
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
4 |
+
- name: id
|
5 |
+
dtype: int64
|
6 |
- name: image
|
7 |
dtype: image
|
8 |
- name: label
|
|
|
17 |
num_examples: 10980
|
18 |
download_size: 66129324319
|
19 |
dataset_size: 70959420455.86
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
---
|
21 |
+
# Dataset Card for "imagenet-hard-4K"
|
22 |
|
23 |
+
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|