yog-transcribed / xlsr-train.py
sulaimank's picture
Upload 9 files
c79c794 verified
import os
from datasets import load_dataset, Audio, concatenate_datasets
# Set processors (optional)
num_proc = os.cpu_count()//2
num_dataloaders = os.cpu_count()//2
print(f"Cpu count: {os.cpu_count()}\nNum proc: {num_proc}\nNum dataloaders: {num_dataloaders}")
# Load datasets
train = load_dataset()
dev = load_dataset()
test = load_dataset()
import unicodedata
import re
def preprocess_text(batch):
# Convert to lowercase
batch['sentence'] = batch['sentence'].lower()
# Normalize text
batch['sentence'] = unicodedata.normalize('NFKC', batch['sentence'])
batch['sentence'] = re.sub(r'[\’\ʻ\ʼ\ʽ\‘]', "'", batch['sentence'])
# Remove punctuation and special characters
batch['sentence'] = re.sub(r'[^\w\s\']', '', batch['sentence'])
batch['sentence'] = re.sub(r'_', ' ', batch['sentence'])
# Remove excessive whitespace
batch['sentence'] = ' '.join(batch['sentence'].split())
return batch
import librosa
import numpy as np
def get_lens(batch):
try:
audio_len = librosa.get_duration(y=batch['audio']['array'], sr=batch['audio']['sampling_rate'])
except:
del batch['audio']
batch['audio'] = None
audio_len = 0.0
transcript_len = len(batch['sentence'])
batch['audio_len'] = audio_len
batch['transcript_len'] = transcript_len
batch['len_ratio'] = float(audio_len)/float(transcript_len)
batch['num_feature_vecs'] = int(np.round(audio_len * 1000 / 20))
return batch
transcript_len = len(batch['sentence'])
batch['audio_len'] = audio_len
batch['transcript_len'] = transcript_len
batch['len_ratio'] = float(audio_len)/float(transcript_len)
batch['num_feature_vecs'] = int(np.round(audio_len * 1000 / 20)) # seconds -> milliseconds, divide by 20 millisecond feature_win_step, round up to nearest int
return batch
def data_checks(batch):
audio_check = (batch['audio_len']>1.0 and batch['audio_len']<30.0)
transcript_check = (batch['transcript_len']>10)
input_output_ratio = float(batch['num_feature_vecs']) / float(batch['transcript_len'])
input_output_ratio_check = input_output_ratio>1.0 # CTC algorithm assumes the input is not shorter than the ouput
return (audio_check and transcript_check and input_output_ratio_check)
train = train.map(preprocess_text, num_proc=num_proc)
dev = dev.map(preprocess_text, num_proc=num_proc)
try:
train = train.map(get_lens, num_proc=num_proc)
except:
train = train.map(get_lens, num_proc=4)
try:
dev = dev.map(get_lens, num_proc=num_proc)
except:
dev = dev.map(get_lens, num_proc=4)
train = train.filter(data_checks, num_proc=num_proc)
dev = dev.filter(data_checks, num_proc=num_proc)
train_mean = np.mean(train['len_ratio'])
train_std = np.std(train['len_ratio'])
dev_mean = np.mean(dev['len_ratio'])
dev_std = np.std(dev['len_ratio'])
num_std_devs = 2
train = train.filter(lambda batch: (abs(batch['len_ratio'] - train_mean) - (num_std_devs * train_std)) <= 0, num_proc=num_proc)
dev = dev.filter(lambda batch: (abs(batch['len_ratio'] - dev_mean) - (num_std_devs * dev_std)) <= 0, num_proc=num_proc)
print(f"Train hours: {sum(train['audio_len'])/3600}\nDev hours: {sum(dev['audio_len'])/3600}")
train = train.remove_columns(['audio_len', 'transcript_len', 'len_ratio', 'num_feature_vecs'])
dev = dev.remove_columns(['audio_len', 'transcript_len', 'len_ratio', 'num_feature_vecs'])
alphabet = None # define the language's alphabet here e.g. " 'abcdefghijklmnorstuwyzƙƴɓɗ" for Hausa
alphabet = sorted(list(set(alphabet)))
vocab_dict = {v: k for k, v in enumerate(alphabet)}
vocab_dict["|"] = vocab_dict[" "]
del vocab_dict[" "]
vocab_dict["[UNK]"] = len(vocab_dict)
vocab_dict["[PAD]"] = len(vocab_dict)
import json
with open('vocab.json', 'w') as vocab_file:
json.dump(vocab_dict, vocab_file)
from transformers import Wav2Vec2CTCTokenizer
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained("./", unk_token="[UNK]", pad_token="[PAD]", word_delimiter_token="|")
from transformers import Wav2Vec2FeatureExtractor
feature_extractor = Wav2Vec2FeatureExtractor(feature_size=1, sampling_rate=16000, padding_value=0.0, do_normalize=True, return_attention_mask=True)
from transformers import Wav2Vec2Processor
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
def prepare_dataset(batch):
audio = batch["audio"]
batch["input_values"] = processor(audio=audio["array"], sampling_rate=audio["sampling_rate"]).input_values[0]
batch["input_length"] = len(batch["input_values"])
batch["labels"] = processor(text=batch["sentence"]).input_ids
return batch
try:
train = train.map(prepare_dataset, remove_columns=train.column_names, num_proc=num_proc)
except:
train = train.map(prepare_dataset, remove_columns=train.column_names, num_proc=4)
try:
dev = dev.map(prepare_dataset, remove_columns=dev.column_names, num_proc=num_proc)
except:
dev = dev.map(prepare_dataset, remove_columns=dev.column_names, num_proc=4)
import torch
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features=input_features,
padding=self.padding,
return_tensors="pt",
)
labels_batch = self.processor.pad(
labels=label_features,
padding=self.padding,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
"""# Model Training"""
import evaluate
wer_metric = evaluate.load("wer")
cer_metric = evaluate.load("cer")
import numpy as np
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
wer = wer_metric.compute(predictions=pred_str, references=label_str)
cer = cer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer, "cer": cer}
from transformers import Wav2Vec2ForCTC, TrainingArguments, Trainer, EarlyStoppingCallback
model_checkpoint = "facebook/wav2vec2-xls-r-300m"
model = Wav2Vec2ForCTC.from_pretrained(
model_checkpoint,
attention_dropout=0.0,
hidden_dropout=0.0,
feat_proj_dropout=0.0,
mask_time_prob=0.05,
layerdrop=0.0,
ctc_loss_reduction="mean",
pad_token_id=processor.tokenizer.pad_token_id,
vocab_size=len(processor.tokenizer),
)
model.freeze_feature_encoder()
import wandb
dataset = None
language = None
sample_hours = None
version = None
batch_size = None
grad_acc = 1
eval_batch_size = batch_size//2
epochs = None
output_dir = f"{model_checkpoint.split('/')[-1]}-{dataset}-{language}-{sample_hours}hrs-{version}"
wandb.init(
project="ASR Africa",
entity="asr-africa-research-team",
name=output_dir,
)
training_args = TrainingArguments(
output_dir=output_dir,
group_by_length=True,
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=eval_batch_size,
gradient_accumulation_steps=grad_acc,
eval_strategy="epoch",
logging_strategy="epoch",
save_strategy="epoch",
num_train_epochs=epochs,
gradient_checkpointing=True,
fp16=True,
learning_rate=None,
lr_scheduler_type='linear',
warmup_ratio=None,
save_total_limit=2,
load_best_model_at_end=True,
metric_for_best_model="wer",
greater_is_better=False,
optim='adamw_torch',
push_to_hub=True,
hub_model_id=f"asr-africa/{output_dir}",
hub_private_repo=True,
dataloader_num_workers=num_dataloaders,
)
trainer = Trainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train,
eval_dataset=dev,
tokenizer=processor.feature_extractor,
callbacks=[
EarlyStoppingCallback(
early_stopping_patience=10,
early_stopping_threshold=1e-3
)
],
)
trainer.train()
kwargs = {
"dataset_tags": "",
"dataset": "",
"language": "",
"model_name": "",
"finetuned_from": model_checkpoint,
"tasks": "automatic-speech-recognition",
}
trainer.push_to_hub(**kwargs)
other_test_dataset_1 = load_dataset()
other_test_dataset_2 = load_dataset()
test = concatenate_datasets([test, other_test_dataset_1, other_test_dataset_2]).shuffle(42)
test = test.map(preprocess_text, num_proc=num_proc)
try:
test = test.map(get_lens, num_proc=num_proc)
except:
test = test.map(get_lens, num_proc=4)
test = test.filter(data_checks, num_proc=num_proc)
test_mean = np.mean(test['len_ratio'])
test_std = np.std(test['len_ratio'])
num_std_devs = 2
test = test.filter(lambda batch: (abs(batch['len_ratio'] - test_mean) - (num_std_devs * test_std)) <= 0, num_proc=num_proc)
print(f"Test hours: {sum(test['audio_len'])/3600}")
test = test.remove_columns(['audio_len', 'transcript_len', 'len_ratio', 'num_feature_vecs'])
try:
test = test.map(prepare_dataset, remove_columns=test.column_names, num_proc=num_proc)
except:
test = test.map(prepare_dataset, remove_columns=test.column_names, num_proc=4)
results = trainer.evaluate(eval_dataset=test, metric_key_prefix="test")
print(results)
wandb.log(results)
train.cleanup_cache_files()
dev.cleanup_cache_files()
test.cleanup_cache_files()
torch.cuda.empty_cache()