Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
hate-speech-detection
Size:
10K - 100K
ArXiv:
File size: 7,461 Bytes
46637c4 cb10e1a 46637c4 bdee8bf 46637c4 bdee8bf 46637c4 bdee8bf 46637c4 2353a09 46637c4 2353a09 46637c4 2353a09 46637c4 2353a09 46637c4 2353a09 46637c4 0594ada 46637c4 2353a09 46637c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
annotations_creators:
- expert-generated
language_creators:
- found
languages:
- ar
- da
- en
- gr
- tr
licenses:
- cc-by-4.0
multilinguality:
- multilingual
pretty_name: OffensEval 2020
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- hate-speech-detection
- text-classification-other-hate-speech-detection
extra_gated_prompt: "Warning: this repository contains harmful content (abusive language, hate speech)."
paperswithcode_id:
- dkhate
- ogtd
---
# Dataset Card for "offenseval_2020"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission](https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission)
- **Repository:**
- **Paper:** [https://aclanthology.org/2020.semeval-1.188/](https://aclanthology.org/2020.semeval-1.188/), [https://arxiv.org/abs/2006.07235](https://arxiv.org/abs/2006.07235)
- **Point of Contact:** [Leon Derczynski](https://github.com/leondz)
### Dataset Summary
OffensEval 2020 features a multilingual dataset with five languages. The languages included in OffensEval 2020 are:
* Arabic
* Danish
* English
* Greek
* Turkish
The annotation follows the hierarchical tagset proposed in the Offensive Language Identification Dataset (OLID) and used in OffensEval 2019.
In this taxonomy we break down offensive content into the following three sub-tasks taking the type and target of offensive content into account.
The following sub-tasks were organized:
* Sub-task A - Offensive language identification;
* Sub-task B - Automatic categorization of offense types;
* Sub-task C - Offense target identification.
English training data is omitted so needs to be collected otherwise (see [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp))
The source datasets come from:
* Arabic [https://arxiv.org/pdf/2004.02192.pdf](https://arxiv.org/pdf/2004.02192.pdf), [https://aclanthology.org/2021.wanlp-1.13/](https://aclanthology.org/2021.wanlp-1.13/)
* Danish [https://arxiv.org/pdf/1908.04531.pdf](https://arxiv.org/pdf/1908.04531.pdf), [https://aclanthology.org/2020.lrec-1.430/?ref=https://githubhelp.com](https://aclanthology.org/2020.lrec-1.430/)
* English [https://arxiv.org/pdf/2004.14454.pdf](https://arxiv.org/pdf/2004.14454.pdf), [https://aclanthology.org/2021.findings-acl.80.pdf](https://aclanthology.org/2021.findings-acl.80.pdf)
* Greek [https://arxiv.org/pdf/2003.07459.pdf](https://arxiv.org/pdf/2003.07459.pdf), [https://aclanthology.org/2020.lrec-1.629/](https://aclanthology.org/2020.lrec-1.629/)
* Turkish [https://aclanthology.org/2020.lrec-1.758/](https://aclanthology.org/2020.lrec-1.758/)
### Supported Tasks and Leaderboards
* [OffensEval 2020](https://sites.google.com/site/offensevalsharedtask/results-and-paper-submission)
### Languages
Five are covered: bcp47 `ar;da;en;gr;tr`
## Dataset Structure
There are five named configs, one per language:
* `ar` Arabic
* `da` Danish
* `en` English
* `gr` Greek
* `tr` Turkish
The training data for English is absent - this is 9M tweets that need to be rehydrated on their own. See [https://zenodo.org/record/3950379#.XxZ-aFVKipp](https://zenodo.org/record/3950379#.XxZ-aFVKipp)
### Data Instances
An example of 'train' looks as follows.
```
{
'id': '0',
'text': 'PLACEHOLDER TEXT',
'subtask_a': 1,
}
```
### Data Fields
- `id`: a `string` feature.
- `text`: a `string`.
- `subtask_a`: whether or not the instance is offensive; `0: NOT, 1: OFF`
### Data Splits
| name |train|test|
|---------|----:|---:|
|ar|7839|1827|
|da|2961|329|
|en|0|3887|
|gr|8743|1544|
|tr|31277|3515|
## Dataset Creation
### Curation Rationale
Collecting data for abusive language classification. Different rational for each dataset.
### Source Data
#### Initial Data Collection and Normalization
Varies per language dataset
#### Who are the source language producers?
Social media users
### Annotations
#### Annotation process
Varies per language dataset
#### Who are the annotators?
Varies per language dataset; native speakers
### Personal and Sensitive Information
The data was public at the time of collection. No PII removal has been performed.
## Considerations for Using the Data
### Social Impact of Dataset
The data definitely contains abusive language. The data could be used to develop and propagate offensive language against every target group involved, i.e. ableism, racism, sexism, ageism, and so on.
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
The datasets is curated by each sub-part's paper authors.
### Licensing Information
This data is available and distributed under Creative Commons attribution license, CC-BY 4.0.
### Citation Information
```
@inproceedings{zampieri-etal-2020-semeval,
title = "{S}em{E}val-2020 Task 12: Multilingual Offensive Language Identification in Social Media ({O}ffens{E}val 2020)",
author = {Zampieri, Marcos and
Nakov, Preslav and
Rosenthal, Sara and
Atanasova, Pepa and
Karadzhov, Georgi and
Mubarak, Hamdy and
Derczynski, Leon and
Pitenis, Zeses and
{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}},
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.188",
doi = "10.18653/v1/2020.semeval-1.188",
pages = "1425--1447",
abstract = "We present the results and the main findings of SemEval-2020 Task 12 on Multilingual Offensive Language Identification in Social Media (OffensEval-2020). The task included three subtasks corresponding to the hierarchical taxonomy of the OLID schema from OffensEval-2019, and it was offered in five languages: Arabic, Danish, English, Greek, and Turkish. OffensEval-2020 was one of the most popular tasks at SemEval-2020, attracting a large number of participants across all subtasks and languages: a total of 528 teams signed up to participate in the task, 145 teams submitted official runs on the test data, and 70 teams submitted system description papers.",
}
```
### Contributions
Author-added dataset [@leondz](https://github.com/leondz)
|