|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NordicDSL: A language identification datasets for Nordic languages""" |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{haas-derczynski-2021-discriminating, |
|
title = "Discriminating Between Similar Nordic Languages", |
|
author = "Haas, Ren{\'e} and |
|
Derczynski, Leon", |
|
booktitle = "Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects", |
|
month = apr, |
|
year = "2021", |
|
address = "Kiyv, Ukraine", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.vardial-1.8", |
|
pages = "67--75", |
|
} |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Automatic language identification is a challenging problem. Discriminating |
|
between closely related languages is especially difficult. This paper presents |
|
a machine learning approach for automatic language identification for the |
|
Nordic languages, which often suffer miscategorisation by existing |
|
state-of-the-art tools. Concretely we will focus on discrimination between six |
|
Nordic languages: Danish, Swedish, Norwegian (Nynorsk), Norwegian (Bokmål), |
|
Faroese and Icelandic. |
|
|
|
This is the data for the tasks. Two variants are provided: 10K and 50K, with |
|
holding 10,000 and 50,000 examples for each language respectively. |
|
|
|
""" |
|
|
|
_URLS = { |
|
"10K": "nordic_dsl_10000", |
|
"50K": "nordic_dsl_50000", |
|
} |
|
|
|
|
|
class NordicLangIdConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for NordicLangId""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig NordicLangId. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(NordicLangIdConfig, self).__init__(**kwargs) |
|
|
|
|
|
class NordicLangId(datasets.GeneratorBasedBuilder): |
|
"""NordicLangId dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
NordicLangIdConfig( |
|
name="10k", |
|
description="Data for distinguishing between similar Nordic languages: 10k examples per class", |
|
version=VERSION, |
|
), |
|
NordicLangIdConfig( |
|
name="50k", |
|
description="Data for distinguishing between similar Nordic languages: 50k examples per class", |
|
version=VERSION, |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"language": datasets.features.ClassLabel( |
|
names=[ |
|
"dk", |
|
"sv", |
|
"nb", |
|
"nn", |
|
"fo", |
|
"is", |
|
] |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://aclanthology.org/2021.vardial-1.8/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == "10k": |
|
downloaded_train = dl_manager.download(_URLS["10K"] + 'train.csv') |
|
downloaded_test = dl_manager.download(_URLS["10K"] + 'test.csv') |
|
elif self.config.name == "50k": |
|
downloaded_train = dl_manager.download(_URLS["50K"] + 'train.csv') |
|
downloaded_test = dl_manager.download(_URLS["50K"] + 'test.csv') |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_train}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_test}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
for line in f: |
|
line = line.strip() |
|
if not line: |
|
continue |
|
if self.config.name == "10k": |
|
line = line.replace('dataset10000, ', '') |
|
if self.config.name == "50k": |
|
line = line.replace('dataset50000, ', '') |
|
|
|
instance = { |
|
"id": str(guid), |
|
"language": line[-2:], |
|
"sentence": line[:-3], |
|
} |
|
|
|
yield guid, instance |
|
guid += 1 |
|
|