Datasets:
File size: 7,015 Bytes
cc93b53 56b3cc3 cc93b53 56b3cc3 cc93b53 e254179 cc93b53 77743d3 cc93b53 77743d3 cc93b53 56b3cc3 cc93b53 56b3cc3 cc93b53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
annotations_creators:
- found
language_creators:
- found
language:
- da
- nn
- nb
- fo
- is
- sv
license:
- cc-by-sa-3.0
multilinguality:
- multilingual
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- text-classification
task_ids: []
paperswithcode_id: nordic-langid
pretty_name: Nordic Language ID for Distinguishing between Similar Languages
tags:
- language-identification
---
# Dataset Card for nordic_langid
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-instances)
- [Data Splits](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** [https://github.com/StrombergNLP/NordicDSL](https://github.com/StrombergNLP/NordicDSL)
- **Repository:** [https://github.com/StrombergNLP/NordicDSL](https://github.com/StrombergNLP/NordicDSL)
- **Paper:** [https://aclanthology.org/2021.vardial-1.8/](https://aclanthology.org/2021.vardial-1.8/)
- **Leaderboard:** [Needs More Information]
- **Point of Contact:** [René Haas](mailto:[email protected])
### Dataset Summary
Automatic language identification is a challenging problem. Discriminating
between closely related languages is especially difficult. This paper presents
a machine learning approach for automatic language identification for the
Nordic languages, which often suffer miscategorisation by existing
state-of-the-art tools. Concretely we will focus on discrimination between six
Nordic language: Danish, Swedish, Norwegian (Nynorsk), Norwegian (Bokmål),
Faroese and Icelandic.
This is the data for the tasks. Two variants are provided: 10K and 50K, with
holding 10,000 and 50,000 examples for each language respectively.
For more info, see the paper: [Discriminating Between Similar Nordic Languages](https://aclanthology.org/2021.vardial-1.8/).
### Supported Tasks and Leaderboards
*
### Languages
This dataset is in six similar Nordic language:
- Danish, `da`
- Faroese, `fo`
- Icelandic, `is`
- Norwegian Bokmål, `nb`
- Norwegian Nynorsk, `nn`
- Swedish, `sv`
## Dataset Structure
The dataset has two parts, one with 10K samples per language and another with 50K per language.
The original splits and data allocation used in the paper is presented here.
### Data Instances
[Needs More Information]
### Data Fields
- `id`: the sentence's unique identifier, `string`
- `sentence`: the test to be classifier, a `string`
- `language`: the class, one of `da`, `fo`, `is`, `nb`, `no`, `sv`.
### Data Splits
Train and Test splits are provided, divided using the code provided with the paper.
## Dataset Creation
### Curation Rationale
Data is taken from Wikipedia and Tatoeba from each of these six languages.
### Source Data
#### Initial Data Collection and Normalization
**Data collection** Data was scraped from Wikipedia. We downloaded summaries for randomly chosen Wikipedia
articles in each of the languages, saved as raw text
to six .txt files of about 10MB each.
The 50K section is extended with Tatoeba data, which provides a different register to Wikipedia text, and then topped up with more Wikipedia data.
**Extracting Sentences** The first pass in sentence
tokenisation is splitting by line breaks. We then extract shorter sentences with the sentence tokenizer
(sent_tokenize) function from NLTK (Loper
and Bird, 2002). This does a better job than just
splitting by ’.’ due to the fact that abbreviations,
which can appear in a legitimate sentence, typically
include a period symbol.
**Cleaning characters** The initial data set has
many characters that do not belong to the alphabets of the languages we work with. Often the
Wikipedia pages for people or places contain names
in foreign languages. For example a summary
might contain Chinese or Russian characters which
are not strong signals for the purpose of discriminating between the target languages.
Further, it can be that some characters in the
target languages are mis-encoded. These misencodings are also not likely to be intrinsically
strong or stable signals.
To simplify feature extraction, and to reduce the
size of the vocabulary, the raw data is converted
to lowercase and stripped of all characters which
are not part of the standard alphabet of the six
languages using a character whitelist.
#### Who are the source language producers?
The source language is from Wikipedia contributors and Tatoeba contributors.
### Annotations
#### Annotation process
The annotations were found.
#### Who are the annotators?
The annotations were found. They are determined by which language section a contributor posts their content to.
### Personal and Sensitive Information
The data hasn't been checked for PII, and is already all public. Tatoeba is is based on translations of synthetic conversational turns and is unlikely to bear personal or sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset is intended to help correctly identify content in the languages of six minority languages. Existing systems often confuse these, especially Bokmål and Danish or Icelandic and Faroese. However, some dialects are missed (for example Bornholmsk) and the closed nature of the classification task thus excludes speakers of these languages without recognising their existence.
### Discussion of Biases
The text comes from only two genres, so might not transfer well to other domains.
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[Needs More Information]
### Licensing Information
The data here is licensed CC-BY-SA 3.0. If you use this data, you MUST state its origin.
### Citation Information
````
@inproceedings{haas-derczynski-2021-discriminating,
title = "Discriminating Between Similar Nordic Languages",
author = "Haas, Ren{\'e} and
Derczynski, Leon",
booktitle = "Proceedings of the Eighth Workshop on NLP for Similar Languages, Varieties and Dialects",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.vardial-1.8",
pages = "67--75",
}
```
|