hub: remove loader (anyway not needed for using it with Flair ;)
Browse files- HisGermaNER.py +0 -113
HisGermaNER.py
DELETED
@@ -1,113 +0,0 @@
|
|
1 |
-
import datasets
|
2 |
-
|
3 |
-
# Coming soon!
|
4 |
-
_CITATION = ""
|
5 |
-
|
6 |
-
_DESCRIPTION = """\
|
7 |
-
HisGermaNER is another NER dataset from historical German newspapers.
|
8 |
-
|
9 |
-
In the first release of our dataset, 11 newspapers from 1710 to 1840 from the Austrian National Library (ONB) are selected, resulting in 100 pages.
|
10 |
-
"""
|
11 |
-
|
12 |
-
|
13 |
-
class HisGermaNERConfig(datasets.BuilderConfig):
|
14 |
-
"""BuilderConfig for HisGermaNER"""
|
15 |
-
|
16 |
-
def __init__(self, data_url, **kwargs):
|
17 |
-
super(HisGermaNERConfig, self).__init__(**kwargs)
|
18 |
-
self.data_url = data_url
|
19 |
-
|
20 |
-
|
21 |
-
class HisGermaNER(datasets.GeneratorBasedBuilder):
|
22 |
-
BUILDER_CONFIGS = [
|
23 |
-
HisGermaNERConfig(
|
24 |
-
name="HisGermaNER",
|
25 |
-
version=datasets.Version("0.0.1"),
|
26 |
-
description="HisGermaNER Dataset",
|
27 |
-
data_url="https://huggingface.co/datasets/stefan-it/HisGermaNER/resolve/main/splits/HisGermaNER_v0_",
|
28 |
-
)
|
29 |
-
]
|
30 |
-
|
31 |
-
def _info(self):
|
32 |
-
return datasets.DatasetInfo(
|
33 |
-
description=_DESCRIPTION,
|
34 |
-
features=datasets.Features(
|
35 |
-
{
|
36 |
-
"id": datasets.Value("string"),
|
37 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
38 |
-
"ner_tags": datasets.Sequence(
|
39 |
-
datasets.features.ClassLabel(
|
40 |
-
names=[
|
41 |
-
"O",
|
42 |
-
"B-PER",
|
43 |
-
"I-PER",
|
44 |
-
"B-ORG",
|
45 |
-
"I-ORG",
|
46 |
-
"B-LOC",
|
47 |
-
"I-LOC",
|
48 |
-
]
|
49 |
-
)
|
50 |
-
)
|
51 |
-
}
|
52 |
-
),
|
53 |
-
supervised_keys=None,
|
54 |
-
homepage="https://huggingface.co/datasets/stefan-it/HisGermaNER",
|
55 |
-
citation=_CITATION,
|
56 |
-
)
|
57 |
-
|
58 |
-
def _split_generators(self, dl_manager):
|
59 |
-
"""Returns generator for dataset splits."""
|
60 |
-
download_urls = {
|
61 |
-
split: self.config.data_url + split + ".tsv" for split in ["train", "dev", "test"]
|
62 |
-
}
|
63 |
-
|
64 |
-
downloaded_files = dl_manager.download_and_extract(download_urls)
|
65 |
-
|
66 |
-
splits = [
|
67 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
|
68 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
|
69 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
|
70 |
-
]
|
71 |
-
|
72 |
-
return splits
|
73 |
-
|
74 |
-
def _generate_examples(self, filepath):
|
75 |
-
with open(filepath, "rt", encoding="utf-8") as f_p:
|
76 |
-
current_tokens = []
|
77 |
-
current_tags = []
|
78 |
-
|
79 |
-
sentence_counter = 0
|
80 |
-
|
81 |
-
for line in f_p:
|
82 |
-
line = line.strip()
|
83 |
-
if not line:
|
84 |
-
if len(current_tokens) > 0:
|
85 |
-
sentence = (
|
86 |
-
sentence_counter, {
|
87 |
-
"id": str(sentence_counter),
|
88 |
-
"tokens": current_tokens,
|
89 |
-
"ner_tags": current_tags,
|
90 |
-
}
|
91 |
-
)
|
92 |
-
sentence_counter += 1
|
93 |
-
current_tokens = []
|
94 |
-
current_tags = []
|
95 |
-
yield sentence
|
96 |
-
continue
|
97 |
-
|
98 |
-
if line.startswith("TOKEN"):
|
99 |
-
continue
|
100 |
-
|
101 |
-
if line.startswith("# "):
|
102 |
-
continue
|
103 |
-
|
104 |
-
token, tag, misc = line.split("\t")
|
105 |
-
current_tokens.append(token)
|
106 |
-
current_tags.append(tag)
|
107 |
-
|
108 |
-
if len(current_tokens) > 0:
|
109 |
-
yield sentence_counter, {
|
110 |
-
"id": str(sentence_counter),
|
111 |
-
"tokens": current_tokens,
|
112 |
-
"ner_tags": current_tags,
|
113 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|