id
int64
0
6k
code
stringlengths
4k
8k
code_compressed
null
4,800
## ## This file is part of the libsigrokdecode project. ## ## Copyright (C) 2019 Benedikt Otto <[email protected]> ## ## This program is free software; you can redistribute it and/or modify ## it under the terms of the GNU General Public License as published by ## the Free Software Foundation; either version 2 of the License, or ## (at your option) any later version. ## ## This program is distributed in the hope that it will be useful, ## but WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ## GNU General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with this program; if not, see <http://www.gnu.org/licenses/>. ## import sigrokdecode as srd class SamplerateError(Exception): pass class Decoder(srd.Decoder): api_version = 3 id = 'ir_rc6' name = 'IR RC-6' longname = 'IR RC-6' desc = 'RC-6 infrared remote control protocol.' license = 'gplv2+' inputs = ['logic'] outputs = [] tags = ['IR'] channels = ( {'id': 'ir', 'name': 'IR', 'desc': 'IR data line', 'idn':'dec_ir_rc6_chan_ir'}, ) options = ( {'id': 'polarity', 'desc': 'Polarity', 'default': 'auto', 'values': ('auto', 'active-low', 'active-high'), 'idn':'dec_ir_rc6_opt_polarity'}, ) annotations = ( ('bit', 'Bit'), ('sync', 'Sync'), ('startbit', 'Startbit'), ('field', 'Field'), ('togglebit', 'Togglebit'), ('address', 'Address'), ('command', 'Command'), ) annotation_rows = ( ('bits', 'Bits', (0,)), ('fields', 'Fields', (1, 2, 3, 4, 5, 6)), ) def __init__(self): self.reset() def reset(self): self.samplerate = None self.edges, self.deltas, self.bits = [], [], [] self.state = 'IDLE' self.mode = 0 def start(self): self.out_ann = self.register(srd.OUTPUT_ANN) def metadata(self, key, value): if key == srd.SRD_CONF_SAMPLERATE: self.samplerate = value # One bit: 0.889ms (one half low, one half high). self.halfbit = int((self.samplerate * 0.000889) / 2.0) def putb(self, bit, data): self.put(bit[0], bit[1], self.out_ann, data) def putbits(self, bit1, bit2, data): self.put(bit1[0], bit2[1], self.out_ann, data) def METHOD_NAME(self, ss, es, data): self.put(ss, es, self.out_ann, data) def handle_bit(self): if len(self.bits) != 6: return if self.bits[0][2] == 8 and self.bits[0][3] == 1: self.putb(self.bits[0], [1, ['Synchronisation', 'Sync']]) else: return if self.bits[1][3] == 1: self.putb(self.bits[1], [2, ['Startbit', 'Start']]) else: return self.mode = sum([self.bits[2 + i][3] << (2 - i) for i in range(3)]) self.putbits(self.bits[2], self.bits[4], [3, ['Field: %d' % self.mode]]) self.putb(self.bits[5], [4, ['Toggle: %d' % self.bits[5][3]]]) def handle_package(self): # Sync and start bits have to be 1. if self.bits[0][3] == 0 or self.bits[1][3] == 0: return if len(self.bits) <= 6: return if self.mode == 0 and len(self.bits) == 22: # Mode 0 standard value = sum([self.bits[6 + i][3] << (7 - i) for i in range(8)]) self.putbits(self.bits[6], self.bits[13], [5, ['Address: %0.2X' % value]]) value = sum([self.bits[14 + i][3] << (7 - i) for i in range(8)]) self.putbits(self.bits[14], self.bits[21], [6, ['Data: %0.2X' % value]]) self.bits = [] if self.mode == 6 and len(self.bits) >= 15: # Mode 6 if self.bits[6][3] == 0: # Short addr, Mode 6A value = sum([self.bits[6 + i][3] << (7 - i) for i in range(8)]) self.putbits(self.bits[6], self.bits[13], [5, ['Address: %0.2X' % value]]) num_data_bits = len(self.bits) - 14 value = sum([self.bits[14 + i][3] << (num_data_bits - 1 - i) for i in range(num_data_bits)]) self.putbits(self.bits[14], self.bits[-1], [6, ['Data: %X' % value]]) self.bits = [] elif len(self.bits) >= 23: # Long addr, Mode 6B value = sum([self.bits[6 + i][3] << (15 - i) for i in range(16)]) self.putbits(self.bits[6], self.bits[21], [5, ['Address: %0.2X' % value]]) num_data_bits = len(self.bits) - 22 value = sum([self.bits[22 + i][3] << (num_data_bits - 1 - i) for i in range(num_data_bits)]) self.putbits(self.bits[22], self.bits[-1], [6, ['Data: %X' % value]]) self.bits = [] def decode(self): if not self.samplerate: raise SamplerateError('Cannot decode without samplerate.') value = 0 num_edges = -1 self.invert = False while True: conditions = [{0: 'e'}] if self.state == 'DATA': conditions.append({'skip': self.halfbit * 6}) (self.ir,) = self.wait(conditions) if len(conditions) == 2: if self.matched & 0b10: self.state = 'IDLE' self.edges.append(self.samplenum) if len(self.edges) < 2: continue delta = (self.edges[-1] - self.edges[-2]) / self.halfbit delta = int(delta + 0.5) self.deltas.append(delta) if len(self.deltas) < 2: continue if self.deltas[-2:] == [6, 2]: self.state = 'SYNC' num_edges = 0 self.bits = [] if self.options['polarity'] == 'auto': value = 1 else: value = self.ir if self.options['polarity'] == 'active-high' else 1 - self.ir self.bits.append((self.edges[-3], self.edges[-1], 8, value)) self.invert = self.ir == 0 self.putb(self.bits[-1], [0, ['%d' % value]]) # Add bit. if (num_edges % 2) == 0: # Only count every second edge. if self.deltas[-2] in [1, 2, 3] and self.deltas[-1] in [1, 2, 3, 6]: self.state = 'DATA' if self.deltas[-2] != self.deltas[-1]: # Insert border between 2 bits. self.edges.insert(-1, self.edges[-2] + self.deltas[-2] * self.halfbit) total = self.deltas[-1] self.deltas[-1] = self.deltas[-2] self.deltas.append(total - self.deltas[-1]) self.bits.append((self.edges[-4], self.edges[-2], self.deltas[-2] * 2, value)) num_edges += 1 else: self.bits.append((self.edges[-3], self.edges[-1], self.deltas[-1] * 2, value)) self.putb(self.bits[-1], [0, ['%d' % value]]) # Add bit. if len(self.bits) > 0: self.handle_bit() if self.state == 'IDLE': self.handle_package() if self.options['polarity'] == 'auto': value = self.ir if self.invert else 1 - self.ir else: value = self.ir if self.options['polarity'] == 'active-low' else 1 - self.ir num_edges += 1
null
4,801
""" Pure Python implementations of a Fixed Priority Queue and an Element Priority Queue using Python lists. """ class OverFlowError(Exception): pass class UnderFlowError(Exception): pass class FixedPriorityQueue: """ Tasks can be added to a Priority Queue at any time and in any order but when Tasks are removed then the Task with the highest priority is removed in FIFO order. In code we will use three levels of priority with priority zero Tasks being the most urgent (high priority) and priority 2 tasks being the least urgent. Examples >>> fpq = FixedPriorityQueue() >>> fpq.enqueue(0, 10) >>> fpq.enqueue(1, 70) >>> fpq.enqueue(0, 100) >>> fpq.enqueue(2, 1) >>> fpq.enqueue(2, 5) >>> fpq.enqueue(1, 7) >>> fpq.enqueue(2, 4) >>> fpq.enqueue(1, 64) >>> fpq.enqueue(0, 128) >>> print(fpq) Priority 0: [10, 100, 128] Priority 1: [70, 7, 64] Priority 2: [1, 5, 4] >>> fpq.dequeue() 10 >>> fpq.dequeue() 100 >>> fpq.dequeue() 128 >>> fpq.dequeue() 70 >>> fpq.dequeue() 7 >>> print(fpq) Priority 0: [] Priority 1: [64] Priority 2: [1, 5, 4] >>> fpq.dequeue() 64 >>> fpq.dequeue() 1 >>> fpq.dequeue() 5 >>> fpq.dequeue() 4 >>> fpq.dequeue() Traceback (most recent call last): ... data_structures.queue.priority_queue_using_list.UnderFlowError: All queues are empty >>> print(fpq) Priority 0: [] Priority 1: [] Priority 2: [] """ def __init__(self): self.queues = [ [], [], [], ] def enqueue(self, priority: int, data: int) -> None: """ Add an element to a queue based on its priority. If the priority is invalid ValueError is raised. If the queue is full an OverFlowError is raised. """ try: if len(self.queues[priority]) >= 100: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(data) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def dequeue(self) -> int: """ Return the highest priority element in FIFO order. If the queue is empty then an under flow exception is raised. """ for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__(self) -> str: return "\n".join(f"Priority {i}: {q}" for i, q in enumerate(self.queues)) class ElementPriorityQueue: """ Element Priority Queue is the same as Fixed Priority Queue except that the value of the element itself is the priority. The rules for priorities are the same the as Fixed Priority Queue. >>> epq = ElementPriorityQueue() >>> epq.enqueue(10) >>> epq.enqueue(70) >>> epq.enqueue(4) >>> epq.enqueue(1) >>> epq.enqueue(5) >>> epq.enqueue(7) >>> epq.enqueue(4) >>> epq.enqueue(64) >>> epq.enqueue(128) >>> print(epq) [10, 70, 4, 1, 5, 7, 4, 64, 128] >>> epq.dequeue() 1 >>> epq.dequeue() 4 >>> epq.dequeue() 4 >>> epq.dequeue() 5 >>> epq.dequeue() 7 >>> epq.dequeue() 10 >>> print(epq) [70, 64, 128] >>> epq.dequeue() 64 >>> epq.dequeue() 70 >>> epq.dequeue() 128 >>> epq.dequeue() Traceback (most recent call last): ... data_structures.queue.priority_queue_using_list.UnderFlowError: The queue is empty >>> print(epq) [] """ def __init__(self): self.queue = [] def enqueue(self, data: int) -> None: """ This function enters the element into the queue If the queue is full an Exception is raised saying Over Flow! """ if len(self.queue) == 100: raise OverFlowError("Maximum queue size is 100") self.queue.append(data) def dequeue(self) -> int: """ Return the highest priority element in FIFO order. If the queue is empty then an under flow exception is raised. """ if not self.queue: raise UnderFlowError("The queue is empty") else: data = min(self.queue) self.queue.remove(data) return data def __str__(self) -> str: """ Prints all the elements within the Element Priority Queue """ return str(self.queue) def fixed_priority_queue(): fpq = FixedPriorityQueue() fpq.enqueue(0, 10) fpq.enqueue(1, 70) fpq.enqueue(0, 100) fpq.enqueue(2, 1) fpq.enqueue(2, 5) fpq.enqueue(1, 7) fpq.enqueue(2, 4) fpq.enqueue(1, 64) fpq.enqueue(0, 128) print(fpq) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) print(fpq.dequeue()) def METHOD_NAME(): epq = ElementPriorityQueue() epq.enqueue(10) epq.enqueue(70) epq.enqueue(100) epq.enqueue(1) epq.enqueue(5) epq.enqueue(7) epq.enqueue(4) epq.enqueue(64) epq.enqueue(128) print(epq) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) print(epq.dequeue()) if __name__ == "__main__": fixed_priority_queue() METHOD_NAME()
null
4,802
from mpf.plugins.auditor import Auditor from mpf.tests.MpfFakeGameTestCase import MpfFakeGameTestCase class TestAuditor(MpfFakeGameTestCase): def get_config_file(self): return 'config.yaml' def get_platform(self): return 'smart_virtual' def METHOD_NAME(self): return 'tests/machine_files/auditor/' def setUp(self): self.machine_config_patches['mpf']['plugins'] = ['mpf.plugins.auditor.Auditor'] super().setUp() def test_auditor_player_vars(self): auditor = self.machine.plugins[0] self.assertIsInstance(auditor, Auditor) data_manager = auditor.data_manager # start a game self.start_game() self.post_event("add_score") self.post_event("add_custom") self.post_event("add_custom") self.post_event("add_not_audited") self.assertPlayerVarEqual(100, "score") self.drain_all_balls() self.assertGameIsNotRunning() self.assertEqual(100, auditor.current_audits['player']['score']['average']) self.assertEqual([100], auditor.current_audits['player']['score']['top']) self.assertEqual(1, auditor.current_audits['player']['score']['total']) self.assertEqual(200, auditor.current_audits['player']['my_var']['average']) self.assertEqual([200], auditor.current_audits['player']['my_var']['top']) self.assertEqual(1, auditor.current_audits['player']['my_var']['total']) self.assertNotIn("not_audited", auditor.current_audits['player']) # start a game self.start_game() self.post_event("add_score") self.post_event("add_score") self.assertPlayerVarEqual(200, "score") self.drain_all_balls() self.assertGameIsNotRunning() self.assertEqual(150, auditor.current_audits['player']['score']['average']) self.assertEqual([200, 100], auditor.current_audits['player']['score']['top']) self.assertEqual(2, auditor.current_audits['player']['score']['total']) self.assertEqual(100, auditor.current_audits['player']['my_var']['average']) self.assertEqual([200, 0], auditor.current_audits['player']['my_var']['top']) self.assertEqual(2, auditor.current_audits['player']['my_var']['total']) self.assertNotIn("not_audited", auditor.current_audits['player']) self.assertEqual({'score': {'top': [200, 100], 'average': 150.0, 'total': 2}, 'my_var': {'top': [200, 0], 'average': 100.0, 'total': 2}}, auditor.data_manager.written_data["player"]) def test_auditor_switches_events(self): auditor = self.machine.plugins[0] self.assertIsInstance(auditor, Auditor) data_manager = auditor.data_manager self.machine.switch_controller.process_switch("s_ball", 1) self.machine.switch_controller.process_switch("s_test", 1) self.advance_time_and_run(.1) self.machine.switch_controller.process_switch("s_test", 0) self.advance_time_and_run(2) self.assertEqual(0, auditor.current_audits['switches']['s_test']) self.assertMachineVarEqual(0, "audits_switches_s_test") # start a game self.start_game() self.machine.switch_controller.process_switch("s_test", 1) self.advance_time_and_run(1) self.machine.switch_controller.process_switch("s_test", 0) self.advance_time_and_run(1) self.drain_all_balls() self.assertGameIsNotRunning() self.assertEqual(1, auditor.current_audits['switches']['s_test']) self.assertMachineVarEqual(1, "audits_switches_s_test") self.machine.switch_controller.process_switch("s_test", 1) self.advance_time_and_run(.1) self.machine.switch_controller.process_switch("s_test", 0) self.advance_time_and_run(.1) self.assertEqual(1, auditor.current_audits['switches']['s_test']) self.assertMachineVarEqual(1, "audits_switches_s_test") self.assertEqual(1, data_manager.written_data['switches']['s_test']) # start a game self.start_game() self.machine.switch_controller.process_switch("s_test", 1) self.advance_time_and_run(.1) self.machine.switch_controller.process_switch("s_test", 0) self.advance_time_and_run(.1) self.assertEqual(2, auditor.current_audits['switches']['s_test']) self.assertMachineVarEqual(2, "audits_switches_s_test") self.assertEqual(2, data_manager.written_data['switches']['s_test']) self.post_event("test_event1") self.post_event("test_event2") self.post_event("test_event3") self.advance_time_and_run(.1) self.assertMachineVarEqual(2, "audits_switches_s_test") self.assertEqual(1, data_manager.written_data['events']['test_event1']) self.assertEqual(1, data_manager.written_data['events']['test_event2']) self.assertNotIn("test_event3", data_manager.written_data['events']) self.post_event("test_event1") self.advance_time_and_run(.1) self.assertEqual(2, data_manager.written_data['events']['test_event1']) self.assertEqual(1, data_manager.written_data['events']['test_event2']) # should not crash on unknown switch self.machine.switch_controller.process_switch_by_num(123123123123, 1, self.machine.default_platform) self.advance_time_and_run(.1) self.drain_all_balls() self.assertGameIsNotRunning() self.machine.switch_controller.process_switch("s_test", 1) self.advance_time_and_run(.1) self.machine.switch_controller.process_switch("s_test", 0) self.advance_time_and_run(.1) self.assertEqual(2, auditor.current_audits['switches']['s_test']) self.assertEqual(2, data_manager.written_data['switches']['s_test']) self.post_event("auditor_reset") self.advance_time_and_run(.1) self.assertEqual(0, auditor.current_audits['switches']['s_test']) self.assertEqual(0, data_manager.written_data['switches']['s_test']) self.assertEqual(0, auditor.current_audits['events']['game_started']) self.assertEqual(0, data_manager.written_data['events']['game_started'])
null
4,803
"""Abstract Protocol class.""" __all__ = ['BaseProtocol', 'Protocol', 'DatagramProtocol', 'SubprocessProtocol'] class BaseProtocol: """Common base class for protocol interfaces. Usually user implements protocols that derived from BaseProtocol like Protocol or ProcessProtocol. The only case when BaseProtocol should be implemented directly is write-only transport like write pipe """ def connection_made(self, transport): """Called when a connection is made. The argument is the transport representing the pipe connection. To receive data, wait for data_received() calls. When the connection is closed, connection_lost() is called. """ def connection_lost(self, exc): """Called when the connection is lost or closed. The argument is an exception object or None (the latter meaning a regular EOF is received or the connection was aborted or closed). """ def METHOD_NAME(self): """Called when the transport's buffer goes over the high-water mark. Pause and resume calls are paired -- pause_writing() is called once when the buffer goes strictly over the high-water mark (even if subsequent writes increases the buffer size even more), and eventually resume_writing() is called once when the buffer size reaches the low-water mark. Note that if the buffer size equals the high-water mark, pause_writing() is not called -- it must go strictly over. Conversely, resume_writing() is called when the buffer size is equal or lower than the low-water mark. These end conditions are important to ensure that things go as expected when either mark is zero. NOTE: This is the only Protocol callback that is not called through EventLoop.call_soon() -- if it were, it would have no effect when it's most needed (when the app keeps writing without yielding until pause_writing() is called). """ def resume_writing(self): """Called when the transport's buffer drains below the low-water mark. See pause_writing() for details. """ class Protocol(BaseProtocol): """Interface for stream protocol. The user should implement this interface. They can inherit from this class but don't need to. The implementations here do nothing (they don't raise exceptions). When the user wants to requests a transport, they pass a protocol factory to a utility function (e.g., EventLoop.create_connection()). When the connection is made successfully, connection_made() is called with a suitable transport object. Then data_received() will be called 0 or more times with data (bytes) received from the transport; finally, connection_lost() will be called exactly once with either an exception object or None as an argument. State machine of calls: start -> CM [-> DR*] [-> ER?] -> CL -> end * CM: connection_made() * DR: data_received() * ER: eof_received() * CL: connection_lost() """ def data_received(self, data): """Called when some data is received. The argument is a bytes object. """ def eof_received(self): """Called when the other end calls write_eof() or equivalent. If this returns a false value (including None), the transport will close itself. If it returns a true value, closing the transport is up to the protocol. """ class DatagramProtocol(BaseProtocol): """Interface for datagram protocol.""" def datagram_received(self, data, addr): """Called when some datagram is received.""" def error_received(self, exc): """Called when a send or receive operation raises an OSError. (Other than BlockingIOError or InterruptedError.) """ class SubprocessProtocol(BaseProtocol): """Interface for protocol for subprocess calls.""" def pipe_data_received(self, fd, data): """Called when the subprocess writes data into stdout/stderr pipe. fd is int file descriptor. data is bytes object. """ def pipe_connection_lost(self, fd, exc): """Called when a file descriptor associated with the child process is closed. fd is the int file descriptor that was closed. """ def process_exited(self): """Called when subprocess has exited."""
null
4,804
#!/usr/bin/env python3 # Copyright 2022 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import optparse from pathlib import Path from re import A import os import shlex from signal import SIGQUIT import subprocess import signal import tempfile import time import psutil import multiprocessing from unittest import result renderer_cmd_file = Path(__file__).parent / 'linux-perf-renderer-cmd.sh' assert renderer_cmd_file.is_file() renderer_cmd_prefix = f"{renderer_cmd_file} --perf-data-prefix=chrome_renderer" # ============================================================================== usage = """Usage: %prog $CHROME_BIN [OPTION]... -- [CHROME_OPTION]... [URL] This script runs linux-perf on all render process with custom V8 logging to get support to resolve JS function names. The perf data is written to OUT_DIR separate by renderer process. See http://v8.dev//linux-perf for more detailed instructions. """ parser = optparse.OptionParser(usage=usage) parser.add_option( '--perf-data-dir', default=None, metavar="OUT_DIR", help="Output directory for linux perf profile files") parser.add_option( "--profile-browser-process", action="store_true", default=False, help="Also start linux-perf for the browser process. " "By default only renderer processes are sampled. " "Outputs 'browser_*.perf.data' in the CDW") parser.add_option("--timeout", type=int, help="Stop chrome after N seconds") chrome_options = optparse.OptionGroup( parser, "Chrome-forwarded Options", "These convenience for a better script experience that are forward directly" "to chrome. Any other chrome option can be passed after the '--' arguments" "separator.") chrome_options.add_option("--user-data-dir", dest="user_data_dir", default=None) chrome_options.add_option("--js-flags", dest="js_flags") chrome_options.add_option( "--renderer-cmd-prefix", default=None, help=f"Set command prefix, used for each new chrome renderer process." "Default: {renderer_cmd_prefix}") FEATURES_DOC = "See chrome's base/feature_list.h source file for more dertails" chrome_options.add_option( "--enable-features", help="Comma-separated list of enabled chrome features. " + FEATURES_DOC) chrome_options.add_option( "--disable-features", help="Command-separated list of disabled chrome features. " + FEATURES_DOC) parser.add_option_group(chrome_options) # ============================================================================== def METHOD_NAME(*args): print("") print("=" * 80) print(*args) print("=" * 80) # ============================================================================== (options, args) = parser.parse_args() if len(args) == 0: parser.error("No chrome binary provided") chrome_bin = Path(args.pop(0)) if not chrome_bin.exists(): parser.error(f"Chrome '{chrome_bin}' does not exist") if options.renderer_cmd_prefix is not None: if options.perf_data_dir is not None: parser.error("Cannot specify --perf-data-dir " "if a custom --renderer-cmd-prefix is provided") else: options.renderer_cmd_prefix = str(renderer_cmd_file) if options.perf_data_dir is None: options.perf_data_dir = Path.cwd() else: options.perf_data_dir = Path(options.perf_data_dir).absolute() if not options.perf_data_dir.is_dir(): parser.error(f"--perf-data-dir={options.perf_data_dir} " "is not an directory or does not exist.") if options.timeout and options.timeout < 2: parser.error("--timeout should be more than 2 seconds") # ============================================================================== old_cwd = Path.cwd() os.chdir(options.perf_data_dir) # ============================================================================== JS_FLAGS_PERF = ("--perf-prof --no-write-protect-code-memory " "--interpreted-frames-native-stack") with tempfile.TemporaryDirectory(prefix="chrome-") as tmp_dir_path: tempdir = Path(tmp_dir_path) cmd = [ str(chrome_bin), ] if options.user_data_dir is None: cmd.append(f"--user-data-dir={tempdir}") cmd += [ "--no-sandbox", "--incognito", "--enable-benchmarking", "--no-first-run", "--no-default-browser-check", f"--renderer-cmd-prefix={options.renderer_cmd_prefix}", f"--js-flags={JS_FLAGS_PERF}" ] if options.js_flags: cmd += [f"--js-flags={options.js_flags}"] if options.enable_features: cmd += [f"--enable-features={options.enable_features}"] if options.disable_features: cmd += [f"--disable-features={options.disable_features}"] cmd += args METHOD_NAME("CHROME CMD: ", shlex.join(cmd)) if options.profile_browser_process: perf_data_file = f"{tempdir.name}_browser.perf.data" perf_cmd = [ "perf", "record", "--call-graph=fp", "--freq=max", "--clockid=mono", f"--output={perf_data_file}", "--" ] cmd = perf_cmd + cmd METHOD_NAME("LINUX PERF CMD: ", shlex.join(cmd)) if options.timeout is None: subprocess.run(cmd) else: process = subprocess.Popen(cmd) time.sleep(options.timeout) METHOD_NAME(f"QUITING chrome child processes after {options.timeout}s timeout") current_process = psutil.Process() children = current_process.children(recursive=True) for child in children: if "chrome" in child.name() or "content_shell" in child.name(): print(f" quitting PID={child.pid}") child.send_signal(signal.SIGQUIT) # Wait for linux-perf to write out files time.sleep(1) process.send_signal(signal.SIGQUIT) process.wait() # ============================================================================== METHOD_NAME("PARALLEL POST PROCESSING: Injecting JS symbols") def inject_v8_symbols(perf_dat_file): output_file = perf_dat_file.with_suffix(".data.jitted") cmd = [ "perf", "inject", "--jit", f"--input={perf_dat_file}", f"--output={output_file}" ] try: subprocess.run(cmd) print(f"Processed: {output_file}") except: print(shlex.join(cmd)) return None return output_file results = [] with multiprocessing.Pool() as pool: results = list( pool.imap_unordered(inject_v8_symbols, options.perf_data_dir.glob("*perf.data"))) results = list(filter(lambda x: x is not None, results)) if len(results) == 0: print("No perf files were successfully processed" " Check for errors or partial results in '{options.perf_data_dir}'") exit(1) METHOD_NAME(f"RESULTS in '{options.perf_data_dir}'") results.sort(key=lambda x: x.stat().st_size) BYTES_TO_MIB = 1 / 1024 / 1024 for output_file in reversed(results): print( f"{output_file.name:67}{(output_file.stat().st_size*BYTES_TO_MIB):10.2f}MiB" ) METHOD_NAME("PPROF EXAMPLE") path_strings = map(lambda f: str(f.relative_to(old_cwd)), results) print(f"pprof -flame { ' '.join(path_strings)}")
null
4,805
# SPDX-FileCopyrightText: 2019 Melissa LeBlanc-Williams for Adafruit Industries # # SPDX-License-Identifier: MIT """ CircuitPython library to handle the input and calculations * Author(s): Melissa LeBlanc-Williams """ # pylint: disable=eval-used def calculate(number_one, operator, number_two): result = eval(number_one + operator + number_two) if int(result) == result: result = int(result) return str(result) class Calculator: def __init__(self, calc_display, clear_button, label_offset): self._error = False self._calc_display = calc_display self._clear_button = clear_button self._label_offset = label_offset self._accumulator = "0" self._operator = None self._equal_pressed = False self._operand = None self._all_clear() def get_current_operator(self): operator = self._operator if operator == "*": operator = "x" return operator def _all_clear(self): self._accumulator = "0" self._operator = None self._equal_pressed = False self._clear_entry() def _clear_entry(self): self._operand = None self._error = False self._set_button_ce(False) self._set_text("0") def _set_button_ce(self, entry_only): self._clear_button.selected = False if entry_only: self._clear_button.label = "CE" else: self._clear_button.label = "AC" def _set_text(self, text): self._calc_display.text = text _, _, screen_w, _ = self._calc_display.bounding_box self._calc_display.x = self._label_offset - screen_w def _get_text(self): return self._calc_display.text def METHOD_NAME(self, input_key): display_text = self._get_text() if self._operand is None and self._operator is not None: display_text = "" elif self._operand is not None and self._operator is not None and self._equal_pressed: self._accumulator = self._operand self._operator = None self._operand = None display_text = "" elif display_text == "0": display_text = "" display_text += input_key self._set_text(display_text) if self._operator is not None: self._operand = display_text self._set_button_ce(True) self._equal_pressed = False def _handle_operator(self, input_key): if input_key == "x": input_key = "*" if self._equal_pressed: self._operand = None if self._operator is None: self._operator = input_key else: # Perform current calculation before changing input_keys if self._operand is not None: self._accumulator = calculate(self._accumulator, self._operator, self._operand) self._set_text(self._accumulator) self._operand = None self._operator = input_key self._accumulator = self._get_text() self._equal_pressed = False def _handle_equal(self): if self._operator is not None: if self._operand is None: self._operand = self._get_text() self._accumulator = calculate(self._accumulator, self._operator, self._operand) self._set_text(self._accumulator) self._equal_pressed = True def _update_operand(self): if self._operand is not None: self._operand = self._get_text() def add_input(self, input_key): try: if self._error: self._clear_entry() elif input_key == "AC": self._all_clear() elif input_key == "CE": self._clear_entry() elif self._operator is None and input_key == "0": pass elif len(input_key) == 1 and 48 <= ord(input_key) <= 57: self.METHOD_NAME(input_key) elif input_key in ('+', '-', '/', 'x'): self._handle_operator(input_key) elif input_key == ".": if not input_key in self._get_text(): self._set_text(self._get_text() + input_key) self._set_button_ce(True) self._equal_pressed = False elif input_key == "+/-": self._set_text(calculate(self._get_text(), "*", "-1")) self._update_operand() elif input_key == "%": self._set_text(calculate(self._get_text(), "/", "100")) self._update_operand() elif input_key == "=": self._handle_equal() except (ZeroDivisionError, RuntimeError): self._all_clear() self._error = True self._set_text("Error")
null
4,806
"""A pure Python implementation of import.""" __all__ = ['__import__', 'import_module', 'invalidate_caches', 'reload'] # Bootstrap help ##################################################### # Until bootstrapping is complete, DO NOT import any modules that attempt # to import importlib._bootstrap (directly or indirectly). Since this # partially initialised package would be present in sys.modules, those # modules would get an uninitialised copy of the source version, instead # of a fully initialised version (either the frozen one or the one # initialised below if the frozen one is not available). import _imp # Just the builtin component, NOT the full Python module import sys try: import _frozen_importlib as _bootstrap except ImportError: from . import _bootstrap _bootstrap._setup(sys, _imp) else: # importlib._bootstrap is the built-in import, ensure we don't create # a second copy of the module. _bootstrap.__name__ = 'importlib._bootstrap' _bootstrap.__package__ = 'importlib' try: _bootstrap.__file__ = __file__.replace('__init__.py', '_bootstrap.py') except NameError: # __file__ is not guaranteed to be defined, e.g. if this code gets # frozen by a tool like cx_Freeze. pass sys.modules['importlib._bootstrap'] = _bootstrap try: import _frozen_importlib_external as _bootstrap_external except ImportError: from . import _bootstrap_external _bootstrap_external._set_bootstrap_module(_bootstrap) _bootstrap._bootstrap_external = _bootstrap_external else: _bootstrap_external.__name__ = 'importlib._bootstrap_external' _bootstrap_external.__package__ = 'importlib' try: _bootstrap_external.__file__ = __file__.replace('__init__.py', '_bootstrap_external.py') except NameError: # __file__ is not guaranteed to be defined, e.g. if this code gets # frozen by a tool like cx_Freeze. pass sys.modules['importlib._bootstrap_external'] = _bootstrap_external # To simplify imports in test code _pack_uint32 = _bootstrap_external._pack_uint32 _unpack_uint32 = _bootstrap_external._unpack_uint32 # Fully bootstrapped at this point, import whatever you like, circular # dependencies and startup overhead minimisation permitting :) import warnings # Public API ######################################################### from ._bootstrap import __import__ def invalidate_caches(): """Call the invalidate_caches() method on all meta path finders stored in sys.meta_path (where implemented).""" for finder in sys.meta_path: if hasattr(finder, 'invalidate_caches'): finder.invalidate_caches() def find_loader(name, path=None): """Return the loader for the specified module. This is a backward-compatible wrapper around find_spec(). This function is deprecated in favor of importlib.util.find_spec(). """ warnings.warn('Deprecated since Python 3.4 and slated for removal in ' 'Python 3.12; use importlib.util.find_spec() instead', DeprecationWarning, stacklevel=2) try: loader = sys.modules[name].__loader__ if loader is None: raise ValueError('{}.__loader__ is None'.format(name)) else: return loader except KeyError: pass except AttributeError: raise ValueError('{}.__loader__ is not set'.format(name)) from None spec = _bootstrap._find_spec(name, path) # We won't worry about malformed specs (missing attributes). if spec is None: return None if spec.loader is None: if spec.submodule_search_locations is None: raise ImportError('spec for {} missing loader'.format(name), name=name) raise ImportError('namespace packages do not have loaders', name=name) return spec.loader def import_module(name, package=None): """Import a module. The 'package' argument is required when performing a relative import. It specifies the package to use as the anchor point from which to resolve the relative import to an absolute import. """ level = 0 if name.startswith('.'): if not package: msg = ("the 'package' argument is required to perform a relative " "import for {!r}") raise TypeError(msg.format(name)) for character in name: if character != '.': break level += 1 return _bootstrap._gcd_import(name[level:], package, level) _RELOADING = {} def METHOD_NAME(module): """Reload the module and return it. The module must have been successfully imported before. """ try: name = module.__spec__.name except AttributeError: try: name = module.__name__ except AttributeError: raise TypeError("reload() argument must be a module") if sys.modules.get(name) is not module: msg = "module {} not in sys.modules" raise ImportError(msg.format(name), name=name) if name in _RELOADING: return _RELOADING[name] _RELOADING[name] = module try: parent_name = name.rpartition('.')[0] if parent_name: try: parent = sys.modules[parent_name] except KeyError: msg = "parent {!r} not in sys.modules" raise ImportError(msg.format(parent_name), name=parent_name) from None else: pkgpath = parent.__path__ else: pkgpath = None target = module spec = module.__spec__ = _bootstrap._find_spec(name, pkgpath, target) if spec is None: raise ModuleNotFoundError(f"spec not found for the module {name!r}", name=name) _bootstrap._exec(spec, module) # The module may have replaced itself in sys.modules! return sys.modules[name] finally: try: del _RELOADING[name] except KeyError: pass
null
4,807
import unittest from django.contrib.contenttypes.models import ContentType from devilry.devilry_account.models import PermissionGroup, SubjectPermissionGroup from devilry.devilry_import_v2database.models import ImportedModel from django import test from django.conf import settings from model_bakery import baker from devilry.apps.core.models import Subject from devilry.devilry_account import models as account_models from devilry.devilry_import_v2database.modelimporters.subject_importer import SubjectImporter from .importer_testcase_mixin import ImporterTestCaseMixin @unittest.skip('Not relevant anymore, keep for history.') class TestSubjectImporter(ImporterTestCaseMixin, test.TestCase): def _create_model_meta(self): return { 'model_class_name': 'Subject', 'max_id': 16, 'app_label': 'core' } def METHOD_NAME(self, test_admin_user=None): return { 'pk': 1, 'model': 'core.subject', 'admin_user_ids': [test_admin_user.id] if test_admin_user else [], 'fields': { 'long_name': 'DUCK1010 - Programming for the natural sciences', 'admins': [test_admin_user.id] if test_admin_user else [], 'etag': '2017-05-15T11:04:46.567', 'short_name': 'duck1100', 'parentnode': 1 } } def test_importer(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user)) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() self.assertEqual(Subject.objects.count(), 1) def test_importer_pk(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user)) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() subject = Subject.objects.first() self.assertEqual(subject.pk, 1) def test_importer_imported_model_with_admins(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user)) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() self.assertEqual(SubjectPermissionGroup.objects.count(), 1) def test_importer_imported_model_without_admins(self): self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME()) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() self.assertEqual(SubjectPermissionGroup.objects.count(), 0) def test_importer_short_name(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user)) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() subject = Subject.objects.first() self.assertEqual(subject.short_name, 'duck1100') def test_importer_long_name(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user)) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() subject = Subject.objects.first() self.assertEqual(subject.long_name, 'DUCK1010 - Programming for the natural sciences') def test_importer_permissiongroups_is_created(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user)) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() self.assertEqual(Subject.objects.count(), 1) subject = Subject.objects.first() self.assertEqual(account_models.PermissionGroup.objects.count(), 1) self.assertEqual(account_models.SubjectPermissionGroup.objects.count(), 1) subjects_for_admin_list = Subject.objects.filter_user_is_admin(test_admin_user) self.assertEqual(len(subjects_for_admin_list), 1) self.assertEqual(subjects_for_admin_list[0], subject) def test_auto_sequence_numbered_objects_uses_meta_max_id(self): test_admin_user = baker.make(settings.AUTH_USER_MODEL) self.create_v2dump(model_name='core.subject', data=self.METHOD_NAME(test_admin_user=test_admin_user), model_meta=self._create_model_meta()) subjectimporter = SubjectImporter(input_root=self.temp_root_dir) subjectimporter.import_models() self.assertEqual(Subject.objects.count(), 1) subject = Subject.objects.first() self.assertEqual(subject.pk, 1) self.assertEqual(subject.id, 1) subject_with_auto_id = baker.make('core.Subject') self.assertEqual(subject_with_auto_id.id, self._create_model_meta()['max_id']+1) self.assertEqual(subject_with_auto_id.pk, self._create_model_meta()['max_id']+1)
null
4,808
import unittest from django.contrib.contenttypes.models import ContentType from devilry.devilry_import_v2database.models import ImportedModel from django import test from django.conf import settings from django.utils.dateparse import parse_datetime from model_bakery import baker from devilry.apps.core.models import RelatedStudent, PeriodTag, Period from devilry.devilry_import_v2database.modelimporters.relateduser_importer import RelatedStudentImporter from .importer_testcase_mixin import ImporterTestCaseMixin @unittest.skip('Not relevant anymore, keep for history.') class TestRelatedStudentImporter(ImporterTestCaseMixin, test.TestCase): def _create_model_meta(self): return { 'model_class_name': 'RelatedStudent', 'max_id': 19, 'app_label': 'core' } def _create_related_student_dict(self, period, user): return { 'pk': 19, 'model': 'core.relatedstudent', 'fields': { 'user': user.id, 'period': period.id, 'candidate_id': None, 'tags': 'group1' } } def test_importer(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') self.create_v2dump(model_name='core.relatedstudent', data=self._create_related_student_dict(period=test_period, user=test_user)) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() self.assertEqual(RelatedStudent.objects.count(), 1) self.assertEqual(PeriodTag.objects.count(), 1) def test_importer_related_examiner_pk(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') self.create_v2dump(model_name='core.relatedstudent', data=self._create_related_student_dict(period=test_period, user=test_user)) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() related_examiner = RelatedStudent.objects.first() self.assertEqual(related_examiner.pk, 19) self.assertEqual(related_examiner.id, 19) def test_importer_period_tag_period(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') self.create_v2dump(model_name='core.relatedstudent', data=self._create_related_student_dict(period=test_period, user=test_user)) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() period_tag = PeriodTag.objects.first() self.assertEqual(period_tag.period, test_period) def test_importer_period_tag_single_tag_created(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') self.create_v2dump(model_name='core.relatedstudent', data=self._create_related_student_dict(period=test_period, user=test_user)) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() period_tag = PeriodTag.objects.first() self.assertEqual(period_tag.tag, 'group1') def test_importer_period_tag_multiple_tags_created(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') relatedexaminer_data_dict = self._create_related_student_dict(period=test_period, user=test_user) relatedexaminer_data_dict['fields']['tags'] = 'group1,group2' self.create_v2dump(model_name='core.relatedstudent', data=relatedexaminer_data_dict) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() period_tags_list = [period_tag.tag for period_tag in PeriodTag.objects.all()] self.assertEqual(len(period_tags_list), 2) self.assertIn('group1', period_tags_list) self.assertIn('group2', period_tags_list) def test_importer_single_period_tag_related_student_is_added(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') self.create_v2dump(model_name='core.relatedstudent', data=self._create_related_student_dict(period=test_period, user=test_user)) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() related_examiner = RelatedStudent.objects.first() period_tag = PeriodTag.objects.first() self.assertEqual(period_tag.relatedstudents.count(), 1) self.assertIn(related_examiner, period_tag.relatedstudents.all()) def test_importer_multiple_period_tags_related_student_is_added(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') relatedexaminer_data_dict = self._create_related_student_dict(period=test_period, user=test_user) relatedexaminer_data_dict['fields']['tags'] = 'group1,group2' self.create_v2dump(model_name='core.relatedstudent', data=relatedexaminer_data_dict) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() related_examiner = RelatedStudent.objects.first() period_tags = PeriodTag.objects.all() self.assertEqual(period_tags.count(), 2) for period_tag in period_tags: self.assertIn(related_examiner, period_tag.relatedstudents.all()) def test_importer_related_student_is_added_to_existing_tags_and_new_tags(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') baker.make('core.PeriodTag', period=test_period, tag='group1') baker.make('core.PeriodTag', period=test_period, tag='group4') relatedexaminer_data_dict = self._create_related_student_dict(period=test_period, user=test_user) relatedexaminer_data_dict['fields']['tags'] = 'group1,group2,group3,group4' self.create_v2dump(model_name='core.relatedstudent', data=relatedexaminer_data_dict) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() related_examiner = RelatedStudent.objects.first() period_tags = PeriodTag.objects.all() self.assertEqual(period_tags.count(), 4) for period_tag in period_tags: self.assertIn(related_examiner, period_tag.relatedstudents.all()) def METHOD_NAME(self): test_user = baker.make(settings.AUTH_USER_MODEL) test_period = baker.make('core.Period') self.create_v2dump(model_name='core.relatedstudent', data=self._create_related_student_dict(period=test_period, user=test_user), model_meta=self._create_model_meta()) relatedstudent_importer = RelatedStudentImporter(input_root=self.temp_root_dir) relatedstudent_importer.import_models() self.assertEqual(RelatedStudent.objects.count(), 1) related_student = RelatedStudent.objects.first() self.assertEqual(related_student.pk, 19) self.assertEqual(related_student.id, 19) related_student_with_auto_id = baker.make('core.RelatedStudent') self.assertEqual(related_student_with_auto_id.pk, self._create_model_meta()['max_id']+1) self.assertEqual(related_student_with_auto_id.id, self._create_model_meta()['max_id']+1)
null
4,809
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2020 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. import functools from qtpy.QtWidgets import QMenu, QMessageBox from os.path import join, exists from mantid import ConfigService from mantid.kernel import logger from mantidqt.utils.qt import create_action from workbench.config import CONF RECENT_SCRIPT_MAX_NUMBER = 10 CACHE_FILE_NAME = "recent_script_file" MENU_CACHE_LOCATION = join(ConfigService.getAppDataDirectory(), CACHE_FILE_NAME) RECENT_SCRIPTS_KEY = "RecentScripts" class RecentlyClosedScriptsMenu(QMenu): def __init__(self, mainwindow): super(RecentlyClosedScriptsMenu, self).__init__() self.setTitle("Open Recently Closed Scripts") self.aboutToShow.connect(self.repopulate_menu) self.mainwindow = mainwindow def repopulate_menu(self): self.clear() self.populate_menu() def populate_menu(self): # Check cache is present or don't do anything. scripts = self._get_scripts_from_settings() if len(scripts) > 0: for script_path in scripts: script_name = self.METHOD_NAME(script_path) new_action = create_action( parent=self.mainwindow, text=script_name, on_triggered=functools.partial(self.open_script, script_path) ) self.addAction(new_action) else: self.addAction(create_action(parent=self.mainwindow, text="No recently closed scripts found")) @staticmethod def METHOD_NAME(path): return path if len(path) < 33 else "..." + path[-30:] def open_script(self, path): # Check if it exists, if it doesn't pop up small window saying sorry this doesn't exist, then remove it from # stack. else pass it off to the script window to open. if exists(path): self.mainwindow.editor.open_file_in_new_tab(path) else: # Remove path from script settings, then warn user. self.remove_script_from_settings(path) QMessageBox().warning( None, "That script no longer exists!", "Are all network drives properly mounted? or are there any network connectivity " "problems?", QMessageBox.Ok, ) def remove_script_from_settings(self, path): scripts = self._get_scripts_from_settings() if path in scripts: scripts.remove(path) self._store_scripts_to_settings(scripts) def add_script_to_settings(self, path): if path is None or path == "": return scripts = self._get_scripts_from_settings() if path not in scripts: scripts.insert(0, path) if len(scripts) > RECENT_SCRIPT_MAX_NUMBER: scripts.pop() self._store_scripts_to_settings(scripts) @staticmethod def _get_scripts_from_settings(): scripts = [] try: scripts = CONF.get(RECENT_SCRIPTS_KEY, type=list) except KeyError: # Happens quite often and should fail silently. pass except TypeError: # Happens when garbage data is found in the QSettings .ini file logger.error("Recently Opened Scripts were lost during save, and workbench has recovered from an error.") CONF.set(RECENT_SCRIPTS_KEY, []) def sort_key(sub_list): return sub_list[0] scripts.sort(key=sort_key) # strip scripts of it's extra data and overwrite the list for index, script in enumerate(scripts): scripts[index] = script[1] return scripts @staticmethod def _store_scripts_to_settings(scripts): # Add an index to a tuple in the script for index, script in enumerate(scripts): scripts[index] = (index, script) CONF.set(RECENT_SCRIPTS_KEY, scripts)
null
4,810
"""Signer implementation for project SPHINCS+ post-quantum signature support. """ import logging import os from typing import Any, Dict, Optional, Tuple from securesystemslib.exceptions import ( UnsupportedLibraryError, UnverifiedSignatureError, VerificationError, ) from securesystemslib.signer._key import Key from securesystemslib.signer._signature import Signature from securesystemslib.signer._signer import SecretsHandler, Signer from securesystemslib.signer._utils import compute_default_keyid SPX_IMPORT_ERROR = None try: from pyspx import shake_128s except ImportError: SPX_IMPORT_ERROR = "spinhcs+ key support requires the pyspx library" _SHAKE_SEED_LEN = 48 logger = logging.getLogger(__name__) def generate_spx_key_pair() -> Tuple[bytes, bytes]: """Generate SPHINCS+ key pair and return public and private bytes.""" if SPX_IMPORT_ERROR: raise UnsupportedLibraryError(SPX_IMPORT_ERROR) seed = os.urandom(_SHAKE_SEED_LEN) public, private = shake_128s.generate_keypair(seed) return public, private class SpxKey(Key): """SPHINCS+ verifier. NOTE: The SPHINCS+ key and signature serialization formats are not yet considered stable in securesystemslib. They may change in future releases and may not be supported by other implementations. """ DEFAULT_KEY_TYPE = "sphincs" DEFAULT_SCHEME = "sphincs-shake-128s" @classmethod def from_dict(cls, keyid: str, key_dict: Dict[str, Any]) -> "SpxKey": keytype, scheme, keyval = cls._from_dict(key_dict) return cls(keyid, keytype, scheme, keyval, key_dict) @classmethod def from_bytes(cls, public: bytes) -> "SpxKey": """Create SpxKey instance from public key bytes.""" keytype = cls.DEFAULT_KEY_TYPE scheme = cls.DEFAULT_SCHEME keyval = {"public": public.hex()} keyid = compute_default_keyid( # pylint: disable=protected-access keytype, scheme, keyval ) return cls(keyid, keytype, scheme, keyval) def METHOD_NAME(self) -> Dict[str, Any]: return self._to_dict() def verify_signature(self, signature: Signature, data: bytes) -> None: valid = None try: if SPX_IMPORT_ERROR: raise UnsupportedLibraryError(SPX_IMPORT_ERROR) key = bytes.fromhex(self.keyval["public"]) sig = bytes.fromhex(signature.signature) valid = shake_128s.verify(data, sig, key) except Exception as e: logger.info("Key %s failed to verify sig: %s", self.keyid, str(e)) raise VerificationError( f"Unknown failure to verify signature by {self.keyid}" ) from e if not valid: raise UnverifiedSignatureError( f"Failed to verify signature by {self.keyid}" ) class SpxSigner(Signer): """SPHINCS+ signer. NOTE: The SPHINCS+ key and signature serialization formats are not yet considered stable in securesystemslib. They may change in future releases and may not be supported by other implementations. Usage:: public_bytes, private_bytes = generate_spx_key_pair() public_key = SpxKey.from_bytes(public_bytes) signer = SpxSigner(private_bytes, public_key) signature = signer.sign(b"payload") # Use public_key.to_dict() / Key.from_dict() to transport public key data public_key = signer.public_key public_key.verify_signature(signature, b"payload") """ def __init__(self, private: bytes, public: SpxKey): self.private_key = private self.public_key = public @classmethod def from_priv_key_uri( cls, priv_key_uri: str, public_key: Key, secrets_handler: Optional[SecretsHandler] = None, ) -> "SpxSigner": raise NotImplementedError def sign(self, payload: bytes) -> Signature: """Signs payload with SPHINCS+ private key on the instance. Arguments: payload: bytes to be signed. Raises: UnsupportedLibraryError: PySPX is not available. Returns: Signature. """ if SPX_IMPORT_ERROR: raise UnsupportedLibraryError(SPX_IMPORT_ERROR) raw = shake_128s.sign(payload, self.private_key) return Signature(self.public_key.keyid, raw.hex())
null
4,811
import asyncio import binascii import json import logging import time import requests from paradox.exceptions import ConnectToSiteFailed, StunSessionRefreshFailed from paradox.lib import stun logger = logging.getLogger("PAI").getChild(__name__) class StunSession: def __init__(self, site_id, email, panel_serial): self.site_id = site_id self.email = email self.panel_serial = panel_serial self.site_info = None self.module = None self.stun_control = None self.stun_tunnel = None self.connection_timestamp = 0 async def connect(self) -> None: self.connection_timestamp = 0 logger.info("Connecting to Site: {}".format(self.site_id)) if self.site_info is None: self.site_info = await self._get_site_info( siteid=self.site_id, email=self.email ) if self.site_info is None: raise ConnectToSiteFailed("Unable to get site info") logger.debug("Site Info: {}".format(json.dumps(self.site_info, indent=4))) self.module = self._select_module() if self.module is None: self.site_info = None # Reset state raise ConnectToSiteFailed("Unable to find module with desired panel serial") xoraddr = binascii.unhexlify(self.module["xoraddr"]) await self._stun_tcp_change_request() await self.METHOD_NAME() stun_r = await self._stun_connect(xoraddr) self.connection_timestamp = time.time() connection_id = stun_r[0]["attr_body"] raddr = self.stun_control.sock.getpeername() logger.debug("STUN Connection Bind Request") self.stun_tunnel = stun.StunClient(host=raddr[0], port=raddr[1]) self.stun_tunnel.send_connection_bind_request(binascii.unhexlify(connection_id)) stun_r = self.stun_tunnel.receive_response() if stun.is_error(stun_r): raise ConnectToSiteFailed( f"STUN Connection Bind Request error: {stun.get_error(stun_r)}" ) logger.info("Connected to Site: {}".format(self.site_id)) async def _stun_connect(self, xoraddr): logger.debug("STUN Connect Request") self.stun_control.send_connect_request(xoraddr=xoraddr) stun_r = self.stun_control.receive_response() if stun.is_error(stun_r): raise ConnectToSiteFailed( f"STUN Connect Request error: {stun.get_error(stun_r)}" ) return stun_r async def METHOD_NAME(self): logger.debug("STUN TCP Binding Request") self.stun_control.send_binding_request() stun_r = self.stun_control.receive_response() if stun.is_error(stun_r): raise ConnectToSiteFailed( f"STUN TCP Binding Request error: {stun.get_error(stun_r)}" ) async def _stun_tcp_change_request(self): stun_host = "turn.paradoxmyhome.com" logger.debug("STUN TCP Change Request") self.stun_control = stun.StunClient(stun_host) self.stun_control.send_tcp_change_request() stun_r = self.stun_control.receive_response() if stun.is_error(stun_r): raise ConnectToSiteFailed( f"STUN TCP Change Request error: {stun.get_error(stun_r)}" ) def _select_module(self): for site in self.site_info["site"]: for module in site["module"]: if module.get("xoraddr") is None: continue logger.debug( "Found module with panel serial: {}".format( module["panelSerial"] ) ) if not self.panel_serial: # Pick first available return module elif module["panelSerial"] == self.panel_serial: return module def get_socket(self): return self.stun_tunnel.sock def refresh_session_if_required(self) -> None: if self.site_info is None or self.connection_timestamp == 0: return # Refresh session if required if time.time() - self.connection_timestamp >= 500: logger.info("STUN Session Refresh") self.stun_control.send_refresh_request() stun_r = self.stun_control.receive_response() if stun.is_error(stun_r): self.connected = False raise StunSessionRefreshFailed( f"STUN Session Refresh failed: {stun.get_error(stun_r)}" ) self.connection_timestamp = time.time() def close(self): if self.stun_control: try: self.stun_control.close() self.stun_control = None except: logger.exception("stun_control socket close failed") if self.stun_tunnel: try: self.stun_tunnel.close() self.stun_tunnel = None except: logger.exception("stun_tunnel socket close failed") self.connection_timestamp = 0 @staticmethod async def _get_site_info(email, siteid): logger.info("Getting site info") URL = "https://api.insightgoldatpmh.com/v1/site" headers = { "User-Agent": "Mozilla/3.0 (compatible; Indy Library)", "Accept-Encoding": "identity", "Accept": "text/html, */*", } tries = 5 loop = asyncio.get_event_loop() while tries > 0: req = await loop.run_in_executor( None, lambda: requests.get( URL, headers=headers, params={"email": email, "name": siteid} ), ) if req.status_code == 200: return req.json() logger.warning("Unable to get site info. Retrying...") tries -= 1 time.sleep(5) return None def get_potential_modules(self): pass
null
4,812
# Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """test imagenet to mindrecord tool""" import os import pytest from mindspore import log as logger from mindspore.mindrecord import FileReader from mindspore.mindrecord import ImageNetToMR IMAGENET_MAP_FILE = "../data/mindrecord/testImageNetDataWhole/labels_map.txt" IMAGENET_IMAGE_DIR = "../data/mindrecord/testImageNetDataWhole/images" PARTITION_NUMBER = 4 @pytest.fixture def METHOD_NAME(): """add/remove file""" def remove_one_file(x): if os.path.exists(x): os.remove(x) def remove_file(file_name): x = file_name remove_one_file(x) x = file_name + ".db" remove_one_file(x) for i in range(PARTITION_NUMBER): x = file_name + str(i) remove_one_file(x) x = file_name + str(i) + ".db" remove_one_file(x) file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0] remove_file(file_name) yield "yield_fixture_data" remove_file(file_name) def read(filename): """test file reade""" count = 0 reader = FileReader(filename) for _, x in enumerate(reader.get_next()): assert len(x) == 3 count = count + 1 if count == 1: logger.info("data: {}".format(x)) assert count == 20 reader.close() def test_imagenet_to_mindrecord(METHOD_NAME): """test transform imagenet dataset to mindrecord.""" file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0] imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, file_name, PARTITION_NUMBER) imagenet_transformer.transform() for i in range(PARTITION_NUMBER): assert os.path.exists(file_name + str(i)) assert os.path.exists(file_name + str(i) + ".db") read([file_name + "0", file_name + "1", file_name + "2", file_name + "3"]) def test_imagenet_to_mindrecord_default_partition_number(METHOD_NAME): """ test transform imagenet dataset to mindrecord when partition number is default. """ file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0] imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, file_name, 1) imagenet_transformer.transform() assert os.path.exists(file_name) assert os.path.exists(file_name + ".db") read(file_name) def test_imagenet_to_mindrecord_partition_number_0(METHOD_NAME): """ test transform imagenet dataset to mindrecord when partition number is 0. """ file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0] with pytest.raises(Exception, match="Invalid parameter value"): imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, file_name, 0) imagenet_transformer.transform() def test_imagenet_to_mindrecord_partition_number_none(METHOD_NAME): """ test transform imagenet dataset to mindrecord when partition number is none. """ file_name = os.environ.get('PYTEST_CURRENT_TEST').split(':')[-1].split(' ')[0] with pytest.raises(Exception, match="The parameter partition_number must be int"): imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, file_name, None) imagenet_transformer.transform() def test_imagenet_to_mindrecord_illegal_filename(METHOD_NAME): """ test transform imagenet dataset to mindrecord when file name contains illegal character. """ filename = "imagenet_not_*ok" with pytest.raises(Exception, match="File name should not contains"): imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, filename, PARTITION_NUMBER) imagenet_transformer.transform() def test_imagenet_to_mindrecord_illegal_1_filename(METHOD_NAME): """ test transform imagenet dataset to mindrecord when file name end with '/'. """ filename = "imagenet/path/" with pytest.raises(Exception, match="File path can not end with '/'"): imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, filename, PARTITION_NUMBER) imagenet_transformer.transform()
null
4,813
from django import forms from django.contrib import messages from django.db import transaction from django.http import Http404 from django.utils import timezone from django.shortcuts import redirect from django.utils.translation import gettext_lazy from devilry.devilry_comment.editor_widget import DevilryMarkdownNoPreviewWidget from devilry.devilry_admin.views.assignment.students import groupview_base from devilry.devilry_cradmin import devilry_listbuilder from devilry.devilry_group import models as group_models from devilry.devilry_comment import models as comment_models class TargetRenderer(devilry_listbuilder.assignmentgroup.GroupTargetRenderer): def get_submit_button_text(self): return gettext_lazy('Pass students') def get_with_items_title(self): return gettext_lazy('Students to pass') def get_field_layout(self): return [ 'feedback_comment_text' ] class SelectedAssignmentGroupsForm(groupview_base.SelectedGroupsForm): """ We subclass the :class:`~.devilry.devilry_admin.view.assignment.students.groupview_base.SelectedGroupsForm` form so that we can add a text widget for feedback comment. """ def __init__(self, *args, **kwargs): super(SelectedAssignmentGroupsForm, self).__init__(*args, **kwargs) self.fields['feedback_comment_text'] = forms.CharField( widget=DevilryMarkdownNoPreviewWidget(), initial=gettext_lazy('Delivery has been corrected. Passed in a previous semester.'), label=False ) class PassAssignmentGroupsView(groupview_base.BaseMultiselectView): """ This workflow mitigates the problem of having no previous semesters that match the assignment on the current period, or if this for instance is a new subject derived from an old subject. This is basically the same as bulk correcting ``AssignmentGroups``, but can be done at an early stage from the admin dashboard. """ template_name = 'devilry_admin/assignment/passed_previous_period/select_groups_to_pass.django.html' def get(self, request, *args, **kwargs): response = super(PassAssignmentGroupsView, self).get(request, *args, **kwargs) if self.get_unfiltered_queryset_for_role(role=self.request.cradmin_role).exists(): return response else: messages.info(self.request, gettext_lazy('There are no students on this assignment.')) return redirect(str(self.get_success_url())) def get_pagetitle(self): return gettext_lazy('Bulk pass students') def get_form_class(self): return SelectedAssignmentGroupsForm def get_target_renderer_class(self): return TargetRenderer def METHOD_NAME(self, filters_string): return self.request.cradmin_app.reverse_appurl( viewname='manually_select_groups', kwargs={'filters_string': filters_string}) def get_success_url(self): return self.request.cradmin_instance.rolefrontpage_url() def __get_grading_points(self): return self.assignment.max_points def __publish_grading_on_current_assignment(self, queryset, published_by, comment_text): """ Publish grading on current assignment ``self.assignment`` Args: queryset: An :class:`~.devilry.apps.core.models.assignment_group.AssignmentGroup` ``QuerySet``. published_by: will be published by this user """ grading_points = self.__get_grading_points() with transaction.atomic(): for group in queryset: group_models.GroupComment.objects.create( feedback_set_id=group.cached_data.last_feedbackset_id, part_of_grading=True, visibility=group_models.GroupComment.VISIBILITY_VISIBLE_TO_EVERYONE, user=self.request.user, user_role=comment_models.Comment.USER_ROLE_ADMIN, text=comment_text, comment_type=comment_models.Comment.COMMENT_TYPE_GROUPCOMMENT, published_datetime=timezone.now() ) group.cached_data.last_feedbackset.publish(published_by, grading_points) group_models.FeedbacksetPassedPreviousPeriod( feedbackset=group.cached_data.last_feedbackset, passed_previous_period_type=group_models.FeedbacksetPassedPreviousPeriod.PASSED_PREVIOUS_SEMESTER_TYPES.MANUAL.value, created_by=self.request.user ).save() def form_valid(self, form): queryset = form.cleaned_data['selected_items'] self.__publish_grading_on_current_assignment( queryset=queryset, published_by=self.request.user, comment_text=form.cleaned_data['feedback_comment_text']) return redirect(str(self.get_success_url()))
null
4,814
# -*- coding: utf-8 -*- """simulation data operations :copyright: Copyright (c) 2019 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern import pkcollections from pykern.pkcollections import PKDict from pykern.pkdebug import pkdc, pkdlog, pkdp from pykern.pkdebug import pkdp import re import sirepo.sim_data class SimData(sirepo.sim_data.SimDataBase): ANALYSIS_ONLY_FIELDS = frozenset( ("colorMap", "notes", "color", "impactColorMap", "axes", "slice") ) @classmethod def _compute_model(cls, analysis_model, *args, **kwargs): if analysis_model in ( "currentAnimation", "egunCurrentAnimation", "fieldAnimation", "impactDensityAnimation", "particle3d", "particleAnimation", ): return "animation" if analysis_model == "optimizerAnimation": return analysis_model if analysis_model in ( "fieldCalcAnimation", "fieldCalculationAnimation", "fieldComparisonAnimation", ): return "fieldCalculationAnimation" # TODO(pjm): special case, should be an Animation model if analysis_model == "particle3d": return "animation" return super(SimData, cls)._compute_model(analysis_model, *args, **kwargs) @classmethod def fixup_old_data(cls, data, qcall, **kwargs): def _fixup_reflector(m): if "isReflector" not in m: return if m.isReflector == "1": for f in "specProb", "diffProb": m[f] = float(m[f]) if m.specProb > 0: m.reflectorType = "specular" m.reflectorProbability = m.specProb elif m.diffProb > 0: m.reflectorType = "diffuse" m.reflectorProbability = m.diffProb for f in ("isReflector", "specProb", "diffProb", "refScheme"): del m[f] dm = data.models dm.pksetdefault(optimizer=PKDict) dm.optimizer.pksetdefault( constraints=list, enabledFields=PKDict, fields=list, ) cls._init_models( dm, ( # simulationGrid must be first "simulationGrid", "anode", "egunCurrentAnimation", "fieldAnimation", "fieldCalcAnimation", "fieldCalculationAnimation", "fieldComparisonAnimation", "fieldComparisonReport", "fieldReport", "impactDensityAnimation", "optimizer", "optimizerAnimation", "optimizerStatus", "particle3d", "particleAnimation", "simulation", "cathode", ), dynamic=lambda m: cls.__dynamic_defaults(data, m), ) pkcollections.unchecked_del(dm.particle3d, "joinEvery") for m in ("anode", "cathode"): _fixup_reflector(dm[m]) s = cls.schema() for c in dm.conductorTypes: x = c.setdefault("isConductor", "1" if c.voltage > 0 else "0") # conductor.color is null is examples if not c.get("color", 0): c.color = s.constants[ "zeroVoltsColor" if x == "0" else "nonZeroVoltsColor" ] cls.update_model_defaults(c, c.type) _fixup_reflector(c) for c in dm.conductors: cls.update_model_defaults(c, "conductorPosition") if dm.optimizer.objective == "efficiency": dm.optimizer.objective = "transparency" cls._organize_example(data) @classmethod def warpvnd_is_3d(cls, data): return data.models.simulationGrid.simulation_mode == "3d" @classmethod def _compute_job_fields(cls, data, r, compute_model): res = ["simulationGrid"] res.append(cls.__non_opt_fields_to_array(data.models.beam)) for container in ("conductors", "conductorTypes"): for m in data.models[container]: res.append(cls.__non_opt_fields_to_array(m)) return res + cls._non_analysis_fields(data, r) @classmethod def __dynamic_defaults(cls, data, model): """defaults that depend on the current data""" if not model.startswith("fieldComparison"): return PKDict() g = data.models.simulationGrid t = cls.warpvnd_is_3d(data) return PKDict( dimension="x", xCell1=0, xCell2=int(g.num_x / 2.0), xCell3=g.num_x, yCell1=0, yCell2=int(g.num_y / 2.0) if t else 0, yCell3=g.num_y if t else 0, zCell1=0, zCell2=int(g.num_z / 2.0), zCell3=g.num_z, ) @classmethod def METHOD_NAME(cls, data): res = [] for m in data.models.conductorTypes: if m.type == "stl": res.append(cls.lib_file_name_with_model_field("stl", "file", m.file)) return res @classmethod def __non_opt_fields_to_array(cls, model): res = [] for f in model: if not re.search(r"\_opt$", f) and f not in cls.ANALYSIS_ONLY_FIELDS: res.append(model[f]) return res
null
4,815
# This program and the accompanying materials are made available under the # terms of the Mozilla Public License v2.0 which accompanies this distribution, # and is available at https://www.mozilla.org/en-US/MPL/2.0/ import sys, random class Solution: """Abstract solution. To be implemented.""" def __init__(self, num_objectives): """Constructor. Parameters: number of objectives.""" self.num_objectives = num_objectives self.objectives = [] for _ in range(num_objectives): self.objectives.append(None) self.attributes = [] self.rank = sys.maxsize self.distance = 0.0 self.chromos_fitness = {} self.sch = {} def __rshift__(self, other): """True if this solution dominates the other (">>" operator).""" dominates = False for i in range(len(self.objectives)): if self.objectives[i] > other.objectives[i]: return False elif self.objectives[i] < other.objectives[i]: dominates = True return dominates def __lshift__(self, other): """True if this solution is dominated by the other ("<<" operator).""" return other >> self def crowded_comparison(s1, s2): """Compare the two solutions based on crowded comparison. Args: s1 (obj): One chromosome. s2 (obj): Another chromosome. Returns: float: A comparison value. """ if s1.rank < s2.rank: return 1 elif s1.rank > s2.rank: return -1 elif s1.distance > s2.distance: return 1 elif s1.distance < s2.distance: return -1 else: return 0 class NSGAII: """Implementation of NSGA-II algorithm.""" current_evaluated_objective = 0 def __init__(self, num_objectives, mutation_rate=0.1, crossover_rate=1.0): """Constructor. Args: num_objectives (obj): Number of objectives. mutation_rate (float): Mutation rate (default value 10%). crossover_rate (float): Crossover rate (default value 100%).. """ self.num_objectives = num_objectives self.mutation_rate = mutation_rate self.crossover_rate = crossover_rate random.seed(100) def run(self, p, population_size, num_generations): """Run NSGA-II. Args: p (obj): A set of chromosomes (population). population_size (obj): A population size. num_generations (obj): A number of generations. Returns: list: First front of Pareto front. """ for s in p: s.evaluate_solution(0) first_front = [] for i in range(num_generations): r = [] r.extend(p) fronts = self.fast_nondominated_sort(r) del p[:] for front in fronts.values(): if len(front) == 0: break self.crowding_distance_assignment(front) p.extend(front) if len(p) >= population_size: break self.sort_crowding(p) if len(p) > population_size: del p[population_size:] first_front = list(fronts.values())[0] return first_front @staticmethod def sort_ranking(p): """Run sort the sort of chromosomes according to their ranks. Args: p (obj): A set of chromosomes (population). """ for i in range(len(p) - 1, -1, -1): for j in range(1, i + 1): s1 = p[j - 1] s2 = p[j] if s1.rank > s2.rank: p[j - 1] = s2 p[j] = s1 @staticmethod def METHOD_NAME(p, obj_idx): """Run sort the chromosome based on their objective value. Args: p (obj): A set of chromosomes (population). obj_idx (int): The index of objective function. """ for i in range(len(p) - 1, -1, -1): for j in range(1, i + 1): s1 = p[j - 1] s2 = p[j] if s1.objectives[obj_idx] > s2.objectives[obj_idx]: p[j - 1] = s2 p[j] = s1 @staticmethod def sort_crowding(p): """Run calculate the crowding distance of adjacent two chromosome in a front level. Args: p (obj): A set of chromosomes (population). """ for i in range(len(p) - 1, -1, -1): for j in range(1, i + 1): s1 = p[j - 1] s2 = p[j] if crowded_comparison(s1, s2) < 0: p[j - 1] = s2 p[j] = s1 def make_new_pop(self, p): """Make new population Q, offspring of P. Args: p (obj): A set of chromosomes (population). Returns: list: Offspring. """ q = [] while len(q) != len(p): selected_solutions = [None, None] while selected_solutions[0] == selected_solutions[1]: for i in range(2): s1 = random.choice(p) s2 = s1 while s1 == s2: s2 = random.choice(p) if crowded_comparison(s1, s2) > 0: selected_solutions[i] = s1 else: selected_solutions[i] = s2 if random.random() < self.crossover_rate: child_solution = selected_solutions[0].crossover(selected_solutions[1]) if random.random() < self.mutation_rate: child_solution.mutate() child_solution.evaluate_solution(0) q.append(child_solution) return q @staticmethod def fast_nondominated_sort(p): """Discover Pareto fronts in P, based on non-domination criterion. Args: p (obj): A set of chromosomes (population). Returns: dict: Fronts. """ fronts = {} s = {} n = {} for i in p: s[i] = [] n[i] = 0 fronts[1] = [] for pk in p: for qk in p: if pk == qk: continue if pk >> qk: s[pk].append(qk) elif pk << qk: n[pk] += 1 if n[pk] == 0: fronts[1].append(pk) i = 1 while len(fronts[i]) != 0: next_front = [] for r in fronts[i]: for j in s[r]: n[j] -= 1 if n[j] == 0: next_front.append(j) i += 1 fronts[i] = next_front return fronts def crowding_distance_assignment(self, front): """Assign a crowding distance for each solution in the front. Args: front (dict): A set of chromosomes in the front level. """ for p in front: p.distance = 0 for obj_index in range(self.num_objectives): self.METHOD_NAME(front, obj_index) front[0].distance = float('inf') front[len(front) - 1].distance = float('inf') for i in range(1, len(front) - 1): front[i].distance += (front[i + 1].distance - front[i - 1].distance)
null
4,816
import ctypes import numpy as np from collections import defaultdict, deque from typing import TypeVar, Type, Any, Dict, Deque, Tuple from tinygrad.helpers import DType, dtypes, prod, GlobalCounters, ImageDType _T = TypeVar("_T") class RawBuffer: # pylint: disable=abstract-method def __init__(self, size:int, dtype:DType, buf:Any=None, allocator:Any=None, **kwargs): self.size: int = size self.dtype: DType = dtype self._buf = buf if buf is not None else (allocator.alloc(size, dtype, **kwargs) if allocator else None) # If buf is provided, use it. Otherwise try to allocate from the allocator. self._memsz: int = size*dtype.itemsize self._allocator = allocator self._device = kwargs.get('device', None) GlobalCounters.mem_used += self._memsz def __del__(self): # NOTE: if it fails on init (bad dtype), it won't have a _memsz if hasattr(self, '_memsz'): GlobalCounters.mem_used -= self._memsz if hasattr(self, '_allocator') and self._allocator: self._allocator.free(self._buf) def __repr__(self): return f"buffer<{self.size}, {self.dtype}>" @property def key(self): return (self.size, self.dtype) # NOTE: this interface allows for 0 copy @classmethod def fromCPU(cls:Type[_T], x:np.ndarray) -> _T: raise NotImplementedError("must be implemented") def toCPU(self) -> np.ndarray: raise NotImplementedError("must be implemented") class RawConst(RawBuffer): # pylint: disable=abstract-method def __repr__(self): return f"const<{self._buf}, {self.dtype}>" @property def key(self): return (str(self._buf), self.dtype) def buf_is_kernel_arg(x) -> bool: return x.realized is not None and x.realized.__class__ is not RawConst # --teenygrad-- class RawBufferCopyIn(RawBuffer): def _copyin(self, x:np.ndarray) -> None: raise NotImplementedError("must be implemented") @classmethod def fromCPU(cls, x:np.ndarray, **kwargs): ret = cls(prod(x.shape), dtypes.from_np(x.dtype), **kwargs) if x.size > 0: ret._copyin(x) return ret class RawBufferMapped(RawBufferCopyIn): def _buffer(self) -> memoryview: raise NotImplementedError("must be implemented") # NOTE: this metadata prevents the backing buffer from being freed. hack can be removed with PEP688 def toCPU(self) -> np.ndarray: return np.frombuffer(self._buffer(), dtype=np.dtype(self.dtype.np, metadata={"backing": self}), count=self.size) # type: ignore def _copyin(self, x:np.ndarray) -> None: np.copyto(self.toCPU(), x.reshape(-1)) # this one is simple enough that i moved it out of the runtimes class RawMallocBuffer(RawBufferMapped): def __init__(self, size, dtype: DType): super().__init__(size, dtype, ({dtypes.float64:ctypes.c_double, dtypes.float32: ctypes.c_float, dtypes.float16: ctypes.c_int16, dtypes.bfloat16: ctypes.c_int16, dtypes.int8: ctypes.c_int8, dtypes.uint8: ctypes.c_uint8, dtypes.bool: ctypes.c_uint8, dtypes.int32: ctypes.c_int32, dtypes.uint32: ctypes.c_uint32, dtypes.int64: ctypes.c_int64, dtypes.uint64: ctypes.c_uint64}[dtype] * size)()) def _buffer(self): return memoryview(self._buf) class RawBufferCopyInOut(RawBufferCopyIn): def _copyout(self, x:np.ndarray) -> None: raise NotImplementedError("must be implemented") def toCPU(self) -> np.ndarray: x: np.ndarray = np.empty(self.size, dtype=self.dtype.np) if x.size > 0: self._copyout(x) return x class RawBufferTransfer(RawBuffer): def _transfer(self, x) -> None: raise NotImplementedError("must be implemented") @classmethod def transfer(cls, x, shape, dtype, **kwargs): ret = cls(prod(shape), dtype, **kwargs) ret._transfer(x) return ret class LRUAllocator: def __init__(self, dev_memsz=(4<<30)): self.epoch = 0 self.free_space: Dict[Any, int] = defaultdict(lambda: dev_memsz) self.buffer_info: Dict[Any, Tuple[int, DType, str]] = dict() self.cached_buffers: Dict[Tuple[int, ...], Deque[Tuple[Any, int]]] = defaultdict(deque) # Cached buffer storage, splitted by type and size, newest first. self.aging_order: Dict[Any, Deque[Tuple[Tuple[int, ...], int]]] = defaultdict(deque) # Keys of cached_buffers, ordered from oldest to newest updates. def __del__(self): for v in self.cached_buffers.values(): for buf, _ in v: self._free_buffer(buf) def _cache_reuse_buffer(self, rawbufs: Deque[Tuple[Any, int]]): # The newest cached buffer is reused. GlobalCounters.mem_cached -= self._underlying_buf_memsz(rawbufs[0][0]) return rawbufs.popleft()[0] def _alloc_buffer(self, size, dtype, device, **kwargs): self.free_space[device] -= size*dtype.itemsize while len(self.aging_order[device]) and self.free_space[device] < 0: # When OOM removing lru buffers. bucket, epoch = self.aging_order[device].popleft() if self.cached_buffers[bucket] and self.cached_buffers[bucket][-1][1] == epoch: self._free_buffer(self.cached_buffers[bucket].pop()[0]) # Free cached buffer if it is still in cache. newbuf = self._do_alloc(max(1, size), dtype, device, **kwargs) self.buffer_info[newbuf] = (size, dtype, device) return newbuf def _free_buffer(self, buf_to_free): from tinygrad.jit import CacheCollector CacheCollector._on_buf_free(buf_to_free) self.free_space[self.buffer_info[buf_to_free][2]] += self._underlying_buf_memsz(buf_to_free) GlobalCounters.mem_cached -= self._underlying_buf_memsz(buf_to_free) self.buffer_info.pop(buf_to_free) self.METHOD_NAME(buf_to_free) def alloc(self, size, dtype, device='0', **kwargs): rawbufs = self.cached_buffers.get(self._cached_bufkey(size, dtype, device), None) return self._cache_reuse_buffer(rawbufs) if rawbufs else self._alloc_buffer(size, dtype, device, **kwargs) def free(self, buf): # free() just caches buffer. It might be freed later when OOM during allocation. self.epoch += 1 size, dtype, device = self.buffer_info[buf] self.cached_buffers[self._cached_bufkey(size, dtype, device)].appendleft((buf, self.epoch)) self.aging_order[device].append((self._cached_bufkey(size, dtype, device), self.epoch)) GlobalCounters.mem_cached += self._underlying_buf_memsz(buf) def _underlying_buf_memsz(self, buf): return self.buffer_info[buf][0] * self.buffer_info[buf][1].itemsize def _cached_bufkey(self, size, dtype, device) -> Tuple[int, ...]: return (device, size, dtype, dtype.shape) if isinstance(dtype, ImageDType) else (device, size, dtype) # Provides a key for reusing device buffers with identical keys. def _do_alloc(self, size, dtype, device, **kwargs): raise NotImplementedError("must be implemented") def METHOD_NAME(self, buf): pass
null
4,817
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import tempfile from typing import Dict, Optional, Sequence import mmcv import numpy as np from mmengine.evaluator import BaseMetric from mmengine.logging import MMLogger from mmdet3d.evaluation import seg_eval from mmdet3d.registry import METRICS @METRICS.register_module() class SegMetric(BaseMetric): """3D semantic segmentation evaluation metric. Args: collect_device (str, optional): Device name used for collecting results from different ranks during distributed training. Must be 'cpu' or 'gpu'. Defaults to 'cpu'. prefix (str): The prefix that will be added in the metric names to disambiguate homonymous metrics of different evaluators. If prefix is not provided in the argument, self.default_prefix will be used instead. Default: None. pklfile_prefix (str, optional): The prefix of pkl files, including the file path and the prefix of filename, e.g., "a/b/prefix". If not specified, a temp file will be created. Default: None. submission_prefix (str, optional): The prefix of submission data. If not specified, the submission data will not be generated. Default: None. """ def __init__(self, collect_device: str = 'cpu', prefix: Optional[str] = None, pklfile_prefix: str = None, submission_prefix: str = None, **kwargs): self.pklfile_prefix = pklfile_prefix self.submission_prefix = submission_prefix super(SegMetric, self).__init__( prefix=prefix, collect_device=collect_device) def process(self, data_batch: dict, data_samples: Sequence[dict]) -> None: """Process one batch of data samples and predictions. The processed results should be stored in ``self.results``, which will be used to compute the metrics when all batches have been processed. Args: data_batch (dict): A batch of data from the dataloader. data_samples (Sequence[dict]): A batch of outputs from the model. """ for data_sample in data_samples: pred_3d = data_sample['pred_pts_seg'] eval_ann_info = data_sample['eval_ann_info'] cpu_pred_3d = dict() for k, v in pred_3d.items(): if hasattr(v, 'to'): cpu_pred_3d[k] = v.to('cpu').numpy() else: cpu_pred_3d[k] = v self.results.append((eval_ann_info, cpu_pred_3d)) def format_results(self, results): r"""Format the results to txt file. Refer to `ScanNet documentation <http://kaldir.vc.in.tum.de/scannet_benchmark/documentation>`_. Args: outputs (list[dict]): Testing results of the dataset. Returns: tuple: (outputs, tmp_dir), outputs is the detection results, tmp_dir is the temporal directory created for saving submission files when ``submission_prefix`` is not specified. """ submission_prefix = self.submission_prefix if submission_prefix is None: tmp_dir = tempfile.TemporaryDirectory() submission_prefix = osp.join(tmp_dir.name, 'results') mmcv.mkdir_or_exist(submission_prefix) ignore_index = self.dataset_meta['ignore_index'] # need to map network output to original label idx cat2label = np.zeros(len(self.dataset_meta['label2cat'])).astype( np.int64) for original_label, output_idx in self.dataset_meta['label2cat'].items( ): if output_idx != ignore_index: cat2label[output_idx] = original_label for i, (eval_ann, result) in enumerate(results): sample_idx = eval_ann['point_cloud']['lidar_idx'] pred_sem_mask = result['semantic_mask'].numpy().astype(np.int64) pred_label = cat2label[pred_sem_mask] curr_file = f'{submission_prefix}/{sample_idx}.txt' np.savetxt(curr_file, pred_label, fmt='%d') def METHOD_NAME(self, results: list) -> Dict[str, float]: """Compute the metrics from processed results. Args: results (list): The processed results of each batch. Returns: Dict[str, float]: The computed metrics. The keys are the names of the metrics, and the values are corresponding results. """ logger: MMLogger = MMLogger.get_current_instance() if self.submission_prefix: self.format_results(results) return None label2cat = self.dataset_meta['label2cat'] ignore_index = self.dataset_meta['ignore_index'] gt_semantic_masks = [] pred_semantic_masks = [] for eval_ann, sinlge_pred_results in results: gt_semantic_masks.append(eval_ann['pts_semantic_mask']) pred_semantic_masks.append( sinlge_pred_results['pts_semantic_mask']) ret_dict = seg_eval( gt_semantic_masks, pred_semantic_masks, label2cat, ignore_index, logger=logger) return ret_dict
null
4,818
# # MIT No Attribution # # Copyright (C) 2010-2023 Joel Andersson, Joris Gillis, Moritz Diehl, KU Leuven. # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # software and associated documentation files (the "Software"), to deal in the Software # without restriction, including without limitation the rights to use, copy, modify, # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # # # -*- coding: utf-8 -*- from casadi import * # # How to use Callback # Joel Andersson # class MyCallback(Callback): def __init__(self, name, d, opts={}): Callback.__init__(self) self.d = d self.construct(name, opts) # Number of inputs and outputs def get_n_in(self): return 1 def get_n_out(self): return 1 # Initialize the object def init(self): print('initializing object') # Evaluate numerically def eval(self, arg): x = arg[0] f = sin(self.d*x) return [f] # Use the function f = MyCallback('f', 0.5) res = f(2) print(res) # You may call the Callback symbolically x = MX.sym("x") print(f(x)) # Derivates OPTION 1: finite-differences eps = 1e-5 print((f(2+eps)-f(2))/eps) f = MyCallback('f', 0.5, {"enable_fd":True}) J = Function('J',[x],[jacobian(f(x),x)]) print(J(2)) # Derivates OPTION 2: Supply forward mode # Example from https://www.youtube.com/watch?v=mYOkLkS5yqc&t=4s class Example4To3(Callback): def __init__(self, name, opts={}): Callback.__init__(self) self.construct(name, opts) def get_n_in(self): return 1 def get_n_out(self): return 1 def get_sparsity_in(self,i): return Sparsity.dense(4,1) def get_sparsity_out(self,i): return Sparsity.dense(3,1) # Evaluate numerically def eval(self, arg): a,b,c,d = vertsplit(arg[0]) ret = vertcat(sin(c)*d+d**2,2*a+c,b**2+5*c) return [ret] class Example4To3_Fwd(Example4To3): def has_forward(self,nfwd): # This example is written to work with a single forward seed vector # For efficiency, you may allow more seeds at once return nfwd==1 def get_forward(self,nfwd,name,inames,onames,opts): class ForwardFun(Callback): def __init__(self, opts={}): Callback.__init__(self) self.construct(name, opts) def get_n_in(self): return 3 def get_n_out(self): return 1 def get_sparsity_in(self,i): if i==0: # nominal input return Sparsity.dense(4,1) elif i==1: # nominal output return Sparsity(3,1) else: # Forward seed return Sparsity.dense(4,1) def get_sparsity_out(self,i): # Forward sensitivity return Sparsity.dense(3,1) # Evaluate numerically def eval(self, arg): a,b,c,d = vertsplit(arg[0]) a_dot,b_dot,c_dot,d_dot = vertsplit(arg[2]) print("Forward sweep with", a_dot,b_dot,c_dot,d_dot) w0 = sin(c) w0_dot = cos(c)*c_dot w1 = w0*d w1_dot = w0_dot*d+w0*d_dot w2 = d**2 w2_dot = 2*d_dot*d r0 = w1+w2 r0_dot = w1_dot + w2_dot w3 = 2*a w3_dot = 2*a_dot r1 = w3+c r1_dot = w3_dot+c_dot w4 = b**2 w4_dot = 2*b_dot*b w5 = 5*w0 w5_dot = 5*w0_dot r2 = w4+w5 r2_dot = w4_dot + w5_dot ret = vertcat(r0_dot,r1_dot,r2_dot) return [ret] # You are required to keep a reference alive to the returned Callback object self.fwd_callback = ForwardFun() return self.fwd_callback f = Example4To3_Fwd('f') x = MX.sym("x",4) J = Function('J',[x],[jacobian(f(x),x)]) print(J(vertcat(1,2,0,3))) # Derivates OPTION 3: Supply reverse mode class Example4To3_Rev(Example4To3): def has_reverse(self,nadj): # This example is written to work with a single forward seed vector # For efficiency, you may allow more seeds at once return nadj==1 def get_reverse(self,nfwd,name,inames,onames,opts): class ReverseFun(Callback): def __init__(self, opts={}): Callback.__init__(self) self.construct(name, opts) def get_n_in(self): return 3 def get_n_out(self): return 1 def get_sparsity_in(self,i): if i==0: # nominal input return Sparsity.dense(4,1) elif i==1: # nominal output return Sparsity(3,1) else: # Reverse seed return Sparsity.dense(3,1) def get_sparsity_out(self,i): # Reverse sensitivity return Sparsity.dense(4,1) # Evaluate numerically def eval(self, arg): a,b,c,d = vertsplit(arg[0]) r0_bar,r1_bar,r2_bar = vertsplit(arg[2]) print("Reverse sweep with", r0_bar, r1_bar, r2_bar) w0 = sin(c) w1 = w0*d w2 = d**2 r0 = w1+w2 w3 = 2*a r1 = w3+c w4 = b**2 w5 = 5*w0 r2 = w4+w5 w4_bar = r2_bar w5_bar = r2_bar w0_bar = 5*w5_bar b_bar = 2*b*w4_bar w3_bar = r1_bar c_bar = r1_bar a_bar = 2*w3_bar w1_bar = r0_bar w2_bar = r0_bar d_bar = 2*d*w2_bar w0_bar = w0_bar + w1_bar*d d_bar = d_bar + w0*w1_bar c_bar = c_bar + cos(c)*w0_bar ret = vertcat(a_bar,b_bar,c_bar,d_bar) return [ret] # You are required to keep a reference alive to the returned Callback object self.rev_callback = ReverseFun() return self.rev_callback f = Example4To3_Rev('f') x = MX.sym("x",4) J = Function('J',[x],[jacobian(f(x),x)]) print(J(vertcat(1,2,0,3))) # Derivates OPTION 4: Supply full Jacobian class Example4To3_Jac(Example4To3): def METHOD_NAME(self): return True def get_jacobian(self,name,inames,onames,opts): class JacFun(Callback): def __init__(self, opts={}): Callback.__init__(self) self.construct(name, opts) def get_n_in(self): return 2 def get_n_out(self): return 1 def get_sparsity_in(self,i): if i==0: # nominal input return Sparsity.dense(4,1) elif i==1: # nominal output return Sparsity(3,1) def get_sparsity_out(self,i): return sparsify(DM([[0,0,1,1],[1,0,1,0],[0,1,1,0]])).sparsity() # Evaluate numerically def eval(self, arg): a,b,c,d = vertsplit(arg[0]) ret = DM(3,4) ret[0,2] = d*cos(c) ret[0,3] = sin(c)+2*d ret[1,0] = 2 ret[1,2] = 1 ret[2,1] = 2*b ret[2,2] = 5 return [ret] # You are required to keep a reference alive to the returned Callback object self.jac_callback = JacFun() return self.jac_callback f = Example4To3_Jac('f') x = MX.sym("x",4) J = Function('J',[x],[jacobian(f(x),x)]) print(J(vertcat(1,2,0,3)))
null
4,819
import json from unittest.mock import Mock, patch import pytest from backend.layers.common.entities import DatasetProcessingStatus from tests.unit.processing.schema_migration.conftest import make_mock_collection_version, make_mock_dataset_version @pytest.fixture def local_schema_migrate(schema_migrate): def download_file(bucket, key_name, local_path): contents = { "datasets": [ { "dataset_id": "dataset_id_1", "dataset_version_id": "prev_successful_dataset_version_id", }, { "dataset_id": "dataset_id_2", "dataset_version_id": "prev_failed_dataset_version_id", }, { "dataset_id": "dataset_id_3", "dataset_version_id": "prev_non_migrated_dataset_version_id", }, ] # these datasets populate the processed_dataset variable in the publish_and_cleanup function } with open(local_path, "w") as f: f.write(json.dumps(contents)) schema_migrate.business_logic.s3_provider.download_file = download_file schema_migrate.business_logic.s3_provider.delete_files = Mock() return schema_migrate @patch("backend.layers.processing.schema_migration.cxs_get_current_schema_version", return_value="1.0.0") @patch("backend.layers.processing.schema_migration.json.dump") class TestPublishAndCleanup: def test_OK(self, mock_json, mock_cxs_get_current_schema_version, local_schema_migrate): datasets = [ make_mock_dataset_version( dataset_id="dataset_id_1", version_id="new_successful_dataset_version_id", status=dict(processing_status=DatasetProcessingStatus.SUCCESS), ) ] collection_version = make_mock_collection_version(datasets) local_schema_migrate.business_logic.get_collection_version.return_value = collection_version errors = local_schema_migrate.publish_and_cleanup(collection_version.version_id.id, True) assert errors == [] local_schema_migrate.business_logic.publish_collection_version.assert_called_once_with( collection_version.version_id ) local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", ["schema_migration/test-execution-arn/publish_and_cleanup/collection_id.json"] ) local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", ["prev_successful_dataset_version_id/migrated.h5ad"], ) def test_with_errors(self, mock_json, mock_cxs_get_current_schema_version, local_schema_migrate): failed_dataset = make_mock_dataset_version( dataset_id="dataset_id_2", version_id="new_failed_dataset_version_id", status=dict(processing_status=DatasetProcessingStatus.FAILURE, validation_message="rds conversion failed"), metadata=dict(schema_version="1.0.0"), ) non_migrated_dataset = make_mock_dataset_version( dataset_id="dataset_id_3", version_id="new_non_migrated_dataset_version_id", metadata=dict(schema_version="0.9.0"), ) datasets = [ failed_dataset, non_migrated_dataset, ] collection_version = make_mock_collection_version(datasets) local_schema_migrate.business_logic.get_collection_version.return_value = collection_version errors = local_schema_migrate.publish_and_cleanup(collection_version.version_id.id, True) assert len(errors) == 2 assert { "message": failed_dataset.status.validation_message, "dataset_status": failed_dataset.status.to_dict(), "collection_id": collection_version.collection_id.id, "collection_version_id": collection_version.version_id.id, "dataset_version_id": failed_dataset.version_id.id, "dataset_id": failed_dataset.dataset_id.id, "rollback": True, } in errors assert { "message": "Did Not Migrate.", "collection_id": collection_version.collection_id.id, "collection_version_id": collection_version.version_id.id, "dataset_version_id": non_migrated_dataset.version_id.id, "dataset_id": non_migrated_dataset.dataset_id.id, "rollback": False, } in errors local_schema_migrate.business_logic.publish_collection_version.assert_not_called() local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", ["schema_migration/test-execution-arn/publish_and_cleanup/collection_id.json"] ) local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", [ "prev_failed_dataset_version_id/migrated.h5ad", "prev_non_migrated_dataset_version_id/migrated.h5ad", ], ) def test_can_not_publish(self, mock_json, mock_cxs_get_current_schema_version, local_schema_migrate): dataset_status = dict(processing_status=DatasetProcessingStatus.SUCCESS) metadata = dict(schema_version="1.0.0") collection_version = make_mock_collection_version( [ make_mock_dataset_version( dataset_id="dataset_id_1", version_id="new_successful_dataset_version_id", status=dataset_status, metadata=metadata, ) ] ) local_schema_migrate.business_logic.get_collection_version.return_value = collection_version errors = local_schema_migrate.publish_and_cleanup(collection_version.version_id.id, False) assert errors == [] local_schema_migrate.business_logic.publish_collection_version.assert_not_called() local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", ["schema_migration/test-execution-arn/publish_and_cleanup/collection_id.json"] ) local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", ["prev_successful_dataset_version_id/migrated.h5ad"] ) def METHOD_NAME(self, mock_json, mock_cxs_get_current_schema_version, local_schema_migrate): """ Test that datasets that do not appear in the processed_datasets variable in publish_and_cleanup are skipped """ local_schema_migrate._check_dataset_is_latest_schema_version = Mock( wraps=local_schema_migrate._check_dataset_is_latest_schema_version ) collection_version = make_mock_collection_version([make_mock_dataset_version()]) local_schema_migrate.business_logic.get_collection_version.return_value = collection_version errors = local_schema_migrate.publish_and_cleanup(collection_version.version_id.id, False) assert errors == [] local_schema_migrate._check_dataset_is_latest_schema_version.assert_not_called() local_schema_migrate.s3_provider.delete_files.assert_any_call( "artifact-bucket", ["schema_migration/test-execution-arn/publish_and_cleanup/collection_id.json"] ) local_schema_migrate.s3_provider.delete_files.assert_any_call("artifact-bucket", [])
null
4,820
import mock from django import test from django.conf import settings from model_bakery import baker from devilry.devilry_dbcache.customsql import AssignmentGroupDbCacheCustomSql from devilry.devilry_account import models as account_models from devilry.devilry_group.cradmin_instances import crinstance_admin class TestCrinstanceAdmin(test.TestCase): def setUp(self): AssignmentGroupDbCacheCustomSql().initialize() def test_get_rolequeryset_not_admin(self): baker.make('core.AssignmentGroup', parentnode=baker.make('core.Assignment')) testuser = baker.make(settings.AUTH_USER_MODEL) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual([], list(instance.get_rolequeryset())) def test_get_rolequeryset_superuser(self): testgroup = baker.make('core.AssignmentGroup', parentnode=baker.make('core.Assignment')) testuser = baker.make(settings.AUTH_USER_MODEL, is_superuser=True) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual([testgroup], list(instance.get_rolequeryset())) def METHOD_NAME(self): baker.make('core.AssignmentGroup', parentnode=baker.make('core.Assignment')) testuser = baker.make(settings.AUTH_USER_MODEL) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual([], list(instance.get_rolequeryset())) def test_getrolequeryset_admin_on_period(self): testassignment = baker.make('core.Assignment') testgroup = baker.make('core.AssignmentGroup', parentnode=testassignment) periodpermissiongroup = baker.make('devilry_account.PeriodPermissionGroup', period=testassignment.period) testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=periodpermissiongroup.permissiongroup) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual([testgroup], list(instance.get_rolequeryset())) def test_getrolequeryset_not_admin_on_period(self): testassignment_another = baker.make('core.Assignment') testgroup_another = baker.make('core.AssignmentGroup', parentnode=testassignment_another) periodpermissiongroup_another = baker.make('devilry_account.PeriodPermissionGroup', period=testassignment_another.period) testuser_another = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser_another, permissiongroup=periodpermissiongroup_another.permissiongroup) testassignment = baker.make('core.Assignment') baker.make('core.AssignmentGroup', parentnode=testassignment) periodpermissiongroup = baker.make('devilry_account.PeriodPermissionGroup', period=testassignment.period) testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=periodpermissiongroup.permissiongroup) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertNotEqual([testgroup_another], list(instance.get_rolequeryset())) def test_getrolequeryset_admin_on_subject(self): testassignment = baker.make('core.Assignment') testgroup = baker.make('core.AssignmentGroup', parentnode=testassignment) subjectpermissiongroup = baker.make('devilry_account.SubjectPermissionGroup', subject=testassignment.subject) testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=subjectpermissiongroup.permissiongroup) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual([testgroup], list(instance.get_rolequeryset())) def test_getrolequeryset_not_admin_on_subject(self): testassignment_another = baker.make('core.Assignment') testgroup_another = baker.make('core.AssignmentGroup', parentnode=testassignment_another) subjectpermissiongroup_another = baker.make('devilry_account.SubjectPermissionGroup', subject=testassignment_another.subject) testuser_another = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser_another, permissiongroup=subjectpermissiongroup_another.permissiongroup) testassignment = baker.make('core.Assignment') baker.make('core.AssignmentGroup', parentnode=testassignment) subjectpermissiongroup = baker.make('devilry_account.SubjectPermissionGroup', subject=testassignment.subject) testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=subjectpermissiongroup.permissiongroup) mockrequest = mock.MagicMock() mockrequest.user = testuser instance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertNotEqual([testgroup_another], list(instance.get_rolequeryset())) def test_admin_devilryrole_periodadmin(self): testperiod = baker.make('core.Period') testgroup = baker.make('core.AssignmentGroup', parentnode__parentnode=testperiod) testuser = baker.make(settings.AUTH_USER_MODEL, shortname='thor', fullname='Thor Thunder God') baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=baker.make( 'devilry_account.PeriodPermissionGroup', permissiongroup__grouptype=account_models.PermissionGroup.GROUPTYPE_PERIODADMIN, period=testperiod).permissiongroup) mockrequest = mock.MagicMock() mockrequest.user = testuser mockrequest.cradmin_role = testgroup testinstance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual('periodadmin', testinstance.get_devilryrole_for_requestuser()) def test_admin_devilryrole_subjectadmin(self): testsubject = baker.make('core.Subject') testgroup = baker.make('core.AssignmentGroup', parentnode__parentnode__parentnode=testsubject) testuser = baker.make(settings.AUTH_USER_MODEL, shortname='thor', fullname='Thor Thunder God') baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=baker.make( 'devilry_account.SubjectPermissionGroup', permissiongroup__grouptype=account_models.PermissionGroup.GROUPTYPE_SUBJECTADMIN, subject=testsubject).permissiongroup) mockrequest = mock.MagicMock() mockrequest.user = testuser mockrequest.cradmin_role = testgroup testinstance = crinstance_admin.AdminCrInstance(request=mockrequest) self.assertEqual('subjectadmin', testinstance.get_devilryrole_for_requestuser())
null
4,821
# Copyright 2019-2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0(the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http: // www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == == import numpy as np import pytest import mindspore.common.dtype as mstype import mindspore.nn as nn from mindspore import Tensor, context from mindspore.common.api import jit from mindspore.ops import operations as P context.set_context(mode=context.GRAPH_MODE, device_target='CPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() self.mul = P.Mul() @jit def construct(self, x, y): return self.mul(x, y) @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def METHOD_NAME(): x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.float32)) x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.float32)) y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.float32)) y2 = Tensor(2, mstype.float32) x3 = Tensor(2, mstype.float32) y3 = Tensor(2, mstype.float32) x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.float32)) y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.float32)) mul = Net() out = mul(x0, y0).asnumpy() exp = x0.asnumpy() * y0.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x1, y1).asnumpy() exp = x1.asnumpy() * y1.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x2, y2).asnumpy() exp = x2.asnumpy() * y2.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x3, y3).asnumpy() exp = x3.asnumpy() * y3.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x4, y4).asnumpy() exp = x4.asnumpy() * y4.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard def test_mul_int32(): x0 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32)) y0 = Tensor(np.random.uniform(-2, 2, (1, 1, 1, 1)).astype(np.int32)) x1 = Tensor(np.random.uniform(-2, 2, (1, 3, 1, 4)).astype(np.int32)) y1 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32)) x2 = Tensor(np.random.uniform(-2, 2, (2, 3, 4, 4)).astype(np.int32)) y2 = Tensor(2, mstype.int32) x3 = Tensor(2, mstype.int32) y3 = Tensor(2, mstype.int32) x4 = Tensor(np.random.uniform(-2, 2, (4)).astype(np.int32)) y4 = Tensor(np.random.uniform(-2, 2, (4, 4)).astype(np.int32)) mul = Net() out = mul(x0, y0).asnumpy() exp = x0.asnumpy() * y0.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x1, y1).asnumpy() exp = x1.asnumpy() * y1.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x2, y2).asnumpy() exp = x2.asnumpy() * y2.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x3, y3).asnumpy() exp = x3.asnumpy() * y3.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape out = mul(x4, y4).asnumpy() exp = x4.asnumpy() * y4.asnumpy() diff = np.abs(out - exp) err = np.ones(shape=exp.shape) * 1.0e-5 assert np.all(diff < err) assert out.shape == exp.shape @pytest.mark.level0 @pytest.mark.platform_x86_cpu @pytest.mark.env_onecard @pytest.mark.parametrize('mode', [context.GRAPH_MODE, context.PYNATIVE_MODE]) def test_mul_tensor_api_modes(mode): """ Feature: Test mul tensor api. Description: Test mul tensor api for Graph and PyNative modes. Expectation: The result match to the expect value. """ context.set_context(mode=mode, device_target="CPU") x = Tensor([1.0, 2.0, 3.0], mstype.float32) y = Tensor([4.0, 5.0, 6.0], mstype.float32) output = x.mul(y) expected = np.array([4., 10., 18.], np.float32) np.testing.assert_array_equal(output.asnumpy(), expected)
null
4,822
# Author: Neal Shrader <[email protected]> # Author: Ben Howard <[email protected]> # # This file is part of cloud-init. See LICENSE file for license information. # DigitalOcean Droplet API: # https://developers.digitalocean.com/documentation/metadata/ import cloudinit.sources.helpers.digitalocean as do_helper from cloudinit import log as logging from cloudinit import sources, util LOG = logging.getLogger(__name__) BUILTIN_DS_CONFIG = { "metadata_url": "http://169.254.169.254/metadata/v1.json", } # Wait for a up to a minute, retrying the meta-data server # every 2 seconds. MD_RETRIES = 30 MD_TIMEOUT = 2 MD_WAIT_RETRY = 2 MD_USE_IPV4LL = True class DataSourceDigitalOcean(sources.DataSource): dsname = "DigitalOcean" def __init__(self, sys_cfg, distro, paths): sources.DataSource.__init__(self, sys_cfg, distro, paths) self.distro = distro self.metadata = dict() self.ds_cfg = util.mergemanydict( [ util.get_cfg_by_path( sys_cfg, ["datasource", "DigitalOcean"], {} ), BUILTIN_DS_CONFIG, ] ) self.METHOD_NAME() self.metadata_address = self.ds_cfg["metadata_url"] self.retries = self.ds_cfg.get("retries", MD_RETRIES) self.timeout = self.ds_cfg.get("timeout", MD_TIMEOUT) self.use_ip4LL = self.ds_cfg.get("use_ip4LL", MD_USE_IPV4LL) self.wait_retry = self.ds_cfg.get("wait_retry", MD_WAIT_RETRY) self._network_config = None def _unpickle(self, ci_pkl_version: int) -> None: super()._unpickle(ci_pkl_version) self.METHOD_NAME() def METHOD_NAME(self): util.deprecate( deprecated="DataSourceDigitalOcean", deprecated_version="23.2", extra_message="Deprecated in favour of DataSourceConfigDrive.", ) def _get_sysinfo(self): return do_helper.read_sysinfo() def _get_data(self): (is_do, droplet_id) = self._get_sysinfo() # only proceed if we know we are on DigitalOcean if not is_do: return False LOG.info("Running on DigitalOcean. droplet_id=%s", droplet_id) ipv4LL_nic = None if self.use_ip4LL: ipv4LL_nic = do_helper.assign_ipv4_link_local(self.distro) md = do_helper.read_metadata( self.metadata_address, timeout=self.timeout, sec_between=self.wait_retry, retries=self.retries, ) self.metadata_full = md self.metadata["instance-id"] = md.get("droplet_id", droplet_id) self.metadata["local-hostname"] = md.get("hostname", droplet_id) self.metadata["interfaces"] = md.get("interfaces") self.metadata["public-keys"] = md.get("public_keys") self.metadata["availability_zone"] = md.get("region", "default") self.vendordata_raw = md.get("vendor_data", None) self.userdata_raw = md.get("user_data", None) if ipv4LL_nic: do_helper.del_ipv4_link_local(ipv4LL_nic) return True def check_instance_id(self, sys_cfg): return sources.instance_id_matches_system_uuid( self.get_instance_id(), "system-serial-number" ) @property def network_config(self): """Configure the networking. This needs to be done each boot, since the IP information may have changed due to snapshot and/or migration. """ if self._network_config: return self._network_config interfaces = self.metadata.get("interfaces") LOG.debug(interfaces) if not interfaces: raise RuntimeError("Unable to get meta-data from server....") nameservers = self.metadata_full["dns"]["nameservers"] self._network_config = do_helper.convert_network_configuration( interfaces, nameservers ) return self._network_config # Used to match classes to dependencies datasources = [ (DataSourceDigitalOcean, (sources.DEP_FILESYSTEM,)), ] # Return a list of data sources that match this set of dependencies def get_datasource_list(depends): return sources.list_from_depends(depends, datasources) # vi: ts=4 expandtab
null
4,823
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """random_ops vmap impl.""" from __future__ import absolute_import from mindspore.ops.operations.random_ops import UniformCandidateSampler, RandomShuffle, Multinomial, \ RandomChoiceWithMask from mindspore.ops.function import _VmapGeneralRule from mindspore.ops._vmap.vmap_base import vmap_rules_getters, _bdim_at_front, _vmap_clone_prim, \ vmap_general_preprocess, _raise_value_error @vmap_rules_getters.register(UniformCandidateSampler) def get_uniform_candidate_sampler_vmap_rule(prim, axis_size): """VmapRule for `UniformCandidateSampler` operation.""" if hasattr(prim, 'batch_rank'): batch_rank = prim.batch_rank + 1 else: batch_rank = 1 batch_prim = _vmap_clone_prim(prim) batch_prim.add_prim_attr("batch_rank", batch_rank) def vmap_rule(x_bdim): x, x_dim = x_bdim if x_dim is None: sampled_candidates, true_expected_count, sampled_expected_count = prim(x) return (sampled_candidates, None), (true_expected_count, None), (sampled_expected_count, None) x = _bdim_at_front(x, x_dim, axis_size) sampled_candidates, true_expected_count, sampled_expected_count = batch_prim(x) return (sampled_candidates, 0), (true_expected_count, 0), (sampled_expected_count, 0) return vmap_rule @vmap_rules_getters.register(RandomShuffle) def get_random_shuffle_vmap_rule(prim, axis_size): """VmapRule for `RandomShuffle` operation.""" if hasattr(prim, 'batch_rank'): batch_rank = prim.batch_rank + 1 else: batch_rank = 1 batch_prim = _vmap_clone_prim(prim) batch_prim.add_prim_attr("batch_rank", batch_rank) def vmap_rule(x_bdim): is_all_none, result = vmap_general_preprocess(prim, x_bdim) if is_all_none: return result x, x_dim = x_bdim x = _bdim_at_front(x, x_dim, axis_size) out = batch_prim(x) return out, 0 return vmap_rule @vmap_rules_getters.register(Multinomial) def get_multinomial_vmap_rule(prim, axis_size): """VmapRule for `Multinomial` operation.""" prim_name = prim.name prim_vmap = _VmapGeneralRule(prim, axis_size) def vmap_rule(x_bdim, num_samples_bdim): is_all_none, result = vmap_general_preprocess( prim, x_bdim, num_samples_bdim) if is_all_none: return result x, x_dim = x_bdim num_samples, num_samples_dim = num_samples_bdim if len(x.shape) > 2: out = prim_vmap(x_bdim, num_samples_bdim) return out if num_samples_dim is not None: _raise_value_error("The source axis of args in {} must be None, " "but got {}.".format(prim_name, num_samples_dim)) x = _bdim_at_front(x, x_dim, axis_size) out = prim(x, num_samples) return (out, 0) return vmap_rule @vmap_rules_getters.register(RandomChoiceWithMask) def METHOD_NAME(prim, axis_size): """VmapRule for 'RandomChoiceWithMask' operation.""" if hasattr(prim, 'batch_rank'): batch_rank = prim.batch_rank + 1 else: batch_rank = 1 batch_prim = _vmap_clone_prim(prim) batch_prim.add_prim_attr('batch_rank', batch_rank) def vmap_rule(x_bdim): is_all_none, result = vmap_general_preprocess(prim, x_bdim) if is_all_none: return result x_data, x_dim = x_bdim x = _bdim_at_front(x_data, x_dim, axis_size) index, mask = batch_prim(x) return (index, 0), (mask, 0) return vmap_rule
null
4,824
# Copyright 2022 the Regents of the University of California, Nerfstudio Team and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Miscellaneous helper code. """ from inspect import currentframe import typing import platform from typing import Any, Callable, Dict, List, Optional, TypeVar, Union import warnings import torch T = TypeVar("T") TKey = TypeVar("TKey") def METHOD_NAME(stuff: T, device: Union[torch.device, str] = "cpu", exclude: Optional[List[str]] = None) -> T: """Set everything in the dict to the specified torch device. Args: stuff: things to convert to torch device: machine to put the "stuff" on exclude: list of keys to skip over transferring to device """ if isinstance(stuff, dict): for k, v in stuff.items(): if exclude and k in exclude: stuff[k] = v else: stuff[k] = METHOD_NAME(v, device) return stuff if isinstance(stuff, torch.Tensor): return stuff.to(device) return stuff def get_dict_to_cpu(stuff: T) -> T: """Set everything in the dict to CPU. Args: stuff: things to place onto cpu """ if isinstance(stuff, dict): for k, v in stuff.items(): stuff[k] = get_dict_to_cpu(v) return stuff if isinstance(stuff, torch.Tensor): return stuff.detach().cpu() return stuff def get_masked_dict(d: Dict[TKey, torch.Tensor], mask) -> Dict[TKey, torch.Tensor]: """Return a masked dictionary. TODO(ethan): add more asserts/checks so this doesn't have unpredictable behavior. Args: d: dict to process mask: mask to apply to values in dictionary """ masked_dict = {} for key, value in d.items(): masked_dict[key] = value[mask] return masked_dict class IterableWrapper: """A helper that will allow an instance of a class to return multiple kinds of iterables bound to different functions of that class. To use this, take an instance of a class. From that class, pass in the <instance>.<new_iter_function> and <instance>.<new_next_function> to the IterableWrapper constructor. By passing in the instance's functions instead of just the class's functions, the self argument should automatically be accounted for. Args: new_iter: function that will be called instead as the __iter__() function new_next: function that will be called instead as the __next__() function length: length of the iterable. If -1, the iterable will be infinite. Attributes: new_iter: object's pointer to the function we are calling for __iter__() new_next: object's pointer to the function we are calling for __next__() length: length of the iterable. If -1, the iterable will be infinite. i: current index of the iterable. """ i: int def __init__(self, new_iter: Callable, new_next: Callable, length: int = -1): self.new_iter = new_iter self.new_next = new_next self.length = length def __next__(self): if self.length != -1 and self.i >= self.length: raise StopIteration self.i += 1 return self.new_next() def __iter__(self): self.new_iter() self.i = 0 return self def scale_dict(dictionary: Dict[Any, Any], coefficients: Dict[str, float]) -> Dict[Any, Any]: """Scale a dictionary in-place given a coefficients dictionary. Args: dictionary: input dict to be scaled. coefficients: scalar dict config for holding coefficients. Returns: Input dict scaled by coefficients. """ for key in dictionary: if key in coefficients: dictionary[key] *= coefficients[key] return dictionary def step_check(step, step_size, run_at_zero=False) -> bool: """Returns true based on current step and step interval.""" if step_size == 0: return False return (run_at_zero or step != 0) and step % step_size == 0 def update_avg(prev_avg: float, new_val: float, step: int) -> float: """helper to calculate the running average Args: prev_avg (float): previous average value new_val (float): new value to update the average with step (int): current step number Returns: float: new updated average """ return (step * prev_avg + new_val) / (step + 1) def strtobool(val) -> bool: """Cheap replacement for `distutils.util.strtobool()` which is deprecated FMI https://stackoverflow.com/a/715468 """ return val.lower() in ("yes", "y", "true", "t", "on", "1") def torch_compile(*args, **kwargs) -> Any: """ Safe torch.compile with backward compatibility for PyTorch 1.x """ if not hasattr(torch, "compile"): # Backward compatibility for PyTorch 1.x warnings.warn( "PyTorch 1.x will no longer be supported by Nerstudio. Please upgrade to PyTorch 2.x.", DeprecationWarning ) if args and isinstance(args[0], torch.nn.Module): return args[0] else: return torch.jit.script elif platform.system() == "Windows": # torch.compile is not supported on Windows # https://github.com/orgs/pytorch/projects/27 # TODO: @jkulhanek, remove this once torch.compile is supported on Windows warnings.warn( "Windows does not yet support torch.compile and the performance will be affected.", RuntimeWarning ) if args and isinstance(args[0], torch.nn.Module): return args[0] else: return lambda x: x else: return torch.compile(*args, **kwargs) def get_orig_class(obj, default=None): """Returns the __orig_class__ class of `obj` even when it is not initialized in __init__ (Python>=3.8). Workaround for https://github.com/python/typing/issues/658. Inspired by https://github.com/Stewori/pytypes/pull/53. """ try: return object.__getattribute__(obj, "__orig_class__") except AttributeError: cls = object.__getattribute__(obj, "__class__") try: is_type_generic = isinstance(cls, typing.GenericMeta) # type: ignore except AttributeError: # Python 3.8 is_type_generic = issubclass(cls, typing.Generic) if is_type_generic: frame = currentframe().f_back.f_back # type: ignore try: while frame: try: res = frame.f_locals["self"] if res.__origin__ is cls: return res except (KeyError, AttributeError): frame = frame.f_back finally: del frame return default
null
4,825
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2019 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + from qtpy import QtWidgets, QtCore from qtpy.QtGui import QIntValidator, QDoubleValidator from mantidqt.utils.qt import load_ui Ui_settings, _ = load_ui(__file__, "settings_widget.ui") class SettingsView(QtWidgets.QDialog, Ui_settings): def __init__(self, parent=None): super(SettingsView, self).__init__(parent) self.setWindowFlags(self.windowFlags() & ~QtCore.Qt.WindowContextHelpButtonHint) self.setupUi(self) self.setModal(True) self.finder_save.setLabelText("Save Location") self.finder_save.isForRunFiles(False) self.finder_save.isForDirectory(True) self.finder_fullCalib.setLabelText("Full Calibration") self.finder_fullCalib.isForRunFiles(False) self.finder_path_to_gsas2.setLabelText("Path to GSASII") self.finder_path_to_gsas2.isForRunFiles(False) self.finder_path_to_gsas2.isForDirectory(True) self.finder_path_to_gsas2.isOptional(True) self.timeout_lineedit.setValidator(QIntValidator(0, 200)) self.dSpacing_min_lineedit.setValidator(QDoubleValidator(0.0, 200.0, 3)) # set text of labels self.log_list_label.setText("Check logs to average when loading focused data") self.primary_log_label.setText( "Sort workspaces by selected log average in sequential fitting (default is ascending order)\n" "If the box below is empty the workspaces will be fitted in the order they appear in the table." ) self.peak_list_label.setText("Default Peak Function") # =============== # Slot Connectors # =============== def set_on_apply_clicked(self, slot): self.btn_apply.clicked.connect(slot) def set_on_ok_clicked(self, slot): self.btn_ok.clicked.connect(slot) def set_on_cancel_clicked(self, slot): self.btn_cancel.clicked.connect(slot) def set_on_log_changed(self, slot): self.log_list.itemChanged.connect(slot) def set_on_check_ascending_changed(self, slot): self.check_ascending.stateChanged.connect(slot) def set_on_check_descending_changed(self, slot): self.check_descending.stateChanged.connect(slot) def set_on_gsas2_path_edited(self, slot): self.finder_path_to_gsas2.fileEditingFinished.connect(slot) # ================= # Component Getters # ================= def get_save_location(self): return self.finder_save.getFirstFilename() def get_full_calibration(self): return self.finder_fullCalib.getFirstFilename() def get_checked_logs(self): return ",".join( [ self.log_list.item(ilog).text() for ilog in range(self.log_list.count()) if self.log_list.item(ilog).checkState() == QtCore.Qt.Checked ] ) def get_primary_log(self): return self.primary_log.currentText() def get_ascending_checked(self): return self.check_ascending.isChecked() def get_peak_function(self): return self.peak_list.currentText() def get_path_to_gsas2(self): return self.finder_path_to_gsas2.getFirstFilename() def get_timeout(self): return self.timeout_lineedit.text() def get_dSpacing_min(self): return self.dSpacing_min_lineedit.text() # ================= # Component Setters # ================= def set_save_location(self, text): self.finder_save.setText(text) def set_full_calibration(self, text): self.finder_fullCalib.setText(text) def set_van_recalc(self, checked): self.check_vanRecalc.setChecked(checked) def add_log_checkboxs(self, logs): for log in logs.split(","): item = QtWidgets.QListWidgetItem(self.log_list) item.setText(log) item.setCheckState(QtCore.Qt.Unchecked) self.log_list.addItem(item) def set_checked_logs(self, logs): # block signal so as not to reset primary log self.log_list.blockSignals(True) for log in logs.split(","): items = self.log_list.findItems(log, QtCore.Qt.MatchExactly) items[0].setCheckState(QtCore.Qt.Checked) self.log_list.blockSignals(False) def set_primary_log_combobox(self, primary_log): checked_logs = self.get_checked_logs().split(",") + [""] self.primary_log.clear() self.primary_log.addItems(checked_logs) if primary_log in checked_logs: self.primary_log.setCurrentText(primary_log) else: self.primary_log.setCurrentText("") def set_ascending_checked(self, checked): self.check_ascending.setChecked(checked) def set_descending_checked(self, checked): self.check_descending.setChecked(checked) def METHOD_NAME(self, peak_name): self.peak_list.setCurrentText(peak_name) def populate_peak_function_list(self, peak_names): self.peak_list.addItems(peak_names.split(",")) def set_path_to_gsas2(self, text): self.finder_path_to_gsas2.setText(text) def set_timeout(self, text): self.timeout_lineedit.setText(text) def set_dSpacing_min(self, text): self.dSpacing_min_lineedit.setText(text) # ================= # Force Actions # ================= def find_full_calibration(self): self.finder_fullCalib.findFiles(True) def find_save(self): self.finder_save.findFiles(True) def find_path_to_gsas2(self): self.finder_path_to_gsas2.findFiles(True)
null
4,826
import json import textwrap from conans.test.assets.genconanfile import GenConanfile from conans.test.utils.tools import TestClient def test_basic_inspect(): t = TestClient() t.save({"foo/conanfile.py": GenConanfile().with_name("foo").with_shared_option()}) t.run("inspect foo/conanfile.py") lines = t.out.splitlines() assert lines == ['default_options:', ' shared: False', 'generators: []', 'label: ', 'name: foo', 'options:', ' shared: False', 'options_definitions:', " shared: ['True', 'False']", 'package_type: None', 'requires: []', 'revision_mode: hash'] def test_options_description(): t = TestClient() conanfile = textwrap.dedent("""\ from conan import ConanFile class Pkg(ConanFile): options = {"shared": [True, False, None], "fpic": [True, False, None]} options_description = {"shared": "Some long explanation about shared option", "fpic": "Yet another long explanation of fpic"} """) t.save({"foo/conanfile.py": conanfile}) t.run("inspect foo/conanfile.py") assert "shared: Some long explanation about shared option" in t.out assert "fpic: Yet another long explanation of fpic" in t.out def test_missing_conanfile(): t = TestClient() t.run("inspect missing/conanfile.py", assert_error=True) assert "Conanfile not found at" in t.out def test_dot_and_folder_conanfile(): t = TestClient() t.save({"conanfile.py": GenConanfile().with_name("foo")}) t.run("inspect .") assert 'name: foo' in t.out t.save({"foo/conanfile.py": GenConanfile().with_name("foo")}, clean_first=True) t.run("inspect foo") assert 'name: foo' in t.out def METHOD_NAME(): tc = TestClient() conanfile = textwrap.dedent(""" from conan import ConanFile class Pkg(ConanFile): settings = "os", "arch" def set_name(self): self.name = "foo" def set_version(self): self.version = "1.0" """) tc.save({"conanfile.py": conanfile}) tc.run("inspect .") assert "foo" in tc.out assert "1.0" in tc.out def test_normal_inspect(): tc = TestClient() tc.run("new basic -d name=pkg -d version=1.0") tc.run("inspect .") assert tc.out.splitlines() == ['description: A basic recipe', 'generators: []', 'homepage: <Your project homepage goes here>', 'label: ', 'license: <Your project license goes here>', 'name: pkg', 'options:', 'options_definitions:', 'package_type: None', 'requires: []', 'revision_mode: hash', 'version: 1.0'] def test_empty_inspect(): conanfile = textwrap.dedent(""" from conan import ConanFile class Pkg(ConanFile): pass""") tc = TestClient() tc.save({"conanfile.py": conanfile}) tc.run("inspect . -f json") def test_basic_new_inspect(): tc = TestClient() tc.run("new basic") tc.run("inspect . -f json") tc.run("new cmake_lib -d name=pkg -d version=1.0 -f") tc.run("inspect . -f json") def test_requiremens_inspect(): tc = TestClient() conanfile = textwrap.dedent(""" from conan import ConanFile class Pkg(ConanFile): requires = "zlib/1.2.13" license = "MIT", "Apache" """) tc.save({"conanfile.py": conanfile}) tc.run("inspect .") assert ['generators: []', 'label: ', "license: ['MIT', 'Apache']", 'options:', 'options_definitions:', 'package_type: None', "requires: [{'ref': 'zlib/1.2.13', 'run': False, 'libs': True, 'skip': " "False, 'test': False, 'force': False, 'direct': True, 'build': " "False, 'transitive_headers': None, 'transitive_libs': None, 'headers': " "True, 'package_id_mode': None, 'visible': True}]", 'revision_mode: hash'] == tc.out.splitlines() def test_pythonrequires_remote(): tc = TestClient(default_server_user=True) pyrequires = textwrap.dedent(""" from conan import ConanFile class MyBase: def set_name(self): self.name = "my_company_package" class PyReq(ConanFile): name = "pyreq" version = "1.0" package_type = "python-require" """) tc.save({"pyreq/conanfile.py": pyrequires}) tc.run("create pyreq/") tc.run("upload pyreq/1.0 -r default") tc.run("search * -r default") assert "pyreq/1.0" in tc.out tc.run("remove * -c") conanfile = textwrap.dedent(""" from conan import ConanFile class Pkg(ConanFile): python_requires = "pyreq/1.0" python_requires_extend = "pyreq.MyBase" def set_version(self): self.version = "1.0" """) tc.save({"conanfile.py": conanfile}) # Not specifying the remote also works tc.run("inspect .") assert "pyreq/1.0: Downloaded recipe revision 0ca726ab0febe1100901fffb27dc421f" in tc.out assert "name: my_company_package" in tc.out assert "version: 1.0" in tc.out # It now finds it on the cache, because it was downloaded tc.run("inspect . -nr") assert "name: my_company_package" in tc.out assert "version: 1.0" in tc.out assert "'recipe': 'Cache'" in tc.out tc.run("remove pyreq/* -c") # And now no remotes fails tc.run("inspect . -nr", assert_error=True) assert "Cannot resolve python_requires 'pyreq/1.0': No remote defined" in tc.out def test_serializable_inspect(): tc = TestClient() tc.save({"conanfile.py": GenConanfile("a", "1.0") .with_requires("b/2.0") .with_setting("os") .with_option("shared", [True, False]) .with_generator("CMakeDeps")}) tc.run("inspect . --format=json") assert json.loads(tc.out)["name"] == "a"
null
4,827
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore import dtype as mstype from mindspore.ops.operations.sparse_ops import Sspaddmm class SspaddmmNet(nn.Cell): def __init__(self): super(SspaddmmNet, self).__init__() self.sspaddmm = Sspaddmm() def construct(self, x1_indices, x1_values, x1_shape, x2_indices, x2_values, x2_shape, x3_dense, alpha, beta): return self.sspaddmm(x1_indices, x1_values, x1_shape, x2_indices, x2_values, x2_shape, x3_dense, alpha, beta) @pytest.mark.levle0 @pytest.mark.platform_x86_gpu @pytest.mark.env_onecard def METHOD_NAME(): """ Feature: test Sspaddmm ops in gpu. Description: test the ops in dynamic shape. Expectation: expect correct shape result. """ context.set_context(mode=context.GRAPH_MODE, device_target='GPU') net = SspaddmmNet() x1_indices_dyn = Tensor(shape=[2, None], dtype=mstype.int64) x1_values_dyn = Tensor(shape=[None], dtype=mstype.int32) x1_shape_dyn = Tensor(shape=[None], dtype=mstype.int64) x2_indices_dyn = Tensor(shape=[None, None], dtype=mstype.int64) x2_values_dyn = Tensor(shape=[None], dtype=mstype.int32) x2_shape_dyn = Tensor(shape=[None], dtype=mstype.int64) x3_dense_dyn = Tensor(shape=[None, None], dtype=mstype.int32) alpha = Tensor(1, dtype=mstype.int32) beta = Tensor(1, dtype=mstype.int32) net.set_inputs(x1_indices_dyn, x1_values_dyn, x1_shape_dyn, x2_indices_dyn, x2_values_dyn, x2_shape_dyn, x3_dense_dyn, alpha, beta) x1_indices = Tensor(np.array([[0, 1], [0, 1]]), mstype.int64) x1_values = Tensor(np.array([1, 2]), mstype.int32) x1_shape = Tensor(np.array([3, 3]), mstype.int64) x2_indices = Tensor(np.array([[0, 1], [2, 2]]), mstype.int64) x2_values = Tensor(np.array([3, 4]), mstype.int32) x2_shape = Tensor(np.array([3, 3]), mstype.int64) x3_dense = Tensor(np.array([[1, 2, 3], [1, 3, 2], [3, 2, 1]]), mstype.int32) out = net(x1_indices, x1_values, x1_shape, x2_indices, x2_values, x2_shape, x3_dense, alpha, beta) expect_shapes = [(2, 8), (8,), (2,)] for i in range(3): assert out[i].asnumpy().shape == expect_shapes[i] @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sspaddmm_input_int32(): """ Feature: Sspaddmm gpu TEST. Description: 2d int32 test case for Sspaddmm Expectation: The value and shape of output are the expected values. """ context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x1_indices = Tensor(np.array([[0, 1], [0, 1]]), mstype.int32) x1_values = Tensor(np.array([1, 2]), mstype.int32) x1_shape = Tensor(np.array([3, 3]), mstype.int32) x2_indices = Tensor(np.array([[0, 1], [2, 2]]), mstype.int32) x2_values = Tensor(np.array([3, 4]), mstype.int32) x2_shape = Tensor(np.array([3, 3]), mstype.int32) x3_dense = Tensor(np.array([[1, 2, 3], [1, 3, 2], [3, 2, 1]]), mstype.int32) alpha = Tensor(np.array([1]), mstype.int32) beta = Tensor(np.array([1]), mstype.int32) net = SspaddmmNet() y_indices, y_values, y_shape = net(x1_indices, x1_values, x1_shape, x2_indices, x2_values, x2_shape, x3_dense, alpha, beta) y_indices_expect = np.array( [[0, 1, 0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 0, 1, 2]], dtype=np.int64) y_values_expect = np.array([1, 2, 9, 6, 3, 12, 8, 4], dtype=np.int32) y_shape_expect = np.array([3, 3], dtype=np.int64) assert np.allclose(y_indices.asnumpy(), y_indices_expect.astype(np.int64), 0.0001, 0.0001) assert np.allclose(y_values.asnumpy(), y_values_expect.astype(np.int32), 0.0001, 0.0001) assert np.allclose(y_shape.asnumpy(), y_shape_expect.astype(np.int64), 0.0001, 0.0001) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_sspaddmm_input_int64(): """ Feature: Sspaddmm gpu TEST. Description: 2d int64 test case for Sspaddmm Expectation: The value and shape of output are the expected values. """ context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x1_indices = Tensor(np.array([[0, 1], [0, 1]]), mstype.int32) x1_values = Tensor(np.array([7, 6]), mstype.int32) x1_shape = Tensor(np.array([3, 3]), mstype.int32) x2_indices = Tensor(np.array([[0, 1], [2, 2]]), mstype.int32) x2_values = Tensor(np.array([11, 23]), mstype.int32) x2_shape = Tensor(np.array([3, 3]), mstype.int32) x3_dense = Tensor(np.array([[1, 2, 3], [1, 3, 2], [3, 2, 1]]), mstype.int32) alpha = Tensor(np.array([2]), mstype.int32) beta = Tensor(np.array([2]), mstype.int32) net = SspaddmmNet() y_indices, y_values, y_shape = net(x1_indices, x1_values, x1_shape, x2_indices, x2_values, x2_shape, x3_dense, alpha, beta) y_indices_expect = np.array([[0, 1, 0, 0, 0, 1, 1, 1], [0, 1, 0, 1, 2, 0, 1, 2]]) y_values_expect = np.array([14, 12, 66, 44, 22, 138, 92, 46]) y_shape_expect = np.array([3, 3]) assert np.allclose(y_indices.asnumpy(), y_indices_expect.astype(np.int64), 0.0001, 0.0001) assert np.allclose(y_values.asnumpy(), y_values_expect.astype(np.int32), 0.0001, 0.0001) assert np.allclose(y_shape.asnumpy(), y_shape_expect.astype(np.int64), 0.0001, 0.0001)
null
4,828
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_tensor_slice """ import numpy as np import pytest from mindspore import Tensor from mindspore import context from mindspore import dtype as mstype from mindspore.nn import Cell from ....mindspore_test_framework.mindspore_test import mindspore_test from ....mindspore_test_framework.pipeline.forward.compile_forward \ import pipeline_for_compile_forward_ge_graph_for_case_by_case_config, \ pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception class NetWorkFancyIndex(Cell): def __init__(self, index): super(NetWorkFancyIndex, self).__init__() self.index = index def construct(self, tensor): return tensor[self.index] class TensorItemByNone(Cell): def construct(self, tensor): ret = tensor.item() return ret class TensorItemByItem(Cell): def construct(self, tensor, index): ret = tensor.item(index) return ret def test_tensor_fancy_index_integer_list(): context.set_context(mode=context.GRAPH_MODE) index = [0, 2, 1] net = NetWorkFancyIndex(index) input_np = np.arange(60).reshape(3, 4, 5) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_boolean_list(): context.set_context(mode=context.GRAPH_MODE) index = [True, True, False] net = NetWorkFancyIndex(index) input_np = np.arange(60).reshape(3, 4, 5) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_boolean_list_graph(): context.set_context(mode=context.GRAPH_MODE) index = [1, 2, True, False] net = NetWorkFancyIndex(index) input_np = np.arange(60).reshape(3, 4, 5) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], slice(1, 3, 1), ..., 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_tuple_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, (2, 1, 3), slice(1, 3, 1), ..., 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_tuple_mixed(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], (3, 2, 1), slice(1, 3, 1), ..., 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def METHOD_NAME(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], True, (3, 2, 1), slice(1, 3, 1), ..., True, 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) net(input_me) def test_tensor_fancy_index_integer_list_tuple_bool_mixed_error(): context.set_context(mode=context.GRAPH_MODE) index = (1, [2, 1, 3], True, (3, 2, 1), slice(1, 3, 1), ..., False, 4) net = NetWorkFancyIndex(index) input_np = np.arange(3*4*5*6*7*8).reshape(3, 4, 5, 6, 7, 8) input_me = Tensor(input_np, dtype=mstype.float32) with pytest.raises(IndexError): net(input_me) input_1d_np = np.ndarray([1]).astype(np.float32) input_1d_ms = Tensor(input_1d_np, mstype.float32) input_3d_np = np.random.randint(3, size=(3, 4, 5)).astype(np.int32) input_3d_ms = Tensor(input_3d_np, mstype.float32) index_np_1, index_np_2, index_np_3, index_np_4 = 0, 1.0, 30, 60 tuple_index_np_1, tuple_index_np_2, tuple_index_np_3, tuple_index_np_4, tuple_index_np_5 = \ (0,), (1, 2), (1, 2, 3), (3, 4, 4), (1, 2, 3, 4) test_cases = [ ('TensorItemByNone', {'block': TensorItemByNone(), 'desc_inputs': [input_1d_ms],}), ('1dTensorItemByInt', {'block': TensorItemByItem(), 'desc_inputs': [input_1d_ms, index_np_1],}), ('3dTensorItemByInt', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, index_np_1],}), ('3dTensorItemByInt2', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, index_np_3],}), ('1dTensorItemByTuple', {'block': TensorItemByItem(), 'desc_inputs': [input_1d_ms, tuple_index_np_1],}), ('3dTensorItemByTuple', {'block': TensorItemByItem(), 'desc_inputs': [input_3d_ms, tuple_index_np_3],}), ] test_error_cases = [ ('TensorItemByNoneForMulDimsTensor', { 'block': (TensorItemByNone(), {'exception': ValueError}), 'desc_inputs': [input_3d_ms] }), ('TensorItemByFloatError', { 'block': (TensorItemByItem(), {'exception': TypeError}), 'desc_inputs': [input_1d_ms, index_np_2] }), ('TensorItemByFloatError2', { 'block': (TensorItemByItem(), {'exception': TypeError}), 'desc_inputs': [input_3d_ms, index_np_2] }), ('TensorItemByIntOverBoundary', { 'block': (TensorItemByItem(), {'exception': IndexError}), 'desc_inputs': [input_1d_ms, index_np_3] }), ('TensorItemByIntOverBoundary2', { 'block': (TensorItemByItem(), {'exception': IndexError}), 'desc_inputs': [input_3d_ms, index_np_4] }), ('1dTensorItemBy2dTuple', { 'block': (TensorItemByItem(), {'exception': ValueError}), 'desc_inputs': [input_1d_ms, tuple_index_np_2] }), ('3dTensorItemBy2dTuple', { 'block': (TensorItemByItem(), {'exception': ValueError}), 'desc_inputs': [input_3d_ms, tuple_index_np_2] }), ('3dTensorItemBy3dTupleOutOfBoundary', { 'block': (TensorItemByItem(), {'exception': IndexError}), 'desc_inputs': [input_3d_ms, tuple_index_np_4] }), ('3dTensorItemBy4dTuple', { 'block': (TensorItemByItem(), {'exception': ValueError}), 'desc_inputs': [input_3d_ms, tuple_index_np_5] }) ] @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config) def test_exec(): context.set_context(mode=context.GRAPH_MODE) return test_cases @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) def test_check_exception(): return test_error_cases
null
4,829
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner import mindspore.nn as nn import mindspore.context as context class DTypeNet(nn.Cell): def __init__(self): super(DTypeNet, self).__init__() self.dtype = P.DType() def construct(self, x): return self.dtype(x) class DTypeDynamicNet(nn.Cell): def __init__(self): super(DTypeDynamicNet, self).__init__() self.d = inner.GpuConvertToDynamicShape() self.dtype = P.DType() def construct(self, x): x = self.d(x) return self.dtype(x) def dtype_with_testcase(mstype): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = Tensor(np.arange(34).reshape(2, 17), dtype=mstype) net = DTypeNet() assert mstype == net(x) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") assert mstype == net(x) def dtype_dynamic_with_testcase(mstype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.arange(34).reshape(2, 17), dtype=mstype) net = DTypeDynamicNet() assert mstype == net(x) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_bool(): dtype_with_testcase(ms.bool_) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int8(): dtype_with_testcase(ms.int8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_uint8(): dtype_with_testcase(ms.uint8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int16(): dtype_with_testcase(ms.int16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_uint16(): dtype_with_testcase(ms.uint16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int32(): dtype_with_testcase(ms.int32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int64(): dtype_with_testcase(ms.int64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_float16(): dtype_with_testcase(ms.float16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_float32(): dtype_with_testcase(ms.float32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_float64(): dtype_with_testcase(ms.float64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_bool(): dtype_dynamic_with_testcase(ms.bool_) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def METHOD_NAME(): dtype_dynamic_with_testcase(ms.int8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_uint8(): dtype_dynamic_with_testcase(ms.uint8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int16(): dtype_dynamic_with_testcase(ms.int16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_uint16(): dtype_dynamic_with_testcase(ms.uint16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int32(): dtype_dynamic_with_testcase(ms.int32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int64(): dtype_dynamic_with_testcase(ms.int64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_float16(): dtype_dynamic_with_testcase(ms.float16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_float32(): dtype_dynamic_with_testcase(ms.float32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_float64(): dtype_dynamic_with_testcase(ms.float64)
null
4,830
# -*- coding: utf-8 -*- """User state management via an HTTP cookie :copyright: Copyright (c) 2015 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from pykern import pkcompat from pykern import pkconfig from pykern.pkcollections import PKDict from pykern.pkdebug import pkdc, pkdexc, pkdlog, pkdp import base64 import cryptography.fernet import itertools import re import sirepo.events import sirepo.quest import sirepo.util _MAX_AGE_SECONDS = 10 * 365 * 24 * 3600 #: Identifies if the cookie has been returned at least once by the client _COOKIE_SENTINEL = "srk" #: Unique, truthy that can be asserted on decrypt _COOKIE_SENTINEL_VALUE = "z" _SERIALIZER_SEP = " " _cfg = None def init_quest(qcall): c = _Cookie(qcall) qcall.attr_set("cookie", c) if qcall.bucket_unchecked_get("in_pkcli"): c.set_sentinel() class _Cookie(sirepo.quest.Attr): def __init__(self, qcall): super().__init__() self.__incoming_serialized = "" self._from_cookie_header(qcall) def get_value(self, key): return self.__values[key] def has_key(self, key): return key in self.__values def has_sentinel(self): return _COOKIE_SENTINEL in self.__values def reset_state(self, error): """Clear all values and log `error` with values. Args: error (str): to be logged """ pkdlog("resetting cookie: error={} values={}", error, _state()) self.__values.clear() def save_to_cookie(self, resp): self.set_sentinel() s = self._serialize() if s == self.__incoming_serialized: return resp.cookie_set( key=_cfg.http_name, value=self._encrypt(s), max_age=_MAX_AGE_SECONDS, httponly=True, secure=_cfg.is_secure, samesite="Lax", ) def set_sentinel(self): self.__values[_COOKIE_SENTINEL] = _COOKIE_SENTINEL_VALUE def METHOD_NAME(self, key, value): v = str(value) assert ( not _SERIALIZER_SEP in v ), f"value={v} must not contain _SERIALIZER_SEP={_SERIALIZER_SEP}" assert ( key != _COOKIE_SENTINEL ), f"key={key} is _COOKIE_SENTINEL={_COOKIE_SENTINEL}" assert ( _COOKIE_SENTINEL in self.__values ), f"_COOKIE_SENTINEL not set self keys={sorted(self.__values.keys())} for key={key}" self.__values[key] = v def unchecked_get_value(self, key, default=None): return self.__values.get(key, default) def unchecked_remove(self, key): return self.__values.pkdel(key) def _crypto(self): if "_crypto_alg" not in self: if _cfg.private_key is None: assert pkconfig.in_dev_mode(), "must configure private_key in non-dev" _cfg.private_key = base64.urlsafe_b64encode( b"01234567890123456789012345678912" ) assert ( len(base64.urlsafe_b64decode(_cfg.private_key)) == 32 ), "private_key must be 32 characters and encoded with urlsafe_b64encode" self._crypto_alg = cryptography.fernet.Fernet(_cfg.private_key) return self._crypto_alg def _decrypt(self, value): d = self._crypto().decrypt( base64.urlsafe_b64decode(pkcompat.to_bytes(value)), ) pkdc("{}", d) return pkcompat.from_bytes(d) def _deserialize(self, value): v = value.split(_SERIALIZER_SEP) v = dict(zip(v[::2], v[1::2])) assert ( v[_COOKIE_SENTINEL] == _COOKIE_SENTINEL_VALUE ), "cookie sentinel value is not correct" return v def _encrypt(self, text): return pkcompat.from_bytes( base64.urlsafe_b64encode( self._crypto().encrypt(pkcompat.to_bytes(text)), ), ) def _from_cookie_header(self, qcall): header = qcall.sreq.header_uget("Cookie") self.__values = PKDict() if not header: return s = None err = None try: match = re.search( r"\b{}=([^;]+)".format(_cfg.http_name), header, ) if match: s = self._decrypt(match.group(1)) self.__values.update(qcall.auth.cookie_cleaner(self._deserialize(s))) self.__incoming_serialized = s return except Exception as e: if "crypto" in type(e).__module__: # cryptography module exceptions serialize to empty string # so just report the type. e = type(e) err = e pkdc("{}", pkdexc()) if err: pkdlog("Cookie decoding failed: {} value={}", err, s) def _serialize(self): return _SERIALIZER_SEP.join( itertools.chain.from_iterable( [(k, self.__values[k]) for k in sorted(self.__values.keys())], ), ) @pkconfig.parse_none def _cfg_http_name(value): assert re.search( r"^\w{1,32}$", value ), "must be 1-32 word characters; http_name={}".format(value) return value def _end_api_call(qcall, kwargs): qcall.cookie.save_to_cookie(kwargs.resp) def init_module(): global _cfg if _cfg: return _cfg = pkconfig.init( http_name=( "sirepo_" + pkconfig.cfg.channel, _cfg_http_name, "Set-Cookie name", ), private_key=(None, str, "urlsafe base64 encrypted 32-byte key"), is_secure=( not pkconfig.in_dev_mode(), pkconfig.parse_bool, "Add secure attribute to Set-Cookie", ), ) sirepo.events.register(PKDict(end_api_call=_end_api_call))
null
4,831
import torch import torch.nn as nn from avalanche.models.dynamic_modules import ( MultiTaskModule, MultiHeadClassifier, ) class MultiTaskDecorator(MultiTaskModule): """ Encapsulates an existing nn.Module to make it subclass MultiTaskModule, the user should still be able to interact with the encapsulated module as if it was the module itself. The only things that change are the following, the classifier from the given model will be replaced by a MultiHeadClassifier, and the forward() implementation will be overwritten by one that accepts task labels. The encapsulated module will then be automatically extended to fit new classes during calls to model.adaptation() """ def __init__(self, model: nn.Module, classifier_name: str): """ :param model: pytorch nn.Module that does not support multitask :param classifier_name: attribute name of the existing classification layer inside the module """ for m in model.modules(): assert not isinstance(m, MultiTaskModule) self.__dict__["_initialized"] = False super().__init__() self.model = model self.classifier_name = classifier_name old_classifier = getattr(model, classifier_name) if isinstance(old_classifier, nn.Linear): in_size = old_classifier.in_features out_size = old_classifier.out_features old_params = [torch.clone(p.data) for p in old_classifier.parameters()] # Replace old classifier by empty block setattr(self.model, classifier_name, nn.Sequential()) elif isinstance(old_classifier, nn.Sequential): in_size = old_classifier[-1].in_features out_size = old_classifier[-1].out_features old_params = [torch.clone(p.data) for p in old_classifier[-1].parameters()] del old_classifier[-1] else: raise NotImplementedError( f"Cannot handle the following type \ of classification layer {type(old_classifier)}" ) # Set new classifier and initialize to previous param values setattr(self, classifier_name, MultiHeadClassifier(in_size, out_size)) for param, param_old in zip( getattr(self, classifier_name).parameters(), old_params ): param.data = param_old self.max_class_label = max(self.max_class_label, out_size) self._initialized = True def METHOD_NAME(self, x: torch.Tensor, task_label: int): out = self.model(x) return getattr(self, self.classifier_name)( out.view(out.size(0), -1), task_labels=task_label ) def forward_all_tasks(self, x: torch.Tensor): """compute the output given the input `x` and task label. By default, it considers only tasks seen at training time. :param x: :return: all the possible outputs are returned as a dictionary with task IDs as keys and the output of the corresponding task as output. """ out = self.model(x) return getattr(self, self.classifier_name)( out.view(out.size(0), -1), task_labels=None ) def __getattr__(self, name): # Override pytorch impl from nn.Module # Its a bit particular since pytorch nn.Module does not # keep some attributes in a classical manner in self.__dict__ # rather it puts them into _parameters, _buffers and # _modules attributes. We have to add these lines to avoid recursion if name == "model": return self.__dict__["_modules"]["model"] if name == self.classifier_name: return self.__dict__["_modules"][self.classifier_name] # If its a different attribute, return the one from the model return getattr(self.model, name) def __setattr__(self, name, value): # During initialization, use pytorch routine if not self.__dict__["_initialized"] or name in self.__dict__: super().__setattr__(name, value) else: return setattr(self.model, name, value) def as_multitask(model: nn.Module, classifier_name: str) -> MultiTaskModule: """Wraps around a model to make it a multitask model. :param model: model to be converted into MultiTaskModule :param classifier_name: the name of the attribute containing the classification layer (nn.Linear). It can also be an instance of nn.Sequential containing multiple layers as long as the classification layer is the last layer. :return: the decorated model, now subclassing MultiTaskModule, and accepting task_labels as forward() method argument """ return MultiTaskDecorator(model, classifier_name) __all__ = ["as_multitask"]
null
4,832
#!/usr/bin/env python """Unit tests for Info class and associated objects (DbRef, DbRefs, etc.). """ import warnings from unittest import TestCase, main from cogent3.core.info import DbRef, DbRefs, Info, _make_list class DbRefTests(TestCase): """Tests of the DbRef object.""" def setUp(self): """Define a standard DbRef object""" self.data = dict( Accession="xyz", Db="abc", name="qwe", Description="blah", Data=list(range(20)), ) self.db = DbRef(**self.data) def test_init_minimal(self): """DbRef minimal init should fill fields as expected""" d = DbRef("abc") self.assertEqual(d.Accession, "abc") self.assertEqual(d.Db, "") self.assertEqual(d.name, "") self.assertEqual(d.Description, "") self.assertEqual(d.Data, None) # empty init not allowed self.assertRaises(TypeError, DbRef) def test_init(self): """DbRef init should insert correct data""" for attr, val in list(self.data.items()): self.assertEqual(getattr(self.db, attr), val) def METHOD_NAME(self): """DbRef str should be the same as the accession str""" self.assertEqual(str(self.db), "xyz") self.db.Accession = 12345 self.assertEqual(str(self.db), "12345") def test_int(self): """DbRef int should be the same as the accession int""" self.assertRaises(ValueError, int, self.db) self.db.Accession = "12345" self.assertEqual(int(self.db), 12345) def test_cmp(self): """DbRef cmp should first try numeric, then alphabetic, cmp.""" self.assertLess(DbRef("abc"), DbRef("xyz")) self.assertEqual(DbRef("abc"), DbRef("abc")) self.assertGreater(DbRef("123"), DbRef("14")) self.assertLess(DbRef("123"), DbRef("abc")) # check that it ignores other attributes self.assertEqual(DbRef("x", "y", "z", "a", "b"), DbRef("x")) class infoTests(TestCase): """Tests of top-level functions.""" def test_make_list(self): """_make_list should always return a list""" self.assertEqual(_make_list("abc"), ["abc"]) self.assertEqual(_make_list([]), []) self.assertEqual(_make_list(None), [None]) self.assertEqual(_make_list({"x": "y"}), [{"x": "y"}]) self.assertEqual(_make_list([1, 2, 3]), [1, 2, 3]) class DbRefsTests(TestCase): """Tests of the DbRefs class.""" def test_init_empty(self): """DbRefs empty init should work as expected""" self.assertEqual(DbRefs(), {}) def test_init_data(self): """DbRefs init with data should produce expected results""" d = DbRefs({"GenBank": "ab", "GO": (3, 44), "PDB": ["asdf", "ghjk"]}) self.assertEqual(d, {"GenBank": ["ab"], "GO": [3, 44], "PDB": ["asdf", "ghjk"]}) d.GenBank = "xyz" self.assertEqual(d["GenBank"], ["xyz"]) class InfoTests(TestCase): """Tests of the Info class.""" def test_init_empty(self): """Info empty init should work as expected""" d = Info() self.assertEqual(len(d), 1) self.assertIn("Refs", d) self.assertEqual(d.Refs, DbRefs()) self.assertTrue(isinstance(d.Refs, DbRefs)) def test_init_data(self): """Info init with data should put items in correct places""" # need to check init, setting, and resetting of attributes that belong # in the Info object and attributes that belong in Info.Refs. Also need # to check __getitem__, __setitem__, and __contains__. d = Info({"x": 3, "GO": 12345}) self.assertEqual(d.x, 3) self.assertEqual(d.GO, [12345]) self.assertEqual(d.Refs.GO, [12345]) try: del d.Refs except AttributeError: pass else: raise Exception("Failed to prevent deletion of required key Refs" "") d.GenBank = ("qaz", "wsx") self.assertEqual(d.GenBank, ["qaz", "wsx"]) self.assertIn("GenBank", d.Refs) self.assertIn("GenBank", d) d.GenBank = "xyz" self.assertEqual(d.GenBank, ["xyz"]) self.assertIs(d.GenBank, d.Refs.GenBank) d.GO = "x" self.assertEqual(d.GO, ["x"]) d.GO.append("y") self.assertEqual(d.GO, ["x", "y"]) d.ZZZ = "zzz" self.assertEqual(d.ZZZ, "zzz") self.assertNotIn("ZZZ", d.Refs) self.assertNotIn("XXX", d) self.assertEqual(d.XXX, None) def test_identity(self): """Info should get its own new Refs when created""" i = Info() j = Info() self.assertIsNot(i, j) self.assertIsNot(i.Refs, j.Refs) def test_update(self): """update should warn the user of overlapping keys""" with warnings.catch_warnings(record=True) as w: d1 = Info({"key1": "value1", "key2": "value2", "key3": "value3"}) d2 = Info({"key2": "value2", "key3": "value3", "key4": "value4"}) d1.update(d2) self.assertEqual(len(w), 1) # run the following if invoked from command-line if __name__ == "__main__": main()
null
4,833
import textwrap import pytest from conans.test.assets.genconanfile import GenConanfile from conans.test.utils.tools import TestClient, NO_SETTINGS_PACKAGE_ID class TestInvalidConfiguration: """ ConanInvalidConfiguration without a binary fall backs, result in errors """ conanfile = textwrap.dedent(""" from conan import ConanFile from conan.errors import ConanInvalidConfiguration class Conan(ConanFile): settings = "os" def validate(self): if self.info.settings.os == "Windows": raise ConanInvalidConfiguration("Package does not work in Windows!") """) linux_package_id = "9a4eb3c8701508aa9458b1a73d0633783ecc2270" invalid = "Invalid" @pytest.fixture(scope="class") def client(self): client = TestClient() client.save({"pkg/conanfile.py": self.conanfile}) client.run("create pkg --name=pkg --version=0.1 -s os=Linux") return client def test_invalid(self, client): conanfile_consumer = GenConanfile().with_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s os=Windows", assert_error=True) assert "pkg/0.1: Invalid: Package does not work in Windows!" in client.out def test_invalid_info(self, client): """ the conan info command does not raise, but it outputs info """ conanfile_consumer = GenConanfile().with_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("graph info consumer -s os=Windows") assert "binary: Invalid" in client.out def test_valid(self, client): conanfile_consumer = GenConanfile().with_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s os=Linux") client.assert_listed_binary({"pkg/0.1": (self.linux_package_id, "Cache")}) assert "pkg/0.1: Already installed!" in client.out def METHOD_NAME(self, client): conanfile_consumer = GenConanfile().with_tool_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s:h os=Windows -s:b os=Windows", assert_error=True) assert "pkg/0.1: Invalid: Package does not work in Windows!" in client.out def test_valid_build_require_two_profiles(self, client): conanfile_consumer = GenConanfile().with_tool_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s:b os=Linux -s:h os=Windows") client.assert_listed_binary({"pkg/0.1": (self.linux_package_id, "Cache")}, build=True) assert "pkg/0.1: Already installed!" in client.out class TestErrorConfiguration(TestInvalidConfiguration): """ A configuration error is unsolvable, even if a binary exists """ conanfile = textwrap.dedent(""" from conan import ConanFile from conan.errors import ConanInvalidConfiguration class Conan(ConanFile): settings = "os" def validate(self): if self.info.settings.os == "Windows": raise ConanInvalidConfiguration("Package does not work in Windows!") def package_id(self): del self.info.settings.os """) linux_package_id = NO_SETTINGS_PACKAGE_ID invalid = "ConfigurationError" class TestErrorConfigurationCompatible(TestInvalidConfiguration): """ A configuration error is unsolvable, even if a binary exists """ conanfile = textwrap.dedent(""" from conan import ConanFile from conan.errors import ConanInvalidConfiguration class Conan(ConanFile): settings = "os" def validate(self): if self.info.settings.os == "Windows": raise ConanInvalidConfiguration("Package does not work in Windows!") def compatibility(self): if self.settings.os == "Windows": return [{"settings": [("os", "Linux")]}] """) linux_package_id = "9a4eb3c8701508aa9458b1a73d0633783ecc2270" invalid = "ConfigurationError" class TestInvalidBuildPackageID: """ ConanInvalidBuildConfiguration will not block if setting is removed from package_id """ conanfile = textwrap.dedent(""" from conan import ConanFile from conan.errors import ConanInvalidConfiguration class Conan(ConanFile): settings = "os" def validate_build(self): if self.settings.os == "Windows": raise ConanInvalidConfiguration("Package does not work in Windows!") def package_id(self): del self.info.settings.os """) linux_package_id = NO_SETTINGS_PACKAGE_ID windows_package_id = NO_SETTINGS_PACKAGE_ID @pytest.fixture(scope="class") def client(self): client = TestClient() client.save({"pkg/conanfile.py": self.conanfile}) client.run("create pkg --name=pkg --version=0.1 -s os=Linux") return client def test_valid(self, client): conanfile_consumer = GenConanfile().with_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s os=Windows") client.assert_listed_binary({"pkg/0.1": (self.linux_package_id, "Cache")}) assert "pkg/0.1: Already installed!" in client.out client.run("install consumer -s os=Linux") client.assert_listed_binary({"pkg/0.1": (self.linux_package_id, "Cache")}) assert "pkg/0.1: Already installed!" in client.out def test_invalid_try_build(self, client): conanfile_consumer = GenConanfile().with_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s os=Windows --build='*'", assert_error=True) # Only when trying to build, it will try to build the Windows one client.assert_listed_binary({"pkg/0.1": (self.windows_package_id, "Invalid")}) assert "Package does not work in Windows!" in client.out def test_valid_build_require_two_profiles(self, client): conanfile_consumer = GenConanfile().with_tool_requires("pkg/0.1").with_settings("os") client.save({"consumer/conanfile.py": conanfile_consumer}) client.run("install consumer -s:b os=Linux -s:h os=Windows") client.assert_listed_binary({"pkg/0.1": (self.linux_package_id, "Cache")}, build=True) assert "pkg/0.1: Already installed!" in client.out client.run("install consumer -s:b os=Windows -s:h os=Windows") client.assert_listed_binary({"pkg/0.1": (self.linux_package_id, "Cache")}, build=True) assert "pkg/0.1: Already installed!" in client.out class TestInvalidBuildCompatible(TestInvalidBuildPackageID): """ ConanInvalidBuildConfiguration will not block if compatible_packages fallback """ conanfile = textwrap.dedent(""" from conan import ConanFile from conan.errors import ConanInvalidConfiguration class Conan(ConanFile): settings = "os" def validate_build(self): if self.settings.os == "Windows": raise ConanInvalidConfiguration("Package does not work in Windows!") def compatibility(self): if self.settings.os == "Windows": return [{"settings": [("os", "Linux")]}] """) linux_package_id = "9a4eb3c8701508aa9458b1a73d0633783ecc2270" windows_package_id = "ebec3dc6d7f6b907b3ada0c3d3cdc83613a2b715"
null
4,834
# Copyright (C) 2023 Mandiant, Inc. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at: [package root]/LICENSE.txt # Unless required by applicable law or agreed to in writing, software distributed under the License # is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and limitations under the License. from __future__ import annotations from typing import Dict, List, Tuple, Union, Iterator, Optional from pathlib import Path import dnfile from dncil.cil.opcode import OpCodes import capa.features.extractors import capa.features.extractors.dotnetfile import capa.features.extractors.dnfile.file import capa.features.extractors.dnfile.insn import capa.features.extractors.dnfile.function from capa.features.common import Feature from capa.features.address import NO_ADDRESS, Address, DNTokenAddress, DNTokenOffsetAddress from capa.features.extractors.dnfile.types import DnType, DnUnmanagedMethod from capa.features.extractors.base_extractor import BBHandle, InsnHandle, FunctionHandle, FeatureExtractor from capa.features.extractors.dnfile.helpers import ( get_dotnet_types, get_dotnet_fields, get_dotnet_managed_imports, get_dotnet_managed_methods, get_dotnet_unmanaged_imports, get_dotnet_managed_method_bodies, ) class DnFileFeatureExtractorCache: def __init__(self, pe: dnfile.dnPE): self.imports: Dict[int, Union[DnType, DnUnmanagedMethod]] = {} self.native_imports: Dict[int, Union[DnType, DnUnmanagedMethod]] = {} self.methods: Dict[int, Union[DnType, DnUnmanagedMethod]] = {} self.fields: Dict[int, Union[DnType, DnUnmanagedMethod]] = {} self.types: Dict[int, Union[DnType, DnUnmanagedMethod]] = {} for import_ in get_dotnet_managed_imports(pe): self.imports[import_.token] = import_ for native_import in get_dotnet_unmanaged_imports(pe): self.native_imports[native_import.token] = native_import for method in get_dotnet_managed_methods(pe): self.methods[method.token] = method for field in get_dotnet_fields(pe): self.fields[field.token] = field for type_ in get_dotnet_types(pe): self.types[type_.token] = type_ def get_import(self, token: int) -> Optional[Union[DnType, DnUnmanagedMethod]]: return self.imports.get(token) def get_native_import(self, token: int) -> Optional[Union[DnType, DnUnmanagedMethod]]: return self.native_imports.get(token) def get_method(self, token: int) -> Optional[Union[DnType, DnUnmanagedMethod]]: return self.methods.get(token) def get_field(self, token: int) -> Optional[Union[DnType, DnUnmanagedMethod]]: return self.fields.get(token) def METHOD_NAME(self, token: int) -> Optional[Union[DnType, DnUnmanagedMethod]]: return self.types.get(token) class DnfileFeatureExtractor(FeatureExtractor): def __init__(self, path: Path): super().__init__() self.pe: dnfile.dnPE = dnfile.dnPE(str(path)) # pre-compute .NET token lookup tables; each .NET method has access to this cache for feature extraction # most relevant at instruction scope self.token_cache: DnFileFeatureExtractorCache = DnFileFeatureExtractorCache(self.pe) # pre-compute these because we'll yield them at *every* scope. self.global_features: List[Tuple[Feature, Address]] = [] self.global_features.extend(capa.features.extractors.dotnetfile.extract_file_format()) self.global_features.extend(capa.features.extractors.dotnetfile.extract_file_os(pe=self.pe)) self.global_features.extend(capa.features.extractors.dotnetfile.extract_file_arch(pe=self.pe)) def get_base_address(self): return NO_ADDRESS def extract_global_features(self): yield from self.global_features def extract_file_features(self): yield from capa.features.extractors.dnfile.file.extract_features(self.pe) def get_functions(self) -> Iterator[FunctionHandle]: # create a method lookup table methods: Dict[Address, FunctionHandle] = {} for token, method in get_dotnet_managed_method_bodies(self.pe): fh: FunctionHandle = FunctionHandle( address=DNTokenAddress(token), inner=method, ctx={"pe": self.pe, "calls_from": set(), "calls_to": set(), "cache": self.token_cache}, ) # method tokens should be unique assert fh.address not in methods.keys() methods[fh.address] = fh # calculate unique calls to/from each method for fh in methods.values(): for insn in fh.inner.instructions: if insn.opcode not in ( OpCodes.Call, OpCodes.Callvirt, OpCodes.Jmp, OpCodes.Newobj, ): continue address: DNTokenAddress = DNTokenAddress(insn.operand.value) # record call to destination method; note: we only consider MethodDef methods for destinations dest: Optional[FunctionHandle] = methods.get(address) if dest is not None: dest.ctx["calls_to"].add(fh.address) # record call from source method; note: we record all unique calls from a MethodDef method, not just # those calls to other MethodDef methods e.g. calls to imported MemberRef methods fh.ctx["calls_from"].add(address) yield from methods.values() def extract_function_features(self, fh) -> Iterator[Tuple[Feature, Address]]: yield from capa.features.extractors.dnfile.function.extract_features(fh) def get_basic_blocks(self, f) -> Iterator[BBHandle]: # each dotnet method is considered 1 basic block yield BBHandle( address=f.address, inner=f.inner, ) def extract_basic_block_features(self, fh, bbh): # we don't support basic block features yield from [] def get_instructions(self, fh, bbh): for insn in bbh.inner.instructions: yield InsnHandle( address=DNTokenOffsetAddress(bbh.address, insn.offset - (fh.inner.offset + fh.inner.header_size)), inner=insn, ) def extract_insn_features(self, fh, bbh, ih) -> Iterator[Tuple[Feature, Address]]: yield from capa.features.extractors.dnfile.insn.extract_features(fh, bbh, ih)
null
4,835
""" The main DebugToolbar class that loads and renders the Toolbar. """ import uuid from collections import OrderedDict from functools import lru_cache from django.apps import apps from django.core.exceptions import ImproperlyConfigured from django.dispatch import Signal from django.template import TemplateSyntaxError from django.template.loader import render_to_string from django.urls import path, resolve from django.urls.exceptions import Resolver404 from django.utils.module_loading import import_string from django.utils.translation import get_language, override as lang_override from debug_toolbar import APP_NAME, settings as dt_settings class DebugToolbar: # for internal testing use only _created = Signal() def __init__(self, request, get_response): self.request = request self.config = dt_settings.get_config().copy() panels = [] for panel_class in reversed(self.get_panel_classes()): panel = panel_class(self, get_response) panels.append(panel) if panel.enabled: get_response = panel.process_request self.process_request = get_response # Use OrderedDict for the _panels attribute so that items can be efficiently # removed using FIFO order in the DebugToolbar.store() method. The .popitem() # method of Python's built-in dict only supports LIFO removal. self._panels = OrderedDict() while panels: panel = panels.pop() self._panels[panel.panel_id] = panel self.stats = {} self.server_timing_stats = {} self.store_id = None self._created.send(request, toolbar=self) # Manage panels @property def panels(self): """ Get a list of all available panels. """ return list(self._panels.values()) @property def enabled_panels(self): """ Get a list of panels enabled for the current request. """ return [panel for panel in self._panels.values() if panel.enabled] def get_panel_by_id(self, panel_id): """ Get the panel with the given id, which is the class name by default. """ return self._panels[panel_id] # Handle rendering the toolbar in HTML def render_toolbar(self): """ Renders the overall Toolbar with panels inside. """ if not self.should_render_panels(): self.store() try: context = {"toolbar": self} lang = self.config["TOOLBAR_LANGUAGE"] or get_language() with lang_override(lang): return render_to_string("debug_toolbar/base.html", context) except TemplateSyntaxError: if not apps.is_installed("django.contrib.staticfiles"): raise ImproperlyConfigured( "The debug toolbar requires the staticfiles contrib app. " "Add 'django.contrib.staticfiles' to INSTALLED_APPS and " "define STATIC_URL in your settings." ) from None else: raise def should_render_panels(self): """Determine whether the panels should be rendered during the request If False, the panels will be loaded via Ajax. """ if (render_panels := self.config["RENDER_PANELS"]) is None: # If wsgi.multiprocess isn't in the headers, then it's likely # being served by ASGI. This type of set up is most likely # incompatible with the toolbar until # https://github.com/jazzband/django-debug-toolbar/issues/1430 # is resolved. render_panels = self.request.META.get("wsgi.multiprocess", True) return render_panels # Handle storing toolbars in memory and fetching them later on _store = OrderedDict() def store(self): # Store already exists. if self.store_id: return self.store_id = uuid.uuid4().hex self._store[self.store_id] = self for _ in range(self.config["RESULTS_CACHE_SIZE"], len(self._store)): self._store.popitem(last=False) @classmethod def METHOD_NAME(cls, store_id): return cls._store.get(store_id) # Manually implement class-level caching of panel classes and url patterns # because it's more obvious than going through an abstraction. _panel_classes = None @classmethod def get_panel_classes(cls): if cls._panel_classes is None: # Load panels in a temporary variable for thread safety. panel_classes = [ import_string(panel_path) for panel_path in dt_settings.get_panels() ] cls._panel_classes = panel_classes return cls._panel_classes _urlpatterns = None @classmethod def get_urls(cls): if cls._urlpatterns is None: from . import views # Load URLs in a temporary variable for thread safety. # Global URLs urlpatterns = [ path("render_panel/", views.render_panel, name="render_panel"), ] # Per-panel URLs for panel_class in cls.get_panel_classes(): urlpatterns += panel_class.get_urls() cls._urlpatterns = urlpatterns return cls._urlpatterns @classmethod def is_toolbar_request(cls, request): """ Determine if the request is for a DebugToolbar view. """ # The primary caller of this function is in the middleware which may # not have resolver_match set. try: resolver_match = request.resolver_match or resolve( request.path, getattr(request, "urlconf", None) ) except Resolver404: return False return resolver_match.namespaces and resolver_match.namespaces[-1] == APP_NAME @staticmethod @lru_cache(maxsize=None) def get_observe_request(): # If OBSERVE_REQUEST_CALLBACK is a string, which is the recommended # setup, resolve it to the corresponding callable. func_or_path = dt_settings.get_config()["OBSERVE_REQUEST_CALLBACK"] if isinstance(func_or_path, str): return import_string(func_or_path) else: return func_or_path def observe_request(request): """ Determine whether to update the toolbar from a client side request. """ return not DebugToolbar.is_toolbar_request(request)
null
4,836
from sympy.core import symbols, S, Pow, Function from sympy.functions import exp from sympy.testing.pytest import raises from sympy.tensor.indexed import Idx, IndexedBase from sympy.tensor.index_methods import IndexConformanceException from sympy.tensor.index_methods import (get_contraction_structure, get_indices) def test_trivial_indices(): x, y = symbols('x y') assert get_indices(x) == (set(), {}) assert get_indices(x*y) == (set(), {}) assert get_indices(x + y) == (set(), {}) assert get_indices(x**y) == (set(), {}) def test_get_indices_Indexed(): x = IndexedBase('x') i, j = Idx('i'), Idx('j') assert get_indices(x[i, j]) == ({i, j}, {}) assert get_indices(x[j, i]) == ({j, i}, {}) def test_get_indices_Idx(): f = Function('f') i, j = Idx('i'), Idx('j') assert get_indices(f(i)*j) == ({i, j}, {}) assert get_indices(f(j, i)) == ({j, i}, {}) assert get_indices(f(i)*i) == (set(), {}) def test_get_indices_mul(): x = IndexedBase('x') y = IndexedBase('y') i, j = Idx('i'), Idx('j') assert get_indices(x[j]*y[i]) == ({i, j}, {}) assert get_indices(x[i]*y[j]) == ({i, j}, {}) def METHOD_NAME(): x = IndexedBase('x') y = IndexedBase('y') i, j = Idx('i'), Idx('j') raises(IndexConformanceException, lambda: get_indices(x[i] + y[j])) def test_scalar_broadcast(): x = IndexedBase('x') y = IndexedBase('y') i, j = Idx('i'), Idx('j') assert get_indices(x[i] + y[i, i]) == ({i}, {}) assert get_indices(x[i] + y[j, j]) == ({i}, {}) def test_get_indices_add(): x = IndexedBase('x') y = IndexedBase('y') A = IndexedBase('A') i, j, k = Idx('i'), Idx('j'), Idx('k') assert get_indices(x[i] + 2*y[i]) == ({i}, {}) assert get_indices(y[i] + 2*A[i, j]*x[j]) == ({i}, {}) assert get_indices(y[i] + 2*(x[i] + A[i, j]*x[j])) == ({i}, {}) assert get_indices(y[i] + x[i]*(A[j, j] + 1)) == ({i}, {}) assert get_indices( y[i] + x[i]*x[j]*(y[j] + A[j, k]*x[k])) == ({i}, {}) def test_get_indices_Pow(): x = IndexedBase('x') y = IndexedBase('y') A = IndexedBase('A') i, j, k = Idx('i'), Idx('j'), Idx('k') assert get_indices(Pow(x[i], y[j])) == ({i, j}, {}) assert get_indices(Pow(x[i, k], y[j, k])) == ({i, j, k}, {}) assert get_indices(Pow(A[i, k], y[k] + A[k, j]*x[j])) == ({i, k}, {}) assert get_indices(Pow(2, x[i])) == get_indices(exp(x[i])) # test of a design decision, this may change: assert get_indices(Pow(x[i], 2)) == ({i}, {}) def test_get_contraction_structure_basic(): x = IndexedBase('x') y = IndexedBase('y') i, j = Idx('i'), Idx('j') assert get_contraction_structure(x[i]*y[j]) == {None: {x[i]*y[j]}} assert get_contraction_structure(x[i] + y[j]) == {None: {x[i], y[j]}} assert get_contraction_structure(x[i]*y[i]) == {(i,): {x[i]*y[i]}} assert get_contraction_structure( 1 + x[i]*y[i]) == {None: {S.One}, (i,): {x[i]*y[i]}} assert get_contraction_structure(x[i]**y[i]) == {None: {x[i]**y[i]}} def test_get_contraction_structure_complex(): x = IndexedBase('x') y = IndexedBase('y') A = IndexedBase('A') i, j, k = Idx('i'), Idx('j'), Idx('k') expr1 = y[i] + A[i, j]*x[j] d1 = {None: {y[i]}, (j,): {A[i, j]*x[j]}} assert get_contraction_structure(expr1) == d1 expr2 = expr1*A[k, i] + x[k] d2 = {None: {x[k]}, (i,): {expr1*A[k, i]}, expr1*A[k, i]: [d1]} assert get_contraction_structure(expr2) == d2 def test_contraction_structure_simple_Pow(): x = IndexedBase('x') y = IndexedBase('y') i, j, k = Idx('i'), Idx('j'), Idx('k') ii_jj = x[i, i]**y[j, j] assert get_contraction_structure(ii_jj) == { None: {ii_jj}, ii_jj: [ {(i,): {x[i, i]}}, {(j,): {y[j, j]}} ] } ii_jk = x[i, i]**y[j, k] assert get_contraction_structure(ii_jk) == { None: {x[i, i]**y[j, k]}, x[i, i]**y[j, k]: [ {(i,): {x[i, i]}} ] } def test_contraction_structure_Mul_and_Pow(): x = IndexedBase('x') y = IndexedBase('y') i, j, k = Idx('i'), Idx('j'), Idx('k') i_ji = x[i]**(y[j]*x[i]) assert get_contraction_structure(i_ji) == {None: {i_ji}} ij_i = (x[i]*y[j])**(y[i]) assert get_contraction_structure(ij_i) == {None: {ij_i}} j_ij_i = x[j]*(x[i]*y[j])**(y[i]) assert get_contraction_structure(j_ij_i) == {(j,): {j_ij_i}} j_i_ji = x[j]*x[i]**(y[j]*x[i]) assert get_contraction_structure(j_i_ji) == {(j,): {j_i_ji}} ij_exp_kki = x[i]*y[j]*exp(y[i]*y[k, k]) result = get_contraction_structure(ij_exp_kki) expected = { (i,): {ij_exp_kki}, ij_exp_kki: [{ None: {exp(y[i]*y[k, k])}, exp(y[i]*y[k, k]): [{ None: {y[i]*y[k, k]}, y[i]*y[k, k]: [{(k,): {y[k, k]}}] }]} ] } assert result == expected def test_contraction_structure_Add_in_Pow(): x = IndexedBase('x') y = IndexedBase('y') i, j, k = Idx('i'), Idx('j'), Idx('k') s_ii_jj_s = (1 + x[i, i])**(1 + y[j, j]) expected = { None: {s_ii_jj_s}, s_ii_jj_s: [ {None: {S.One}, (i,): {x[i, i]}}, {None: {S.One}, (j,): {y[j, j]}} ] } result = get_contraction_structure(s_ii_jj_s) assert result == expected s_ii_jk_s = (1 + x[i, i]) ** (1 + y[j, k]) expected_2 = { None: {(x[i, i] + 1)**(y[j, k] + 1)}, s_ii_jk_s: [ {None: {S.One}, (i,): {x[i, i]}} ] } result_2 = get_contraction_structure(s_ii_jk_s) assert result_2 == expected_2 def test_contraction_structure_Pow_in_Pow(): x = IndexedBase('x') y = IndexedBase('y') z = IndexedBase('z') i, j, k = Idx('i'), Idx('j'), Idx('k') ii_jj_kk = x[i, i]**y[j, j]**z[k, k] expected = { None: {ii_jj_kk}, ii_jj_kk: [ {(i,): {x[i, i]}}, { None: {y[j, j]**z[k, k]}, y[j, j]**z[k, k]: [ {(j,): {y[j, j]}}, {(k,): {z[k, k]}} ] } ] } assert get_contraction_structure(ii_jj_kk) == expected def test_ufunc_support(): f = Function('f') g = Function('g') x = IndexedBase('x') y = IndexedBase('y') i, j = Idx('i'), Idx('j') a = symbols('a') assert get_indices(f(x[i])) == ({i}, {}) assert get_indices(f(x[i], y[j])) == ({i, j}, {}) assert get_indices(f(y[i])*g(x[i])) == (set(), {}) assert get_indices(f(a, x[i])) == ({i}, {}) assert get_indices(f(a, y[i], x[j])*g(x[i])) == ({j}, {}) assert get_indices(g(f(x[i]))) == ({i}, {}) assert get_contraction_structure(f(x[i])) == {None: {f(x[i])}} assert get_contraction_structure( f(y[i])*g(x[i])) == {(i,): {f(y[i])*g(x[i])}} assert get_contraction_structure( f(y[i])*g(f(x[i]))) == {(i,): {f(y[i])*g(f(x[i]))}} assert get_contraction_structure( f(x[j], y[i])*g(x[i])) == {(i,): {f(x[j], y[i])*g(x[i])}}
null
4,837
#!/usr/bin/env python3 # SPDX-License-Identifier: LGPL-2.1-or-later # -*- mode: python-mode -*- # # This file is part of systemd. # # systemd is free software; you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 2.1 of the License, or # (at your option) any later version. # # systemd is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with systemd; If not, see <https://www.gnu.org/licenses/>. # pylint: disable=import-outside-toplevel,consider-using-with,disable=redefined-builtin import argparse import os import runpy import shlex from pathlib import Path from typing import Optional __version__ = '{{PROJECT_VERSION}} ({{GIT_VERSION}})' try: VERBOSE = int(os.environ['KERNEL_INSTALL_VERBOSE']) > 0 except (KeyError, ValueError): VERBOSE = False # Override location of ukify and the boot stub for testing and debugging. UKIFY = os.getenv('KERNEL_INSTALL_UKIFY', 'ukify') BOOT_STUB = os.getenv('KERNEL_INSTALL_BOOT_STUB') def shell_join(cmd): # TODO: drop in favour of shlex.join once shlex.join supports pathlib.Path. return ' '.join(shlex.quote(str(x)) for x in cmd) def log(*args, **kwargs): if VERBOSE: print(*args, **kwargs) def path_is_readable(p: Path, dir=False) -> None: """Verify access to a file or directory.""" try: p.open().close() except IsADirectoryError: if dir: return raise def mandatory_variable(name): try: return os.environ[name] except KeyError as e: raise KeyError(f'${name} must be set in the environment') from e def parse_args(args=None): p = argparse.ArgumentParser( description='kernel-install plugin to build a Unified Kernel Image', allow_abbrev=False, usage='60-ukify.install COMMAND KERNEL_VERSION ENTRY_DIR KERNEL_IMAGE INITRD…', ) # Suppress printing of usage synopsis on errors p.error = lambda message: p.exit(2, f'{p.prog}: error: {message}\n') p.add_argument('command', metavar='COMMAND', help="The action to perform. Only 'add' is supported.") p.add_argument('kernel_version', metavar='KERNEL_VERSION', help='Kernel version string') p.add_argument('entry_dir', metavar='ENTRY_DIR', type=Path, nargs='?', help='Type#1 entry directory (ignored)') p.add_argument('kernel_image', metavar='KERNEL_IMAGE', type=Path, nargs='?', help='Kernel binary') p.add_argument('initrd', metavar='INITRD…', type=Path, nargs='*', help='Initrd files') p.add_argument('--version', action='version', version=f'systemd {__version__}') opts = p.parse_args(args) if opts.command == 'add': opts.staging_area = Path(mandatory_variable('KERNEL_INSTALL_STAGING_AREA')) path_is_readable(opts.staging_area, dir=True) opts.entry_token = mandatory_variable('KERNEL_INSTALL_ENTRY_TOKEN') opts.machine_id = mandatory_variable('KERNEL_INSTALL_MACHINE_ID') return opts def we_are_wanted() -> bool: KERNEL_INSTALL_LAYOUT = os.getenv('KERNEL_INSTALL_LAYOUT') if KERNEL_INSTALL_LAYOUT != 'uki': log(f'{KERNEL_INSTALL_LAYOUT=}, quitting.') return False KERNEL_INSTALL_UKI_GENERATOR = os.getenv('KERNEL_INSTALL_UKI_GENERATOR') or 'ukify' if KERNEL_INSTALL_UKI_GENERATOR != 'ukify': log(f'{KERNEL_INSTALL_UKI_GENERATOR=}, quitting.') return False log('KERNEL_INSTALL_LAYOUT and KERNEL_INSTALL_UKI_GENERATOR are good') return True def config_file_location() -> Optional[Path]: if root := os.getenv('KERNEL_INSTALL_CONF_ROOT'): p = Path(root) / 'uki.conf' else: p = Path('/etc/kernel/uki.conf') if p.exists(): return p return None def kernel_cmdline_base() -> list[str]: if root := os.getenv('KERNEL_INSTALL_CONF_ROOT'): return Path(root).joinpath('cmdline').read_text().split() for cmdline in ('/etc/kernel/cmdline', '/usr/lib/kernel/cmdline'): try: return Path(cmdline).read_text().split() except FileNotFoundError: continue options = Path('/proc/cmdline').read_text().split() return [opt for opt in options if not opt.startswith(('BOOT_IMAGE=', 'initrd='))] def kernel_cmdline(opts) -> str: options = kernel_cmdline_base() # If the boot entries are named after the machine ID, then suffix the kernel # command line with the machine ID we use, so that the machine ID remains # stable, even during factory reset, in the initrd (where the system's machine # ID is not directly accessible yet), and if the root file system is volatile. if (opts.entry_token == opts.machine_id and not any(opt.startswith('systemd.machine_id=') for opt in options)): options += [f'systemd.machine_id={opts.machine_id}'] # TODO: we unconditionally set the cmdline here, ignoring the setting in # the config file. Should we not do that? # Prepend a space so that '@' does not get misinterpreted return ' ' + ' '.join(options) def METHOD_NAME(opts) -> list[Path]: microcode = sorted(opts.staging_area.glob('microcode/*')) initrd = sorted(opts.staging_area.glob('initrd*')) # Order taken from 90-loaderentry.install return [*microcode, *opts.initrd, *initrd] def call_ukify(opts): # Punish me harder. # We want this: # ukify = importlib.machinery.SourceFileLoader('ukify', UKIFY).load_module() # but it throws a DeprecationWarning. # https://stackoverflow.com/questions/67631/how-can-i-import-a-module-dynamically-given-the-full-path # https://github.com/python/cpython/issues/65635 # offer "explanations", but to actually load a python file without a .py extension, # the "solution" is 4+ incomprehensible lines. # The solution with runpy gives a dictionary, which isn't great, but will do. ukify = runpy.run_path(UKIFY, run_name='ukify') # Create "empty" namespace. We want to override just a few settings, so it # doesn't make sense to configure everything. We pretend to parse an empty # argument set to prepopulate the namespace with the defaults. opts2 = ukify['create_parser']().parse_args(['build']) opts2.config = config_file_location() opts2.uname = opts.kernel_version opts2.linux = opts.kernel_image opts2.initrd = METHOD_NAME(opts) # Note that 'uki.efi' is the name required by 90-uki-copy.install. opts2.output = opts.staging_area / 'uki.efi' opts2.cmdline = kernel_cmdline(opts) if BOOT_STUB: opts2.stub = BOOT_STUB # opts2.summary = True ukify['apply_config'](opts2) ukify['finalize_options'](opts2) ukify['check_inputs'](opts2) ukify['make_uki'](opts2) log(f'{opts2.output} has been created') def main(): opts = parse_args() if opts.command != 'add': return if not we_are_wanted(): return call_ukify(opts) if __name__ == '__main__': main()
null
4,838
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Find specific type ast node in specific scope.""" from typing import Type, Any import ast class AstFinder(ast.NodeVisitor): """ Find all specific type ast node in specific scope. Args: node (ast.AST): An instance of ast node as search scope. """ def __init__(self, node: ast.AST): self._scope: ast.AST = node self._targets: tuple = () self._results: [ast.AST] = [] def generic_visit(self, node): """ An override method, iterating over all nodes and save target ast nodes. Args: node (ast.AST): An instance of ast node which is visited currently. """ if isinstance(node, self._targets): self._results.append(node) super(AstFinder, self).generic_visit(node) def find_all(self, ast_types) -> [ast.AST]: """ Find all matched ast node. Args: ast_types (Union[tuple(Type), Type]): A tuple of Type or a Type indicates target ast node type. Returns: A list of instance of ast.AST as matched result. Raises: ValueError: If input `ast_types` is not a type nor a tuple. """ if isinstance(ast_types, Type): self._targets: tuple = (ast_types,) else: if not isinstance(ast_types, tuple): raise ValueError("Input ast_types should be a tuple or a type") self._targets: tuple = ast_types self._results.clear() self.visit(self._scope) return self._results class StrChecker(ast.NodeVisitor): """ Check if specific String exists in specific scope. Args: node (ast.AST): An instance of ast node as check scope. """ def __init__(self, node: ast.AST): self._context = node self._pattern = "" self._hit = False def visit_Attribute(self, node: ast.Attribute) -> Any: """Visit a node of type ast.Attribute.""" if isinstance(node.value, ast.Name) and node.value.id == self._pattern: self._hit = True return super(StrChecker, self).generic_visit(node) def METHOD_NAME(self, node: ast.Name) -> Any: """Visit a node of type ast.Name.""" if node.id == self._pattern: self._hit = True return super(StrChecker, self).generic_visit(node) def generic_visit(self, node: ast.AST) -> Any: for _, value in ast.iter_fields(node): if self._hit: break if isinstance(value, (list, tuple)): for item in value: if isinstance(item, ast.AST): self.visit(item) if self._hit: break elif isinstance(value, dict): for item in value.values(): if isinstance(item, ast.AST): self.visit(item) if self._hit: break elif isinstance(value, ast.AST): self.visit(value) def check(self, pattern: str) -> bool: """ Check if `pattern` exists in `_context`. Args: pattern (str): A string indicates target pattern. Returns: A bool indicates if `pattern` exists in `_context`. """ self._pattern = pattern self._hit = False self.generic_visit(self._context) return self._hit class FindConstValueInInit(ast.NodeVisitor): """ Check if specific String exists in specific scope. Args: node (ast.AST): An instance of ast node as check scope. """ def __init__(self, node: ast.AST): self._context = node self._pattern = "" self._hit = False def visit_Constant(self, node: ast.Constant): if node.value == self._pattern: self._hit = True return node def check(self, pattern: str) -> bool: """ Check if `pattern` exists in `_context`. Args: pattern (str): A string indicates target pattern. Returns: A bool indicates if `pattern` exists in `_context`. """ self._pattern = pattern self._hit = False self.generic_visit(self._context) return self._hit class CheckPropertyIsUsed(ast.NodeVisitor): """ Check whether a property is used. Args: node (ast.AST): An instance of ast node. """ def __init__(self, node: ast.AST): self._context = node self._value = "" self._attr = "" self._hit = False def visit_Attribute(self, node: ast.Attribute) -> Any: # pylint: disable=invalid-name """Visit a node of type ast.Attribute.""" if isinstance(node.value, ast.Name) and node.value.id == self._value and node.attr == self._attr: self._hit = True return super(CheckPropertyIsUsed, self).generic_visit(node) def generic_visit(self, node: ast.AST) -> Any: """ An override method, iterating over all nodes and save target ast nodes. """ if self._hit: return super(CheckPropertyIsUsed, self).generic_visit(node) def check(self, value, attr) -> bool: """ Check whether `value` and `attr` exists. """ self._value = value self._attr = attr self._hit = False self.generic_visit(self._context) return self._hit class GetPropertyOfObj(ast.NodeVisitor): """ Check whether a property is used. Args: node (ast.AST): An instance of ast node. """ def __init__(self, node: ast.AST): self._context = node self._property = set() def visit_Assign(self, node: ast.Assign) -> Any: # pylint: disable=invalid-name """Visit a node of type ast.Attribute.""" target = node.targets[0] if isinstance(target, ast.Attribute) and isinstance(target.value, ast.Name) and target.value.id == "self": self._property.add(target.attr) return super(GetPropertyOfObj, self).generic_visit(node) def get(self): """ Check whether `value` and `attr` exists. """ self._property = set() self.generic_visit(self._context) return self._property
null
4,839
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore as ms from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops.operations import _inner_ops as inner import mindspore.nn as nn import mindspore.context as context class DTypeNet(nn.Cell): def __init__(self): super(DTypeNet, self).__init__() self.dtype = P.DType() def construct(self, x): return self.dtype(x) class DTypeDynamicNet(nn.Cell): def __init__(self): super(DTypeDynamicNet, self).__init__() self.d = inner.GpuConvertToDynamicShape() self.dtype = P.DType() def construct(self, x): x = self.d(x) return self.dtype(x) def dtype_with_testcase(mstype): context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") x = Tensor(np.arange(34).reshape(2, 17), dtype=mstype) net = DTypeNet() assert mstype == net(x) context.set_context(mode=context.GRAPH_MODE, device_target="GPU") assert mstype == net(x) def dtype_dynamic_with_testcase(mstype): context.set_context(mode=context.GRAPH_MODE, device_target="GPU") x = Tensor(np.arange(34).reshape(2, 17), dtype=mstype) net = DTypeDynamicNet() assert mstype == net(x) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_bool(): dtype_with_testcase(ms.bool_) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def METHOD_NAME(): dtype_with_testcase(ms.int8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_uint8(): dtype_with_testcase(ms.uint8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int16(): dtype_with_testcase(ms.int16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_uint16(): dtype_with_testcase(ms.uint16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int32(): dtype_with_testcase(ms.int32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_int64(): dtype_with_testcase(ms.int64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_float16(): dtype_with_testcase(ms.float16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_float32(): dtype_with_testcase(ms.float32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dtype_float64(): dtype_with_testcase(ms.float64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_bool(): dtype_dynamic_with_testcase(ms.bool_) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int8(): dtype_dynamic_with_testcase(ms.int8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_uint8(): dtype_dynamic_with_testcase(ms.uint8) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int16(): dtype_dynamic_with_testcase(ms.int16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_uint16(): dtype_dynamic_with_testcase(ms.uint16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int32(): dtype_dynamic_with_testcase(ms.int32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_int64(): dtype_dynamic_with_testcase(ms.int64) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_float16(): dtype_dynamic_with_testcase(ms.float16) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_float32(): dtype_dynamic_with_testcase(ms.float32) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_dtype_float64(): dtype_dynamic_with_testcase(ms.float64)
null
4,840
# The MIT License (MIT) # # Copyright (c) 2019 Looker Data Sciences, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """Base model for all generated models """ import collections import datetime import enum import functools import keyword from typing import Any, Iterable, Optional, Sequence, TypeVar, cast import cattr from looker_sdk.rtl import hooks try: from typing import ForwardRef # type: ignore except ImportError: from typing import _ForwardRef as ForwardRef # type: ignore EXPLICIT_NULL = cast(Any, "EXPLICIT_NULL") # type:ignore class Model: """Base model for all generated models.""" def _get_converter(self): if not hasattr(self, "_converter"): converter = cattr.Converter() converter.register_unstructure_hook( datetime.datetime, hooks.datetime_unstructure_hook ) uh = functools.partial(hooks.unstructure_hook, converter) converter.register_unstructure_hook(Model, uh) # type: ignore self._converter = converter return self._converter def _key_to_attr(self, key): """Appends the trailing _ to python reserved words.""" if key[-1] == "_": raise KeyError(key) if key in keyword.kwlist: key = f"{key}_" return key def __getitem__(self, key): key = self._key_to_attr(key) try: ret = getattr(self, key) except AttributeError: raise KeyError(key) if isinstance(ret, enum.Enum): ret = ret.value return ret def __setitem__(self, key, value): key = self._key_to_attr(key) if not hasattr(self, key): raise AttributeError( f"'{self.__class__.__name__}' object has no attribute '{key}'" ) annotation = self.__annotations__[key] if isinstance(annotation, ForwardRef): actual_type = eval( annotation.__forward_arg__, self.__global_context, locals() ) if isinstance(actual_type, enum.EnumMeta): # untyped because mypy really doesn't like this enum internals stuff def err(val): valid = [] for v in actual_type.__members__.values(): if v.value != "invalid_api_enum_value": valid.METHOD_NAME(v.value) return ( f"Invalid value '{val}' for " # type: ignore f"'{self.__class__.__name__}.{key}'. Valid values are " f"{valid}" # type: ignore ) if isinstance(value, actual_type): raise ValueError(err(value)) enum_member = actual_type(value) if enum_member.value == "invalid_api_enum_value": raise ValueError(err(value)) value = enum_member elif issubclass(actual_type, Model): value = self._get_converter().structure(value, actual_type) return setattr(self, key, value) def __delitem__(self, key): self[key] # validates key setattr(self, self._key_to_attr(key), None) def __iter__(self): return iter(self._get_converter().unstructure(self)) def __len__(self): return len(self._get_converter().unstructure(self)) def __contains__(self, key): return key in self._get_converter().unstructure(self) def keys(self): return self._get_converter().unstructure(self).keys() def items(self): return self._get_converter().unstructure(self).items() def values(self): return self._get_converter().unstructure(self).values() def get(self, key, default=None): try: return self[key] except KeyError: return default def pop(self, key, default=None): ret = self.get(key, default) if key in self: del self[key] return ret def popitem(self): raise NotImplementedError() def clear(self): raise NotImplementedError() def update(self, iterable=None, **kwargs): if iterable: has_keys = getattr(iterable, "keys", None) if callable(has_keys): for k in iterable: self[k] = iterable[k] else: for k, v in iterable: self[k] = v for k in kwargs: self[k] = kwargs[k] def setdefault(self, key, default=None): if key not in self: self[key] = default return self[key] def copy(self): raise NotImplementedError() def safe_enum__new__(cls, value): """Handle out-of-spec enum values returned by API. This is achieved by overriding the __new__ method to return `invalid_api_enum_value` (defined on each subclass) when an unexpected value for the enum is returned by the API. """ if not isinstance(value, (str, int, bool)): return super().__new__(cls, value) else: vals = {v.value: v for v in cls.__members__.values()} return vals.get(value, cls.invalid_api_enum_value) T = TypeVar("T") class DelimSequence(collections.UserList, Sequence[T]): def __init__( self, data: Optional[Sequence[T]] = None, prefix: str = "", suffix: str = "", separator: str = ",", ): self.prefix = prefix self.suffix = suffix self.separator = separator super().__init__(data) def METHOD_NAME(self, elem: T): super().METHOD_NAME(elem) def extend(self, iterable: Iterable[T]): super().extend(iterable) def insert(self, i: int, elem: T): super().insert(i, elem) def remove(self, elem: T): super().remove(elem) def index(self, x: T, *args): super().index(x, *args) # type: ignore def count(self, elem: T): super().count(elem) def __str__(self): return ( f"{self.prefix}" f"{self.separator.join(str(d) for d in self.data)}" f"{self.suffix}" )
null
4,841
""" Edge class for Jaseci Each edge has an id, name, timestamp, the from node at the element of the edge and the to node it is pointing to. """ from jaseci.prim.element import Element from jaseci.prim.obj_mixins import Anchored from jaseci.utils.utils import logger import uuid import sys class Edge(Element, Anchored): """Edge class for Jaseci""" def __init__(self, **kwargs): self.from_node_id = None self.to_node_id = None self.bidirected: bool = False Anchored.__init__(self) Element.__init__(self, **kwargs) def from_node(self): """Returns node edge is pointing from""" ret = ( self._h.get_obj(self._m_id, self.from_node_id) if self.from_node_id else None ) if not ret: logger.critical(str(f"{self} disconnected from source node")) return None else: return ret def METHOD_NAME(self): """Returns node edge is pointing to""" if not self.to_node_id: return None ret = self._h.get_obj(self._m_id, self.to_node_id) if self.to_node_id else None if not ret: logger.critical(str(f"{self} disconnected to target node")) return None else: return ret def nodes(self): """Returns both nodes connected to edge in a list""" return [self.METHOD_NAME(), self.from_node()] def opposing_node(self, node_obj): """Returns opposite node edge is pointing from node_obj""" node_set = [self.to_node_id, self.from_node_id] try: node_set.remove(node_obj.jid) return self._h.get_obj(self._m_id, node_set[0]) except ValueError: logger.critical(str(f"{self} disconnected to node {node_obj}")) return None def connect(self, source, target, bi_dir=False): """ Connects both ends of the edge """ self.from_node_id = source.jid self.to_node_id = target.jid source.smart_add_edge(self) target.smart_add_edge(self) self.set_bidirected(bi_dir) self.save() return True def set_bidirected(self, bidirected: bool): """Sets/unsets edge to be bidirected""" self.bidirected = bidirected self.save() def is_bidirected(self): """Check if edge is bidirected""" return self.bidirected def connects(self, source=None, target=None, ignore_direction=False): """Test if a node or nodes are connected by edge""" if not source and not target: return False if self.bidirected or ignore_direction: if source and source.jid not in [self.from_node_id, self.to_node_id]: return False if target and target.jid not in [self.from_node_id, self.to_node_id]: return False else: if source and source.jid != self.from_node_id: return False if target and target.jid != self.to_node_id: return False return True def is_fast(self): return sys.getsizeof(self.context) < 2000 def save(self): """ Write self through hook to persistent storage """ if self.is_fast(): self._persist = False if self.from_node_id: self.from_node().save() if self.to_node_id: self.METHOD_NAME().save() super().save() def destroy(self): """ Destroys self from memory and persistent storage """ base = self.from_node() target = self.METHOD_NAME() base.smart_remove_edge(self) if base else None target.smart_remove_edge(self) if target else None super().destroy() def dot_str(self, node_map=None, edge_map=None, detailed=False): """ DOT representation from_node -> to_node [context_key=contect_value] """ def handle_str(str): return str[:32].replace('"', '\\"') from_name = ( uuid.UUID(self.from_node().jid).hex if node_map is None else node_map.index(self.from_node().jid) ) to_name = ( uuid.UUID(self.METHOD_NAME().jid).hex if node_map is None else node_map.index(self.METHOD_NAME().jid) ) dstr = f'"n{from_name}" -> "n{to_name}" [ ' if detailed: dstr += f'id="{uuid.UUID(self.jid).hex}", ' label = "" if edge_map: label = f"e{edge_map.index(self.jid)}" if self.name != "generic": label += f":{self.name}" dstr += f'label="{label}"' if self.bidirected: dstr += ', dir="both"' edge_dict = self.context for i in self.private_values(): edge_dict.pop(i) if edge_dict and detailed: for k, v in edge_dict.items(): if not isinstance(v, str) or v == "": continue dstr += f', {k}="{handle_str(v)}"' dstr += " ]" return dstr + "\n"
null
4,842
import os import pytest import pytorch_pfn_extras as ppe import torch _profiler_available = os.name != "nt" @pytest.mark.skipif(not _profiler_available, reason="profiler is not available") @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_record(device): if not torch.cuda.is_available() and device == "cuda": pytest.skip() model = torch.nn.Linear(30, 40) model.to(device) x = torch.arange(30, dtype=torch.float32).to(device) with torch.profiler.profile() as prof: with ppe.profiler.record("my_tag_1"): model(x) keys = [event.key for event in prof.key_averages()] assert "my_tag_1" in keys assert "aten::linear" in keys @pytest.mark.skipif(not _profiler_available, reason="profiler is not available") @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_record_without_tag(device): if not torch.cuda.is_available() and device == "cuda": pytest.skip() model = torch.nn.Linear(30, 40) model.to(device) x = torch.arange(30, dtype=torch.float32).to(device) with torch.profiler.profile() as prof: with ppe.profiler.record(None): model(x) keys = [event.key for event in prof.key_averages()] assert "aten::linear" in keys assert any(k.endswith("test_record_without_tag") for k in keys) @pytest.mark.skipif(not _profiler_available, reason="profiler is not available") @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_record_function(device): if not torch.cuda.is_available() and device == "cuda": pytest.skip() model = torch.nn.Linear(30, 40) model.to(device) @ppe.profiler.record_function("my_tag_2") def my_run(x): model(x) with torch.profiler.profile() as prof: x = torch.arange(30, dtype=torch.float32).to(device) my_run(x) keys = [event.key for event in prof.key_averages()] assert "aten::linear" in keys assert "my_tag_2" in keys @pytest.mark.skipif(not _profiler_available, reason="profiler is not available") @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_record_function_without_tag(device): if not torch.cuda.is_available() and device == "cuda": pytest.skip() model = torch.nn.Linear(30, 40) model.to(device) x = torch.arange(30, dtype=torch.float32).to(device) @ppe.profiler.record_function(None) def my_run(x): model(x) with torch.profiler.profile() as prof: my_run(x) keys = [event.key for event in prof.key_averages()] assert "aten::linear" in keys assert "my_run" in keys @pytest.mark.skipif(not _profiler_available, reason="profiler is not available") @pytest.mark.parametrize("device", ["cpu", "cuda"]) def test_record_iterable(device): if not torch.cuda.is_available() and device == "cuda": pytest.skip() model = torch.nn.Linear(30, 40) model.to(device) x = torch.arange(30, dtype=torch.float32).to(device) iters = [x, x, x] with torch.profiler.profile() as prof: for x in ppe.profiler.record_iterable("my_tag_3", iters): model(x) keys = [event.key for event in prof.key_averages()] assert "aten::linear" in keys assert "my_tag_3-0" in keys assert "my_tag_3-1" in keys assert "my_tag_3-2" in keys @pytest.mark.skipif(not _profiler_available, reason="profiler is not available") @pytest.mark.parametrize("device", ["cpu", "cuda"]) def METHOD_NAME(device): if not torch.cuda.is_available() and device == "cuda": pytest.skip() model = torch.nn.Linear(30, 40) model.to(device) x = torch.arange(30, dtype=torch.float32).to(device) iters = [x, x, x] with torch.profiler.profile() as prof: for x in ppe.profiler.record_iterable(None, iters): model(x) keys = [event.key for event in prof.key_averages()] assert "aten::linear" in keys assert any(k.endswith("test_record_iterable_without_tag-0") for k in keys) assert any(k.endswith("test_record_iterable_without_tag-1") for k in keys) assert any(k.endswith("test_record_iterable_without_tag-2") for k in keys)
null
4,843
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Test nn.probability.distribution.Uniform. """ import numpy as np import pytest import mindspore.nn as nn import mindspore.nn.probability.distribution as msd from mindspore import dtype from mindspore import Tensor from mindspore import context skip_flag = context.get_context("device_target") == "CPU" def test_uniform_shape_errpr(): """ Invalid shapes. """ with pytest.raises(ValueError): msd.Uniform([[2.], [1.]], [[2.], [3.], [4.]], dtype=dtype.float32) def test_type(): with pytest.raises(TypeError): msd.Uniform(0., 1., dtype=dtype.int32) def test_name(): with pytest.raises(TypeError): msd.Uniform(0., 1., name=1.0) def test_seed(): with pytest.raises(TypeError): msd.Uniform(0., 1., seed='seed') def test_arguments(): """ Args passing during initialization. """ u = msd.Uniform() assert isinstance(u, msd.Distribution) u = msd.Uniform([3.0], [4.0], dtype=dtype.float32) assert isinstance(u, msd.Distribution) def test_invalid_range(): """ Test range of uniform distribution. """ with pytest.raises(ValueError): msd.Uniform(0.0, 0.0, dtype=dtype.float32) with pytest.raises(ValueError): msd.Uniform(1.0, 0.0, dtype=dtype.float32) class UniformProb(nn.Cell): """ Uniform distribution: initialize with low/high. """ def __init__(self): super(UniformProb, self).__init__() self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32) def construct(self, value): prob = self.u.prob(value) log_prob = self.u.log_prob(value) cdf = self.u.cdf(value) log_cdf = self.u.log_cdf(value) sf = self.u.survival_function(value) log_sf = self.u.log_survival(value) return prob + log_prob + cdf + log_cdf + sf + log_sf @pytest.mark.skipif(skip_flag, reason="not support running in CPU") def test_uniform_prob(): """ Test probability functions: passing value through construct. """ net = UniformProb() value = Tensor([3.1, 3.2, 3.3, 3.4], dtype=dtype.float32) ans = net(value) assert isinstance(ans, Tensor) class UniformProb1(nn.Cell): """ Uniform distribution: initialize without low/high. """ def __init__(self): super(UniformProb1, self).__init__() self.u = msd.Uniform(dtype=dtype.float32) def construct(self, value, low, high): prob = self.u.prob(value, low, high) log_prob = self.u.log_prob(value, low, high) cdf = self.u.cdf(value, low, high) log_cdf = self.u.log_cdf(value, low, high) sf = self.u.survival_function(value, low, high) log_sf = self.u.log_survival(value, low, high) return prob + log_prob + cdf + log_cdf + sf + log_sf @pytest.mark.skipif(skip_flag, reason="not support running in CPU") def test_uniform_prob1(): """ Test probability functions: passing low/high, value through construct. """ net = UniformProb1() value = Tensor([0.1, 0.2, 0.3, 0.9], dtype=dtype.float32) low = Tensor([0.0], dtype=dtype.float32) high = Tensor([1.0], dtype=dtype.float32) ans = net(value, low, high) assert isinstance(ans, Tensor) class UniformKl(nn.Cell): """ Test class: kl_loss of Uniform distribution. """ def __init__(self): super(UniformKl, self).__init__() self.u1 = msd.Uniform( np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.u2 = msd.Uniform(dtype=dtype.float32) def construct(self, low_b, high_b, low_a, high_a): kl1 = self.u1.kl_loss('Uniform', low_b, high_b) kl2 = self.u2.kl_loss('Uniform', low_b, high_b, low_a, high_a) return kl1 + kl2 @pytest.mark.skipif(skip_flag, reason="not support running in CPU") def test_kl(): """ Test kl_loss. """ net = UniformKl() low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32) high_b = Tensor(np.array([5.0]).astype(np.float32), dtype=dtype.float32) low_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) high_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(low_b, high_b, low_a, high_a) assert isinstance(ans, Tensor) class UniformCrossEntropy(nn.Cell): """ Test class: cross_entropy of Uniform distribution. """ def __init__(self): super(UniformCrossEntropy, self).__init__() self.u1 = msd.Uniform( np.array([3.0]), np.array([4.0]), dtype=dtype.float32) self.u2 = msd.Uniform(dtype=dtype.float32) def construct(self, low_b, high_b, low_a, high_a): h1 = self.u1.cross_entropy('Uniform', low_b, high_b) h2 = self.u2.cross_entropy('Uniform', low_b, high_b, low_a, high_a) return h1 + h2 @pytest.mark.skipif(skip_flag, reason="not support running in CPU") def METHOD_NAME(): """ Test cross_entropy between Uniform distributions. """ net = UniformCrossEntropy() low_b = Tensor(np.array([0.0]).astype(np.float32), dtype=dtype.float32) high_b = Tensor(np.array([5.0]).astype(np.float32), dtype=dtype.float32) low_a = Tensor(np.array([2.0]).astype(np.float32), dtype=dtype.float32) high_a = Tensor(np.array([3.0]).astype(np.float32), dtype=dtype.float32) ans = net(low_b, high_b, low_a, high_a) assert isinstance(ans, Tensor) class UniformBasics(nn.Cell): """ Test class: basic mean/sd/var/mode/entropy function. """ def __init__(self): super(UniformBasics, self).__init__() self.u = msd.Uniform(3.0, 4.0, dtype=dtype.float32) def construct(self): mean = self.u.mean() sd = self.u.sd() var = self.u.var() entropy = self.u.entropy() return mean + sd + var + entropy @pytest.mark.skipif(skip_flag, reason="not support running in CPU") def test_bascis(): """ Test mean/sd/var/mode/entropy functionality of Uniform. """ net = UniformBasics() ans = net() assert isinstance(ans, Tensor) class UniConstruct(nn.Cell): """ Uniform distribution: going through construct. """ def __init__(self): super(UniConstruct, self).__init__() self.u = msd.Uniform(-4.0, 4.0) self.u1 = msd.Uniform() def construct(self, value, low, high): prob = self.u('prob', value) prob1 = self.u('prob', value, low, high) prob2 = self.u1('prob', value, low, high) return prob + prob1 + prob2 @pytest.mark.skipif(skip_flag, reason="not support running in CPU") def test_uniform_construct(): """ Test probability function going through construct. """ net = UniConstruct() value = Tensor([-5.0, 0.0, 1.0, 5.0], dtype=dtype.float32) low = Tensor([-1.0], dtype=dtype.float32) high = Tensor([1.0], dtype=dtype.float32) ans = net(value, low, high) assert isinstance(ans, Tensor)
null
4,844
from __future__ import annotations import logging from collections import defaultdict from datetime import datetime from typing import Optional, TYPE_CHECKING from game.theater import ControlPoint from .coalition import Coalition from .dcs.groundunittype import GroundUnitType from .theater.transitnetwork import ( NoPathError, TransitNetwork, ) from .transfers import TransferOrder if TYPE_CHECKING: from .game import Game class GroundUnitOrders: def __init__(self, destination: ControlPoint) -> None: self.destination = destination # Maps unit type to order quantity. self.units: dict[GroundUnitType, int] = defaultdict(int) def __str__(self) -> str: return f"Pending ground unit delivery to {self.destination}" def order(self, units: dict[GroundUnitType, int]) -> None: for k, v in units.items(): self.units[k] += v def sell(self, units: dict[GroundUnitType, int]) -> None: for k, v in units.items(): self.units[k] -= v if self.units[k] == 0: del self.units[k] def refund_all(self, coalition: Coalition) -> None: self._refund(coalition, self.units) self.units = defaultdict(int) def _refund(self, coalition: Coalition, units: dict[GroundUnitType, int]) -> None: for unit_type, count in units.items(): logging.info(f"Refunding {count} {unit_type} at {self.destination.name}") coalition.adjust_budget(unit_type.price * count) def METHOD_NAME(self, unit_type: GroundUnitType) -> int: pending_units = self.units.get(unit_type) if pending_units is None: pending_units = 0 return pending_units def process(self, game: Game, now: datetime) -> None: coalition = game.coalition_for(self.destination.captured) ground_unit_source = self.find_ground_unit_source(game) if ground_unit_source is None: game.message( f"{self.destination.name} lost its source for ground unit " "reinforcements. Refunding purchase price." ) self.refund_all(coalition) bought_units: dict[GroundUnitType, int] = {} units_needing_transfer: dict[GroundUnitType, int] = {} for unit_type, count in self.units.items(): allegiance = "Ally" if self.destination.captured else "Enemy" d: dict[GroundUnitType, int] if self.destination != ground_unit_source: source = ground_unit_source d = units_needing_transfer else: source = self.destination d = bought_units if count < 0: logging.error( f"Attempted sale of {unit_type} at {self.destination} but ground " "units cannot be sold" ) elif count > 0: d[unit_type] = count game.message( f"{allegiance} reinforcements: {unit_type} x {count} at {source}" ) self.units = defaultdict(int) self.destination.base.commission_units(bought_units) if units_needing_transfer: if ground_unit_source is None: raise RuntimeError( f"Ground unit source could not be found for {self.destination} but " "still tried to transfer units to there" ) ground_unit_source.base.commission_units(units_needing_transfer) self.create_transfer( coalition, ground_unit_source, units_needing_transfer, now ) def create_transfer( self, coalition: Coalition, source: ControlPoint, units: dict[GroundUnitType, int], now: datetime, ) -> None: coalition.transfers.new_transfer( TransferOrder(source, self.destination, units), now ) def find_ground_unit_source(self, game: Game) -> Optional[ControlPoint]: # This is running *after* the turn counter has been incremented, so this is the # reaction to turn 0. On turn zero we allow units to be recruited anywhere for # delivery on turn 1 so that turn 1 always starts with units on the front line. if game.turn == 1: return self.destination # Fast path if the destination is a valid source. if self.destination.can_recruit_ground_units(game): return self.destination try: return self.find_ground_unit_source_in_network( game.transit_network_for(self.destination.captured), game ) except NoPathError: return None def find_ground_unit_source_in_network( self, network: TransitNetwork, game: Game ) -> Optional[ControlPoint]: sources = [] for control_point in game.theater.control_points_for(self.destination.captured): if control_point.can_recruit_ground_units( game ) and network.has_path_between(self.destination, control_point): sources.append(control_point) if not sources: return None # Fast path to skip the distance calculation if we have only one option. if len(sources) == 1: return sources[0] closest = sources[0] _, cost = network.shortest_path_with_cost(self.destination, closest) for source in sources: _, new_cost = network.shortest_path_with_cost(self.destination, source) if new_cost < cost: closest = source cost = new_cost return closest
null
4,845
# Protocol Buffers - Google's data interchange format # Copyright 2008 Google Inc. All rights reserved. # https://developers.google.com/protocol-buffers/ # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """A subclass of unittest.TestCase which checks for reference leaks. To use: - Use testing_refleak.BaseTestCase instead of unittest.TestCase - Configure and compile Python with --with-pydebug If sys.gettotalrefcount() is not available (because Python was built without the Py_DEBUG option), then this module is a no-op and tests will run normally. """ import gc import sys try: import copy_reg as copyreg #PY26 except ImportError: import copyreg try: import unittest2 as unittest #PY26 except ImportError: import unittest class LocalTestResult(unittest.TestResult): """A TestResult which forwards events to a parent object, except for Skips.""" def __init__(self, parent_result): unittest.TestResult.__init__(self) self.parent_result = parent_result def addError(self, test, error): self.parent_result.addError(test, error) def addFailure(self, test, error): self.parent_result.addFailure(test, error) def addSkip(self, test, reason): pass class ReferenceLeakCheckerTestCase(unittest.TestCase): """A TestCase which runs tests multiple times, collecting reference counts.""" NB_RUNS = 3 def run(self, result=None): # python_message.py registers all Message classes to some pickle global # registry, which makes the classes immortal. # We save a copy of this registry, and reset it before we could references. self._saved_pickle_registry = copyreg.dispatch_table.copy() # Run the test twice, to warm up the instance attributes. super(ReferenceLeakCheckerTestCase, self).run(result=result) super(ReferenceLeakCheckerTestCase, self).run(result=result) oldrefcount = 0 local_result = LocalTestResult(result) refcount_deltas = [] for _ in range(self.NB_RUNS): oldrefcount = self.METHOD_NAME() super(ReferenceLeakCheckerTestCase, self).run(result=local_result) newrefcount = self.METHOD_NAME() refcount_deltas.append(newrefcount - oldrefcount) print(refcount_deltas, self) try: self.assertEqual(refcount_deltas, [0] * self.NB_RUNS) except Exception: # pylint: disable=broad-except result.addError(self, sys.exc_info()) def METHOD_NAME(self): copyreg.dispatch_table.clear() copyreg.dispatch_table.update(self._saved_pickle_registry) # It is sometimes necessary to gc.collect() multiple times, to ensure # that all objects can be collected. gc.collect() gc.collect() gc.collect() return sys.gettotalrefcount() if hasattr(sys, 'gettotalrefcount'): BaseTestCase = ReferenceLeakCheckerTestCase SkipReferenceLeakChecker = unittest.skip else: # When PyDEBUG is not enabled, run the tests normally. BaseTestCase = unittest.TestCase def SkipReferenceLeakChecker(reason): del reason # Don't skip, so don't need a reason. def Same(func): return func return Same
null
4,846
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ General Validator Helper Functions. """ import os import inspect UINT32_MAX = 4294967295 UINT32_MIN = 0 UINT64_MAX = 18446744073709551615 UINT64_MIN = 0 def pad_arg_name(arg_name): """Add a space for arg_name.""" if arg_name != "": arg_name = arg_name + " " return arg_name def check_value(arg, valid_range, arg_name=""): """Check the value of arg is in a valid range.""" arg_name = pad_arg_name(arg_name) if arg < valid_range[0] or arg > valid_range[1]: raise ValueError( "Input {0}is not within the required interval of ({1} to {2}).".format(arg_name, valid_range[0], valid_range[1])) def METHOD_NAME(arg, arg_name=""): """Check arg type is uint32.""" type_check(arg, (int,), arg_name) check_value(arg, [UINT32_MIN, UINT32_MAX]) def check_uint64(arg, arg_name=""): """Check arg type is uint64.""" type_check(arg, (int,), arg_name) check_value(arg, [UINT64_MIN, UINT64_MAX]) def check_iteration(arg, arg_name=""): """Check arg is in a valid range.""" type_check(arg, (int,), arg_name) check_value(arg, [-1, UINT64_MAX]) def check_dir(dataset_dir): """Check the dataset_dir is a valid dir.""" if not os.path.isdir(dataset_dir) or not os.access(dataset_dir, os.R_OK): raise ValueError("The folder {} does not exist or permission denied!".format(dataset_dir)) def parse_user_args(method, *args, **kwargs): """ Parse user arguments in a function. Args: method (method): a callable function. args: user passed args. kwargs: user passed kwargs. Returns: user_filled_args (list): values of what the user passed in for the arguments. ba.arguments (Ordered Dict): ordered dict of parameter and argument for what the user has passed. """ sig = inspect.signature(method) if 'self' in sig.parameters or 'cls' in sig.parameters: ba = sig.bind(method, *args, **kwargs) ba.apply_defaults() params = list(sig.parameters.keys())[1:] else: ba = sig.bind(*args, **kwargs) ba.apply_defaults() params = list(sig.parameters.keys()) user_filled_args = [ba.arguments.get(arg_value) for arg_value in params] return user_filled_args, ba.arguments def type_check(arg, types, arg_name): """ Check the type of the parameter. Args: arg (Any) : any variable. types (tuple): tuple of all valid types for arg. arg_name (str): the name of arg. Returns: Exception: when the type is not correct, otherwise nothing. """ # handle special case of booleans being a subclass of ints print_value = '\"\"' if repr(arg) == repr('') else arg if int in types and bool not in types: if isinstance(arg, bool): raise TypeError("Argument {0} with value {1} is not of type {2}.".format(arg_name, print_value, types)) if not isinstance(arg, types): raise TypeError("Argument {0} with value {1} is not of type {2}.".format(arg_name, print_value, types)) def type_check_list(args, types, arg_names): """ Check the type of each parameter in the list. Args: args (Union[list, tuple]): a list or tuple of any variable. types (tuple): tuple of all valid types for arg. arg_names (Union[list, tuple of str]): the names of args. Returns: Exception: when the type is not correct, otherwise nothing. """ type_check(args, (list, tuple,), arg_names) if len(args) != len(arg_names) and not isinstance(arg_names, str): raise ValueError("List of arguments is not the same length as argument_names.") if isinstance(arg_names, str): arg_names = ["{0}[{1}]".format(arg_names, i) for i in range(len(args))] for arg, arg_name in zip(args, arg_names): type_check(arg, types, arg_name) def replace_minus_one(value): """ replace -1 with a default value """ return value if value != -1 else UINT32_MAX def check_param_id(info_param, info_name): """ Check the type of info_param. Args: info_param (Union[list[int], str]): Info parameters of check_node_list that is either list of ints or *. info_name (str): Info name of check_node_list. Raises: ValueError: When the type of info_param is not correct, otherwise nothing. """ if isinstance(info_param, str): if info_param not in ["*"]: raise ValueError("Node parameter {} only accepts '*' as string.".format(info_name)) else: for param in info_param: METHOD_NAME(param, info_name)
null
4,847
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.ops.operations as P from mindspore import context, Tensor from mindspore.nn import Cell from mindspore.ops.functional import vmap from mindspore.ops.operations import _grad_ops as G context.set_context(mode=context.GRAPH_MODE, device_target="GPU") class MaxPool3DGradWithArgmaxNet(Cell): def __init__(self, ksize, strides, pads, dilation, ceil_mode=False, data_format="NCDHW"): super(MaxPool3DGradWithArgmaxNet, self).__init__() self.maxpool3d_grad_with_argmax = G.MaxPool3DGradWithArgmax( ksize=ksize, strides=strides, pads=pads, dilation=dilation, ceil_mode=ceil_mode, data_format=data_format) def construct(self, x, dy, mask): output = self.maxpool3d_grad_with_argmax(x, dy, mask) return output class DynamicShapeMaxPool3DGradWithArgmaxNet(Cell): def __init__(self, net, axis=0): super(DynamicShapeMaxPool3DGradWithArgmaxNet, self).__init__() self.net = net self.unique = P.Unique() self.gather = P.Gather() self.axis = axis def construct(self, x, dy, mask, indices): unique_indices, _ = self.unique(indices) x = self.gather(x, unique_indices, self.axis) dy = self.gather(dy, unique_indices, self.axis) mask = self.gather(mask, unique_indices, self.axis) return self.net(x, dy, mask) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_maxpool3d_grad_withargmax_float32(): """ Feature: Test MaxPool3DGradWithArgmax. Description: Test MaxPool3DGradWithArgmax with float32 inputs. Expectation: success. """ attributes = {'ksize': 3, 'strides': 1, 'pads': 0, 'dilation': 1, 'ceil_mode': False, 'data_format': 'NCDHW'} inputs = Tensor(np.arange(3*4*3).reshape(1, 1, 3, 4, 3).astype(np.float32)) dy = Tensor(np.ones((1, 1, 1, 2, 1)).astype(np.float32)) mask = Tensor(np.array([[[[[32], [35]]]]]).astype(np.int32)) net = MaxPool3DGradWithArgmaxNet(**attributes) output = net(inputs, dy, mask) expect = np.array([[[[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.], [0., 0., 1.], [0., 0., 1.]]]]]).astype(np.float32) assert (output.asnumpy() == expect).all() @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_maxpool3d_grad_withargmax_float16(): """ Feature: Test MaxPool3DGradWithArgmax. Description: Test MaxPool3DGradWithArgmax with float16 inputs. Expectation: success. """ attributes = {'ksize': 3, 'strides': 1, 'pads': 0, 'dilation': 1, 'ceil_mode': False, 'data_format': 'NCDHW'} inputs = Tensor(np.arange(3*4*3).reshape(1, 1, 3, 4, 3).astype(np.float16)) dy = Tensor(np.ones((1, 1, 1, 2, 1)).astype(np.float16)) mask = Tensor(np.array([[[[[32], [35]]]]]).astype(np.int32)) net = MaxPool3DGradWithArgmaxNet(**attributes) output = net(inputs, dy, mask) expect = np.array([[[[[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.], [0., 0., 0.], [0., 0., 0.]], [[0., 0., 0.], [0., 0., 0.], [0., 0., 1.], [0., 0., 1.]]]]]).astype(np.float16) assert (output.asnumpy() == expect).all() @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def METHOD_NAME(): """ Feature: Test vmap. Description: Test MaxPool3DGradWithArgmax with vmap. Expectation: success. """ attributes = {'ksize': 3, 'strides': 1, 'pads': 0, 'dilation': 1, 'ceil_mode': False, 'data_format': 'NCDHW'} net = MaxPool3DGradWithArgmaxNet(**attributes) nest_vmap = vmap(net, in_axes=(-1, -1, -1), out_axes=0) inputs = Tensor(np.arange(3*4*3).reshape(1, 1, 3, 4, 3, 1).astype(np.float32)) dy = Tensor(np.ones((1, 1, 1, 2, 1, 1)).astype(np.float32)) mask = Tensor(np.array([[[[[[32]], [[35]]]]]]).astype(np.int32)) out = nest_vmap(inputs, dy, mask) assert out.shape == (1, 1, 1, 3, 4, 3) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard def test_dynamic_maxpool3d_grad_with_argmax(): """ Feature: MaxPool3DGradWithArgmax dynamic test. Description: Run unique and gather ops before MaxPool3DGradWithArgmax. Expectation: success. """ attributes = {'ksize': 3, 'strides': 1, 'pads': 0, 'dilation': 1, 'ceil_mode': False, 'data_format': 'NCDHW'} inputs = Tensor(np.arange(3*4*3).reshape(1, 1, 3, 4, 3).astype(np.float32)) dy = Tensor(np.ones((1, 1, 1, 2, 1)).astype(np.float32)) mask = Tensor(np.array([[[[[32], [35]]]]]).astype(np.int32)) indices = Tensor(np.array([0]).astype(np.int32)) net = MaxPool3DGradWithArgmaxNet(**attributes) dy_net = DynamicShapeMaxPool3DGradWithArgmaxNet(net) out = dy_net(inputs, dy, mask, indices) assert out.shape == inputs.shape
null
4,848
import pytest from kopf._kits.webhooks import ClusterDetector, WebhookAutoServer, WebhookAutoTunnel # Reproducing the realistic environment would be costly and difficult, # so we mock all external(!) libraries to return the results as we expect them. # This reduces the quality of the tests, but makes them simple. @pytest.fixture(autouse=True) def pathmock(mocker, fake_vault, enforced_context, aresponses, hostname): mocker.patch('ssl.get_server_certificate', return_value='') mocker.patch('certvalidator.ValidationContext') validator = mocker.patch('certvalidator.CertificateValidator') pathmock = validator.return_value.validate_tls.return_value pathmock.first.issuer.native = {} pathmock.first.subject.native = {} return pathmock async def test_no_detection(hostname, aresponses): aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.2.3'}) hostname = await ClusterDetector().guess_host() assert hostname is None async def test_dependencies(hostname, aresponses, no_certvalidator): aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.2.3'}) with pytest.raises(ImportError) as err: await ClusterDetector().guess_host() assert "pip install certvalidator" in str(err.value) async def METHOD_NAME(pathmock): pathmock.first.issuer.native = {'common_name': 'minikubeCA'} hostname = await ClusterDetector().guess_host() assert hostname == 'host.minikube.internal' async def test_minikube_via_subject_cn(pathmock): pathmock.first.subject.native = {'common_name': 'minikube'} hostname = await ClusterDetector().guess_host() assert hostname == 'host.minikube.internal' async def test_k3d_via_issuer_cn(pathmock): pathmock.first.issuer.native = {'common_name': 'k3s-ca-server-12345'} hostname = await ClusterDetector().guess_host() assert hostname == 'host.k3d.internal' async def test_k3d_via_subject_cn(pathmock): pathmock.first.subject.native = {'common_name': 'k3s'} hostname = await ClusterDetector().guess_host() assert hostname == 'host.k3d.internal' async def test_k3d_via_subject_org(pathmock): pathmock.first.subject.native = {'organization_name': 'k3s'} hostname = await ClusterDetector().guess_host() assert hostname == 'host.k3d.internal' async def test_k3d_via_version_infix(hostname, aresponses): aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.20.4+k3s1'}) hostname = await ClusterDetector().guess_host() assert hostname == 'host.k3d.internal' async def test_server_detects(responder, aresponses, hostname, caplog, assert_logs): caplog.set_level(0) aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.20.4+k3s1'}) server = WebhookAutoServer(insecure=True) async with server: async for _ in server(responder.fn): break # do not sleep assert_logs(["Cluster detection found the hostname: host.k3d.internal"]) async def test_server_works( responder, aresponses, hostname, caplog, assert_logs): caplog.set_level(0) aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.20.4'}) server = WebhookAutoServer(insecure=True) async with server: async for _ in server(responder.fn): break # do not sleep assert_logs(["Cluster detection failed, running a simple local server"]) async def test_tunnel_detects(responder, pyngrok_mock, aresponses, hostname, caplog, assert_logs): caplog.set_level(0) aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.20.4+k3s1'}) server = WebhookAutoTunnel() async with server: async for _ in server(responder.fn): break # do not sleep assert_logs(["Cluster detection found the hostname: host.k3d.internal"]) async def test_tunnel_works(responder, pyngrok_mock, aresponses, hostname, caplog, assert_logs): caplog.set_level(0) aresponses.add(hostname, '/version', 'get', {'gitVersion': 'v1.20.4'}) server = WebhookAutoTunnel() async with server: async for _ in server(responder.fn): break # do not sleep assert_logs(["Cluster detection failed, using an ngrok tunnel."])
null
4,849
import binascii import json import os from .gabi.attributes import make_attribute_list from .gabi.keys import DefaultSystemParameters from .gabi.proofs import createChallenge from .wrappers import challenge_response, serialize_proof_d, unserialize_proof_d from ..primitives.structs import ipack, iunpack from ...identity_formats import Attestation, IdentityAlgorithm class IRMAAttestation(Attestation): def __init__(self, sign_date, proofd, z=None): self.sign_date = sign_date self.proofd = proofd self.z = z def serialize(self): return ipack(self.sign_date) + serialize_proof_d(self.proofd) def serialize_private(self, PK): return ipack(self.z) + ipack(self.sign_date) + serialize_proof_d(self.proofd) @classmethod def unserialize(cls, s, id_format): sign_date, rem = iunpack(s) return IRMAAttestation(sign_date, unserialize_proof_d(rem)) @classmethod def unserialize_private(cls, SK, s, id_format): z, rem = iunpack(s) sign_date, rem = iunpack(rem) return IRMAAttestation(sign_date, unserialize_proof_d(rem), z) class KeyStub: def public_key(self): return self def serialize(self): return b'' @classmethod def unserialize(cls, s): return KeyStub() class IRMAExactAlgorithm(IdentityAlgorithm): def __init__(self, id_format, formats): super().__init__(id_format, formats) # Check algorithm match if formats[id_format]["algorithm"] != "irmaexact": raise RuntimeError("Identity format linked to wrong algorithm") self.issuer_pk = formats[self.id_format]["issuer_pk"] self.attribute_order = formats[self.id_format]["order"] self.validity = formats[self.id_format]["validity"] self.base_meta = { "credential": formats[self.id_format]["credential"], "keyCounter": formats[self.id_format]["keyCounter"], "validity": formats[self.id_format]["validity"] } self.system_parameters = DefaultSystemParameters[1024] self.challenge_count = 8 def generate_secret_key(self): return KeyStub() def load_secret_key(self, serialized): return KeyStub() def load_public_key(self, serialized): return KeyStub() def get_attestation_class(self): return IRMAAttestation def attest(self, PK, value): raise NotImplementedError("Only import_blob is supported (now) for IRMA.") def certainty(self, value, aggregate): value_json = {"attributes": json.loads(value)} value_json.update(self.base_meta) attestation = aggregate['attestation'] attr_ints, sign_date = make_attribute_list(value_json, self.attribute_order, (self.validity, attestation.sign_date)) reconstructed_attr_map = {} for i in range(len(attr_ints)): reconstructed_attr_map[i + 1] = attr_ints[i] verified = 0.0 failure = False for k, v in aggregate.items(): if k != 'attestation' and v: challenge_verif, _ = iunpack(k) p = attestation.proofd.Copy() p.ADisclosed = reconstructed_attr_map Ap, Zp = p.ChallengeContribution(self.issuer_pk) p.C, _ = iunpack(v) reconstructed_challenge = createChallenge(challenge_verif, challenge_verif, [Ap, Zp], False) if p.VerifyWithChallenge(self.issuer_pk, reconstructed_challenge): verified += 1.0 else: failure = True return 0.0 if failure else (verified / self.challenge_count) def create_challenges(self, PK, attestation): return [ipack(int(binascii.hexlify(os.urandom(32)), 16) % self.issuer_pk.N) for _ in range(self.challenge_count)] def create_challenge_response(self, SK, attestation, challenge): return challenge_response(attestation.proofd, attestation.z, challenge) def create_certainty_aggregate(self, attestation): return {'attestation': attestation} def create_honesty_challenge(self, PK, value): raise NotImplementedError() def process_honesty_challenge(self, value, response): raise NotImplementedError() def METHOD_NAME(self, aggregate, challenge, response): aggregate[challenge] = response def import_blob(self, blob): blob_json = json.loads(blob) sign_date = blob_json["sign_date"] proofd = unserialize_proof_d(binascii.unhexlify(blob_json["proofd"])) z = blob_json["z"] inst = self.get_attestation_class()(sign_date, proofd, z) return inst.serialize_private(None), None
null
4,850
"""Tests for the KernelSpecManager""" # Copyright (c) Jupyter Development Team. # Distributed under the terms of the Modified BSD License. import copy import json import os import sys import tempfile import unittest from io import StringIO from logging import StreamHandler from os.path import join as pjoin from subprocess import PIPE, STDOUT, Popen from tempfile import TemporaryDirectory import pytest from jupyter_core import paths from jupyter_client import kernelspec from .utils import install_kernel, sample_kernel_json class KernelSpecTests(unittest.TestCase): def setUp(self): self.sample_kernel_dir = install_kernel( pjoin(paths.jupyter_data_dir(), "kernels"), name="sample" ) self.ksm = kernelspec.KernelSpecManager() td2 = TemporaryDirectory() self.addCleanup(td2.cleanup) self.installable_kernel = td2.name with open(pjoin(self.installable_kernel, "kernel.json"), "w") as f: json.dump(sample_kernel_json, f) def test_find_kernel_specs(self): kernels = self.ksm.find_kernel_specs() self.assertEqual(kernels["sample"], self.sample_kernel_dir) def METHOD_NAME(self): ksm = kernelspec.KernelSpecManager() ksm.allowed_kernelspecs = ["foo"] kernels = ksm.find_kernel_specs() assert not len(kernels) def test_deprecated_whitelist(self): ksm = kernelspec.KernelSpecManager() ksm.whitelist = ["bar"] kernels = ksm.find_kernel_specs() assert not len(kernels) def test_get_kernel_spec(self): ks = self.ksm.get_kernel_spec("SAMPLE") # Case insensitive self.assertEqual(ks.resource_dir, self.sample_kernel_dir) self.assertEqual(ks.argv, sample_kernel_json["argv"]) self.assertEqual(ks.display_name, sample_kernel_json["display_name"]) self.assertEqual(ks.env, {}) self.assertEqual(ks.metadata, {}) def test_find_all_specs(self): kernels = self.ksm.get_all_specs() self.assertEqual(kernels["sample"]["resource_dir"], self.sample_kernel_dir) self.assertIsNotNone(kernels["sample"]["spec"]) def test_kernel_spec_priority(self): td = TemporaryDirectory() self.addCleanup(td.cleanup) sample_kernel = install_kernel(td.name, name="sample") self.ksm.kernel_dirs.append(td.name) kernels = self.ksm.find_kernel_specs() self.assertEqual(kernels["sample"], self.sample_kernel_dir) self.ksm.kernel_dirs.insert(0, td.name) kernels = self.ksm.find_kernel_specs() self.assertEqual(kernels["sample"], sample_kernel) def test_install_kernel_spec(self): self.ksm.install_kernel_spec(self.installable_kernel, kernel_name="tstinstalled", user=True) self.assertIn("tstinstalled", self.ksm.find_kernel_specs()) # install again works self.ksm.install_kernel_spec(self.installable_kernel, kernel_name="tstinstalled", user=True) def test_install_kernel_spec_prefix(self): td = TemporaryDirectory() self.addCleanup(td.cleanup) capture = StringIO() handler = StreamHandler(capture) self.ksm.log.addHandler(handler) self.ksm.install_kernel_spec( self.installable_kernel, kernel_name="tstinstalled", prefix=td.name ) captured = capture.getvalue() self.ksm.log.removeHandler(handler) self.assertIn("may not be found", captured) self.assertNotIn("tstinstalled", self.ksm.find_kernel_specs()) # add prefix to path, so we find the spec self.ksm.kernel_dirs.append(pjoin(td.name, "share", "jupyter", "kernels")) self.assertIn("tstinstalled", self.ksm.find_kernel_specs()) # Run it again, no warning this time because we've added it to the path capture = StringIO() handler = StreamHandler(capture) self.ksm.log.addHandler(handler) self.ksm.install_kernel_spec( self.installable_kernel, kernel_name="tstinstalled", prefix=td.name ) captured = capture.getvalue() self.ksm.log.removeHandler(handler) self.assertNotIn("may not be found", captured) @pytest.mark.skipif( not (os.name != "nt" and not os.access("/usr/local/share", os.W_OK)), reason="needs Unix system without root privileges", ) def test_cant_install_kernel_spec(self): with self.assertRaises(OSError): self.ksm.install_kernel_spec( self.installable_kernel, kernel_name="tstinstalled", user=False ) def test_remove_kernel_spec(self): path = self.ksm.remove_kernel_spec("sample") self.assertEqual(path, self.sample_kernel_dir) def test_remove_kernel_spec_app(self): p = Popen( [ sys.executable, "-m", "jupyter_client.kernelspecapp", "remove", "sample", "-f", ], stdout=PIPE, stderr=STDOUT, env=os.environ, ) out, _ = p.communicate() self.assertEqual(p.returncode, 0, out.decode("utf8", "replace")) def test_validate_kernel_name(self): for good in [ "julia-0.4", "ipython", "R", "python_3", "Haskell-1-2-3", ]: assert kernelspec._is_valid_kernel_name(good) for bad in [ "has space", "ünicode", "%percent", "question?", ]: assert not kernelspec._is_valid_kernel_name(bad) def test_subclass(self): """Test get_all_specs in subclasses that override find_kernel_specs""" ksm = self.ksm resource_dir = tempfile.gettempdir() native_name = kernelspec.NATIVE_KERNEL_NAME native_kernel = ksm.get_kernel_spec(native_name) class MyKSM(kernelspec.KernelSpecManager): def get_kernel_spec(self, name): spec = copy.copy(native_kernel) if name == "fake": spec.name = name spec.resource_dir = resource_dir elif name == native_name: pass else: raise KeyError(name) return spec def find_kernel_specs(self): return { "fake": resource_dir, native_name: native_kernel.resource_dir, } # ensure that get_all_specs doesn't raise if only # find_kernel_specs and get_kernel_spec are defined myksm = MyKSM() specs = myksm.get_all_specs() assert sorted(specs) == ["fake", native_name]
null
4,851
import pytest import numpy as np from rlberry.agents.utils import replay from rlberry.envs.finite import GridWorld from gymnasium.wrappers import TimeLimit def _get_filled_replay(max_replay_size): """runs env for ~ 2 * max_replay_size timesteps.""" env = GridWorld(terminal_states=None) env = TimeLimit(env, max_episode_steps=200) env.reseed(123) rng = np.random.default_rng(456) buffer = replay.ReplayBuffer( max_replay_size, rng, max_episode_steps=env._max_episode_steps, enable_prioritized=True, ) buffer.setup_entry("observations", np.float32) buffer.setup_entry("actions", np.uint32) buffer.setup_entry("rewards", np.float32) buffer.setup_entry("dones", bool) # Fill the replay buffer total_time = 0 while True: if total_time > 2 * buffer._max_replay_size: break done = False observation, info = env.reset() while not done: total_time += 1 action = env.action_space.sample() next_observation, reward, terminated, truncated, info = env.step(action) done = terminated or truncated buffer.append( { "observations": observation, "actions": action, "rewards": reward, "dones": done, } ) observation = next_observation if done: buffer.end_episode() return buffer, env def test_replay_size(): # get replay buffer buffer, _ = _get_filled_replay(max_replay_size=500) assert len(buffer) == 500 @pytest.mark.parametrize("sampling_mode", ["uniform", "prioritized"]) def test_replay_sampling(sampling_mode): batch_size = 128 chunk_size = 256 # get replay buffer buffer, _ = _get_filled_replay(max_replay_size=500) # Sample batches, check shape and dtype for _ in range(10): batch = buffer.sample( batch_size=batch_size, chunk_size=chunk_size, sampling_mode=sampling_mode ) for tag in buffer.tags: assert batch.data[tag].shape[:2] == (batch_size, chunk_size) assert batch.data[tag].dtype == buffer.dtypes[tag] assert np.array_equal( np.array(buffer.data[tag], dtype=buffer.dtypes[tag])[ batch.info["indices"] ], batch.data[tag], ) def test_replay_priority_update(): # get replay buffer buffer, _ = _get_filled_replay(max_replay_size=500) rng = buffer._rng # Test priority update # Note: the test only works if all indices in indices_to_update are unique (otherwise the # same priority index can be updated more than once, which will break the test) indices_to_update = rng.choice(len(buffer), size=(32, 10), replace=False) n_indices = indices_to_update.shape[0] * indices_to_update.shape[1] new_priorities = np.arange(n_indices).reshape(indices_to_update.shape) buffer.update_priorities(indices_to_update.copy(), new_priorities.copy()) for bb in range(indices_to_update.shape[0]): for cc in range(indices_to_update.shape[1]): idx = indices_to_update[bb, cc] val1 = buffer._it_sum[idx] val2 = buffer._it_min[idx] assert val1 == val2 == new_priorities[bb, cc] ** buffer._alpha @pytest.mark.parametrize("sampling_mode", ["uniform", "prioritized"]) def METHOD_NAME(sampling_mode): batch_size = 16 chunk_size = 256 # get replay buffer buffer, env = _get_filled_replay(max_replay_size=500) # add more data, sample batches and check that sampled sub-trajetories # are not "crossing" the current position (buffer._position) total_time = 0 while True: if total_time > 1000: break done = False obs, info = env.reset() while not done: total_time += 1 action = env.action_space.sample() next_obs, reward, terminated, truncated, _ = env.step(action) done = terminated or truncated buffer.append( { "observations": obs, "actions": action, "rewards": reward, "dones": done, } ) obs = next_obs if done: buffer.end_episode() # sample and check start_indices, end_indices, weights = buffer._sample_batch_indices( batch_size, chunk_size, sampling_mode=sampling_mode ) assert np.all(weights >= 0), "weights must be nonnegative" # we need end_indices > start_indices and the difference # to be equal to chunk_size assert np.all((end_indices - start_indices) == chunk_size) positive_mask = start_indices >= 0 negative_mask = ~positive_mask # Case 1: start indices are >= 0 assert np.all( ~np.logical_and( buffer._position > start_indices[positive_mask], buffer._position < end_indices[positive_mask], ) ), "buffer._position cannot be in the middle of start and end indices" # Case 2: start indices are < 0 # -> self._position cannot be between start_indices+len(buffer) and len(buffer)-1 # -> self._position cannot be between 0 and end_indices-1 assert np.all( np.logical_and( (start_indices[negative_mask] + len(buffer)) >= buffer._position, end_indices[negative_mask] <= buffer._position, ) ), "buffer._position cannot be in the middle of start and end indices"
null
4,852
# Microsoft Azure Linux Agent # # Copyright 2018 Microsoft Corporation # Copyright 2018 Sonus Networks, Inc. (d.b.a. Ribbon Communications Operating Company) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Requires Python 2.6+ and Openssl 1.0+ # import os import re import azurelinuxagent.common.logger as logger import azurelinuxagent.common.utils.shellutil as shellutil import azurelinuxagent.common.utils.fileutil as fileutil from azurelinuxagent.common.osutil.default import DefaultOSUtil from azurelinuxagent.common.utils.networkutil import NetworkInterfaceCard class OpenWRTOSUtil(DefaultOSUtil): def __init__(self): super(OpenWRTOSUtil, self).__init__() self.agent_conf_file_path = '/etc/waagent.conf' self.dhclient_name = 'udhcpc' self.ip_command_output = re.compile('^\d+:\s+(\w+):\s+(.*)$') # pylint: disable=W1401 self.jit_enabled = True def eject_dvd(self, chk_err=True): logger.warn('eject is not supported on OpenWRT') def useradd(self, username, expiration=None, comment=None): """ Create user account with 'username' """ userentry = self.get_userentry(username) if userentry is not None: logger.info("User {0} already exists, skip useradd", username) return if expiration is not None: cmd = ["useradd", "-m", username, "-s", "/bin/ash", "-e", expiration] else: cmd = ["useradd", "-m", username, "-s", "/bin/ash"] if not os.path.exists("/home"): os.mkdir("/home") if comment is not None: cmd.extend(["-c", comment]) self._run_command_raising_OSUtilError(cmd, err_msg="Failed to create user account:{0}".format(username)) def get_dhcp_pid(self): return self._get_dhcp_pid(["pidof", self.dhclient_name]) def get_nic_state(self, as_string=False): """ Capture NIC state (IPv4 and IPv6 addresses plus link state). :return: Dictionary of NIC state objects, with the NIC name as key :rtype: dict(str,NetworkInformationCard) """ if as_string: # as_string not supported on open wrt return '' state = {} status, output = shellutil.run_get_output("ip -o link", chk_err=False, log_cmd=False) if status != 0: logger.verbose("Could not fetch NIC link info; status {0}, {1}".format(status, output)) return {} for entry in output.splitlines(): result = self.ip_command_output.match(entry) if result: name = result.group(1) state[name] = NetworkInterfaceCard(name, result.group(2)) self._update_nic_state(state, "ip -o -f inet address", NetworkInterfaceCard.add_ipv4, "an IPv4 address") self._update_nic_state(state, "ip -o -f inet6 address", NetworkInterfaceCard.add_ipv6, "an IPv6 address") return state def _update_nic_state(self, state, ip_command, handler, description): """ Update the state of NICs based on the output of a specified ip subcommand. :param dict(str, NetworkInterfaceCard) state: Dictionary of NIC state objects :param str ip_command: The ip command to run :param handler: A method on the NetworkInterfaceCard class :param str description: Description of the particular information being added to the state """ status, output = shellutil.run_get_output(ip_command, chk_err=True) if status != 0: return for entry in output.splitlines(): result = self.ip_command_output.match(entry) if result: interface_name = result.group(1) if interface_name in state: handler(state[interface_name], result.group(2)) else: logger.error("Interface {0} has {1} but no link state".format(interface_name, description)) def is_dhcp_enabled(self): pass def start_dhcp_service(self): pass def stop_dhcp_service(self): pass def start_network(self) : return shellutil.run("/etc/init.d/network start", chk_err=True) def restart_ssh_service(self): # pylint: disable=R1710 # Since Dropbear is the default ssh server on OpenWRt, lets do a sanity check if os.path.exists("/etc/init.d/sshd"): return shellutil.run("/etc/init.d/sshd restart", chk_err=True) else: logger.warn("sshd service does not exists") def stop_agent_service(self): return shellutil.run("/etc/init.d/{0} stop".format(self.service_name), chk_err=True) def start_agent_service(self): return shellutil.run("/etc/init.d/{0} start".format(self.service_name), chk_err=True) def register_agent_service(self): return shellutil.run("/etc/init.d/{0} enable".format(self.service_name), chk_err=True) def unregister_agent_service(self): return shellutil.run("/etc/init.d/{0} disable".format(self.service_name), chk_err=True) def METHOD_NAME(self, hostname): fileutil.write_file('/etc/hostname', hostname) commands = [['uci', 'set', 'system.@system[0].hostname={0}'.format(hostname)], ['uci', 'commit', 'system'], ['/etc/init.d/system', 'reload']] self._run_multiple_commands_without_raising(commands, log_error=False, continue_on_error=False) def remove_rules_files(self, rules_files=""): pass
null
4,853
import pickle import pickletools from test import support from test.pickletester import AbstractPickleTests import doctest import unittest class OptimizedPickleTests(AbstractPickleTests, unittest.TestCase): # TODO: RUSTPYTHON, AttributeError: module 'pickle' has no attribute 'PickleBuffer' @unittest.expectedFailure def test_buffer_callback_error(self): # TODO: RUSTPYTHON, remove when this passes super().test_buffer_callback_error() # TODO: RUSTPYTHON, AttributeError: module 'pickle' has no attribute 'PickleBuffer' @unittest.expectedFailure def test_buffers_error(self): # TODO: RUSTPYTHON, remove when this passes super().test_buffers_error() def test_compat_pickle(self): # TODO: RUSTPYTHON, remove when this passes super().test_compat_pickle() # TODO: RUSTPYTHON @unittest.expectedFailure def test_complex_newobj_ex(self): # TODO: RUSTPYTHON, remove when this passes super().test_complex_newobj_ex() # TODO: RUSTPYTHON, TypeError: cannot pickle 'method' object @unittest.expectedFailure def test_in_band_buffers(self): # TODO: RUSTPYTHON, remove when this passes super().test_in_band_buffers() def test_notimplemented(self): # TODO: RUSTPYTHON, remove when this passes super().test_notimplemented() # TODO: RUSTPYTHON, AttributeError: module 'pickle' has no attribute 'PickleBuffer' @unittest.expectedFailure def test_oob_buffers(self): # TODO: RUSTPYTHON, remove when this passes super().test_oob_buffers() # TODO: RUSTPYTHON, AttributeError: module 'pickle' has no attribute 'PickleBuffer' @unittest.expectedFailure def test_oob_buffers_writable_to_readonly(self): # TODO: RUSTPYTHON, remove when this passes super().test_oob_buffers_writable_to_readonly() # TODO: RUSTPYTHON, TypeError: Expected type 'bytes', not 'bytearray' @unittest.expectedFailure def test_optional_frames(self): # TODO: RUSTPYTHON, remove when this passes super().test_optional_frames() # TODO: RUSTPYTHON, AttributeError: module 'pickle' has no attribute 'PickleBuffer' @unittest.expectedFailure def test_picklebuffer_error(self): # TODO: RUSTPYTHON, remove when this passes super().test_picklebuffer_error() def dumps(self, arg, proto=None, **kwargs): return pickletools.optimize(pickle.dumps(arg, proto, **kwargs)) def loads(self, buf, **kwds): return pickle.loads(buf, **kwds) # Test relies on precise output of dumps() test_pickle_to_2x = None # Test relies on writing by chunks into a file object. test_framed_write_sizes_with_delayed_writer = None # TODO: RUSTPYTHON @unittest.expectedFailure def test_optimize_long_binget(self): data = [str(i) for i in range(257)] data.append(data[-1]) for proto in range(pickle.HIGHEST_PROTOCOL + 1): pickled = pickle.dumps(data, proto) unpickled = pickle.loads(pickled) self.assertEqual(unpickled, data) self.assertIs(unpickled[-1], unpickled[-2]) pickled2 = pickletools.optimize(pickled) unpickled2 = pickle.loads(pickled2) self.assertEqual(unpickled2, data) self.assertIs(unpickled2[-1], unpickled2[-2]) self.assertNotIn(pickle.LONG_BINGET, pickled2) self.assertNotIn(pickle.LONG_BINPUT, pickled2) def METHOD_NAME(self): pickled = (b'\x80\x04\x95\x15\x00\x00\x00\x00\x00\x00\x00' b']\x94(\x8c\x04spamq\x01\x8c\x03ham\x94h\x02e.') # 0: \x80 PROTO 4 # 2: \x95 FRAME 21 # 11: ] EMPTY_LIST # 12: \x94 MEMOIZE # 13: ( MARK # 14: \x8c SHORT_BINUNICODE 'spam' # 20: q BINPUT 1 # 22: \x8c SHORT_BINUNICODE 'ham' # 27: \x94 MEMOIZE # 28: h BINGET 2 # 30: e APPENDS (MARK at 13) # 31: . STOP self.assertIn(pickle.BINPUT, pickled) unpickled = pickle.loads(pickled) self.assertEqual(unpickled, ['spam', 'ham', 'ham']) self.assertIs(unpickled[1], unpickled[2]) pickled2 = pickletools.optimize(pickled) unpickled2 = pickle.loads(pickled2) self.assertEqual(unpickled2, ['spam', 'ham', 'ham']) self.assertIs(unpickled2[1], unpickled2[2]) self.assertNotIn(pickle.BINPUT, pickled2) class MiscTestCase(unittest.TestCase): def test__all__(self): not_exported = { 'bytes_types', 'UP_TO_NEWLINE', 'TAKEN_FROM_ARGUMENT1', 'TAKEN_FROM_ARGUMENT4', 'TAKEN_FROM_ARGUMENT4U', 'TAKEN_FROM_ARGUMENT8U', 'ArgumentDescriptor', 'read_uint1', 'read_uint2', 'read_int4', 'read_uint4', 'read_uint8', 'read_stringnl', 'read_stringnl_noescape', 'read_stringnl_noescape_pair', 'read_string1', 'read_string4', 'read_bytes1', 'read_bytes4', 'read_bytes8', 'read_bytearray8', 'read_unicodestringnl', 'read_unicodestring1', 'read_unicodestring4', 'read_unicodestring8', 'read_decimalnl_short', 'read_decimalnl_long', 'read_floatnl', 'read_float8', 'read_long1', 'read_long4', 'uint1', 'uint2', 'int4', 'uint4', 'uint8', 'stringnl', 'stringnl_noescape', 'stringnl_noescape_pair', 'string1', 'string4', 'bytes1', 'bytes4', 'bytes8', 'bytearray8', 'unicodestringnl', 'unicodestring1', 'unicodestring4', 'unicodestring8', 'decimalnl_short', 'decimalnl_long', 'floatnl', 'float8', 'long1', 'long4', 'StackObject', 'pyint', 'pylong', 'pyinteger_or_bool', 'pybool', 'pyfloat', 'pybytes_or_str', 'pystring', 'pybytes', 'pybytearray', 'pyunicode', 'pynone', 'pytuple', 'pylist', 'pydict', 'pyset', 'pyfrozenset', 'pybuffer', 'anyobject', 'markobject', 'stackslice', 'OpcodeInfo', 'opcodes', 'code2op', } support.check__all__(self, pickletools, not_exported=not_exported) def load_tests(loader, tests, pattern): # TODO: RUSTPYTHON # tests.addTest(doctest.DocTestSuite(pickletools)) return tests if __name__ == "__main__": unittest.main()
null
4,854
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest import mindspore.context as context import mindspore.nn as nn import mindspore as ms from mindspore import Tensor from mindspore.ops import operations as P from mindspore.ops import functional as F class OpNetWrapperBitwise(nn.Cell): """OpNetWrapperBitwise""" def __init__(self, op): """__init__""" super(OpNetWrapperBitwise, self).__init__() self.op = op def construct(self, *inputs): """construct""" return self.op(*inputs) suport_type_list = [np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64] mode_list = [context.PYNATIVE_MODE, context.GRAPH_MODE] @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)]) @pytest.mark.parametrize('dtype', suport_type_list) @pytest.mark.parametrize('mode', mode_list) def test_bitwise_and(shape, dtype, mode): """ Feature: BitwiseAnd gpu kernel. Description: test the rightness of BitwiseAnd gpu kernel. Expectation: Success. """ context.set_context(mode=mode, device_target='GPU') op = P.BitwiseAnd() op_wrapper = OpNetWrapperBitwise(op) prop = 100 if np.random.random() > 0.5 else -100 x_np = (np.random.randn(*shape) * prop).astype(dtype) y_np = (np.random.randn(*shape) * prop).astype(dtype) outputs = op_wrapper(Tensor(x_np), Tensor(y_np)) outputs_func = F.bitwise_and(Tensor(x_np), Tensor(y_np)) expect = np.bitwise_and(x_np, y_np) assert np.allclose(outputs.asnumpy(), expect) assert np.allclose(outputs_func.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)]) @pytest.mark.parametrize('dtype', suport_type_list) @pytest.mark.parametrize('mode', mode_list) def METHOD_NAME(shape, dtype, mode): """ Feature: BitwiseOr gpu kernel. Description: test the rightness of BitwiseOr gpu kernel. Expectation: Success. """ context.set_context(mode=mode, device_target='GPU') op = P.BitwiseOr() op_wrapper = OpNetWrapperBitwise(op) prop = 100 if np.random.random() > 0.5 else -100 x_np = (np.random.randn(*shape) * prop).astype(dtype) y_np = (np.random.randn(*shape) * prop).astype(dtype) outputs = op_wrapper(Tensor(x_np), Tensor(y_np)) outputs_func = F.bitwise_or(Tensor(x_np), Tensor(y_np)) expect = np.bitwise_or(x_np, y_np) assert np.allclose(outputs.asnumpy(), expect) assert np.allclose(outputs_func.asnumpy(), expect) @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize('shape', [(2,), (4, 5), (3, 4, 5, 6), (3, 4, 5, 6, 2)]) @pytest.mark.parametrize('dtype', suport_type_list) @pytest.mark.parametrize('mode', mode_list) def test_bitwise_xor(shape, dtype, mode): """ Feature: BitwiseXor gpu kernel. Description: test the rightness of BitwiseXor gpu kernel. Expectation: Success. """ context.set_context(mode=mode, device_target='GPU') op = P.BitwiseXor() op_wrapper = OpNetWrapperBitwise(op) prop = 100 if np.random.random() > 0.5 else -100 x_np = (np.random.randn(*shape) * prop).astype(dtype) y_np = (np.random.randn(*shape) * prop).astype(dtype) outputs = op_wrapper(Tensor(x_np), Tensor(y_np)) outputs_func = F.bitwise_xor(Tensor(x_np), Tensor(y_np)) expect = np.bitwise_xor(x_np, y_np) assert np.allclose(outputs.asnumpy(), expect) assert np.allclose(outputs_func.asnumpy(), expect) class NetBitwiseGPU(nn.Cell): """NetBitwiseGPU""" def construct(self, input_x, input_y): """construct""" out_and = input_x & input_y out_or = input_x | input_y out_xor = input_x ^ input_y return out_and, out_or, out_xor @pytest.mark.level0 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize('mode', mode_list) def test_bitwise_bool(mode): """ Feature: Bitwise gpu kernel. Description: test the rightness of Bitwise cpu kernel tensor operations. Expectation: Success. """ context.set_context(mode=mode, device_target='CPU') input_x = ms.Tensor([True, False], dtype=ms.bool_) input_y = ms.Tensor([True, True], dtype=ms.bool_) net = NetBitwiseGPU() out = net(input_x, input_y) expect_and_gpu = np.array([True, False]) expect_or_gpu = np.array([True, True]) expect_xor_gpu = np.array([False, True]) assert np.allclose(out[0].asnumpy(), expect_and_gpu) assert np.allclose(out[1].asnumpy(), expect_or_gpu) assert np.allclose(out[2].asnumpy(), expect_xor_gpu) res_and = input_x & input_y res_or = input_x | input_y res_xor = input_x ^ input_y assert np.allclose(res_and.asnumpy(), expect_and_gpu) assert np.allclose(res_or.asnumpy(), expect_or_gpu) assert np.allclose(res_xor.asnumpy(), expect_xor_gpu)
null
4,855
#!/usr/bin/env python3 # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import subprocess import argparse import concurrent.futures def generate_report(module_path, report_orig_path, report_out_path): is_dir = os.path.isdir(module_path) if not is_dir: print("{} is not a directory".format(module_path)) return os.makedirs(report_out_path, exist_ok=True) try: print("Generating report for {}".format(module_path)) # This command prints lots of false errors. Here, we redirect stdout and stderr to avoid them. command = "mvn -Ddependency.locations.enabled=false -Ddependency.details.enabled=false project-info-reports:dependencies" subprocess.check_output(command, cwd=module_path, shell=True) command = "cp -r {} {}".format(report_orig_path, report_out_path) subprocess.check_output(command, cwd=module_path, shell=True) print("Generated report for {} in {}".format(module_path, report_out_path)) except subprocess.CalledProcessError as e: print("Encountered error [{}] with the following output when generating report for {}".format(e, module_path)) print(e.output.decode('utf-8')) except Exception as e: print("Encountered error [{}] when generating report for {}".format(e, module_path)) def METHOD_NAME(druid_path, tmp_path, exclude_ext, num_threads): tmp_path = os.path.abspath(tmp_path) license_report_root = os.path.join(tmp_path, "license-reports") license_core_path = os.path.join(license_report_root, "core") license_ext_path = os.path.join(license_report_root, "ext") shutil.rmtree(license_report_root, ignore_errors=True) os.makedirs(license_core_path) os.makedirs(license_ext_path) druid_path = os.path.abspath(druid_path) script_args = [(druid_path, os.path.join(druid_path, "distribution", "target", "site"), license_core_path)] if not exclude_ext: extensions_core_path = os.path.join(druid_path, "extensions-core") command = "mvn -Dexec.executable='echo' -Dexec.args='${basedir}' exec:exec -q | grep extensions-core | grep -o '[^/]*$'" extension_dirs = subprocess.check_output(command, cwd=druid_path, shell=True).decode().split('\n')[:-1] print("Found {} extensions".format(len(extension_dirs))) for extension_dir in extension_dirs: print("extension dir: {}".format(extension_dir)) extension_path = os.path.join(extensions_core_path, extension_dir) if not os.path.isdir(extension_path): print("{} is not a directory".format(extension_path)) continue extension_report_dir = "{}/{}".format(license_ext_path, extension_dir) script_args.append((extension_path, os.path.join(extension_path, "target", "site"), extension_report_dir)) print("Generating dependency reports") if num_threads > 1: with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor: for module_path, report_orig_path, report_out_path in script_args: executor.submit(generate_report, module_path, report_orig_path, report_out_path) else: for module_path, report_orig_path, report_out_path in script_args: generate_report(module_path, report_orig_path, report_out_path) if __name__ == "__main__": try: parser = argparse.ArgumentParser(description='Generating dependency reports.') parser.add_argument('druid_path', metavar='<Druid source path>', type=str) parser.add_argument('tmp_path', metavar='<Full tmp path>', type=str) parser.add_argument('--exclude-extension', dest='exclude_ext', action='store_const', const=True, default=False, help="Exclude extension report") parser.add_argument('--clean-maven-artifact-transfer', dest='clean_mvn_artifact_transfer', action='store_const', const=True, default=False, help="Clean maven-artifact-transfer before generating dependency reports") parser.add_argument('--parallel', dest='num_threads', type=int, default=1, help='Number of threads for generating reports') args = parser.parse_args() # The default maven-artifact-transfer in Travis is currently corrupted. Set the below argument properly to remove the corrupted one. if args.clean_mvn_artifact_transfer: command = "rm -rf ~/.m2/repository/org/apache/maven/shared/maven-artifact-transfer" subprocess.check_call(command, shell=True) METHOD_NAME(args.druid_path, args.tmp_path, args.exclude_ext, args.num_threads) except KeyboardInterrupt: print('Interrupted, closing.')
null
4,856
import unittest from unittest import mock from dateutil.relativedelta import relativedelta from bot.constants import Emojis from bot.exts.moderation.slowmode import Slowmode from tests.helpers import MockBot, MockContext, MockTextChannel class SlowmodeTests(unittest.IsolatedAsyncioTestCase): def METHOD_NAME(self) -> None: self.bot = MockBot() self.cog = Slowmode(self.bot) self.ctx = MockContext() async def test_get_slowmode_no_channel(self) -> None: """Get slowmode without a given channel.""" self.ctx.channel = MockTextChannel(name="python-general", slowmode_delay=5) await self.cog.get_slowmode(self.cog, self.ctx, None) self.ctx.send.assert_called_once_with("The slowmode delay for #python-general is 5 seconds.") async def test_get_slowmode_with_channel(self) -> None: """Get slowmode with a given channel.""" text_channel = MockTextChannel(name="python-language", slowmode_delay=2) await self.cog.get_slowmode(self.cog, self.ctx, text_channel) self.ctx.send.assert_called_once_with("The slowmode delay for #python-language is 2 seconds.") async def test_set_slowmode_no_channel(self) -> None: """Set slowmode without a given channel.""" test_cases = ( ("helpers", 23, True, f"{Emojis.check_mark} The slowmode delay for #helpers is now 23 seconds."), ("mods", 76526, False, f"{Emojis.cross_mark} The slowmode delay must be between 0 and 6 hours."), ("admins", 97, True, f"{Emojis.check_mark} The slowmode delay for #admins is now 1 minute and 37 seconds.") ) for channel_name, seconds, edited, result_msg in test_cases: with self.subTest( channel_mention=channel_name, seconds=seconds, edited=edited, result_msg=result_msg ): self.ctx.channel = MockTextChannel(name=channel_name) await self.cog.set_slowmode(self.cog, self.ctx, None, relativedelta(seconds=seconds)) if edited: self.ctx.channel.edit.assert_awaited_once_with(slowmode_delay=float(seconds)) else: self.ctx.channel.edit.assert_not_called() self.ctx.send.assert_called_once_with(result_msg) self.ctx.reset_mock() async def test_set_slowmode_with_channel(self) -> None: """Set slowmode with a given channel.""" test_cases = ( ("bot-commands", 12, True, f"{Emojis.check_mark} The slowmode delay for #bot-commands is now 12 seconds."), ("mod-spam", 21, True, f"{Emojis.check_mark} The slowmode delay for #mod-spam is now 21 seconds."), ("admin-spam", 4323598, False, f"{Emojis.cross_mark} The slowmode delay must be between 0 and 6 hours.") ) for channel_name, seconds, edited, result_msg in test_cases: with self.subTest( channel_mention=channel_name, seconds=seconds, edited=edited, result_msg=result_msg ): text_channel = MockTextChannel(name=channel_name) await self.cog.set_slowmode(self.cog, self.ctx, text_channel, relativedelta(seconds=seconds)) if edited: text_channel.edit.assert_awaited_once_with(slowmode_delay=float(seconds)) else: text_channel.edit.assert_not_called() self.ctx.send.assert_called_once_with(result_msg) self.ctx.reset_mock() async def test_reset_slowmode_sets_delay_to_zero(self) -> None: """Reset slowmode with a given channel.""" text_channel = MockTextChannel(name="meta", slowmode_delay=1) self.cog.set_slowmode = mock.AsyncMock() await self.cog.reset_slowmode(self.cog, self.ctx, text_channel) self.cog.set_slowmode.assert_awaited_once_with( self.ctx, text_channel, relativedelta(seconds=0) ) @mock.patch("bot.exts.moderation.slowmode.has_any_role") @mock.patch("bot.exts.moderation.slowmode.MODERATION_ROLES", new=(1, 2, 3)) async def test_cog_check(self, role_check): """Role check is called with `MODERATION_ROLES`""" role_check.return_value.predicate = mock.AsyncMock() await self.cog.cog_check(self.ctx) role_check.assert_called_once_with(*(1, 2, 3)) role_check.return_value.predicate.assert_awaited_once_with(self.ctx)
null
4,857
from django.conf import settings from django.test import TestCase from cradmin_legacy import cradmin_testhelpers from model_bakery import baker from devilry.devilry_account.models import PermissionGroup from devilry.devilry_frontpage.views import frontpage class TestFrontpage(TestCase, cradmin_testhelpers.TestCaseMixin): viewclass = frontpage.FrontpageView def test_title(self): testuser = baker.make(settings.AUTH_USER_MODEL) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertEqual('Devilry frontpage', mockresponse.selector.one('title').alltext_normalized) def METHOD_NAME(self): testuser = baker.make(settings.AUTH_USER_MODEL) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertEqual('Choose your role', mockresponse.selector.one('h1').alltext_normalized) def test_user_is_student(self): testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('core.Candidate', relatedstudent__user=testuser, assignment_group__parentnode=baker.make_recipe('devilry.apps.core.assignment_activeperiod_start')) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertTrue( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-student')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-examiner')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-anyadmin')) def test_user_is_examiner(self): testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('core.Examiner', relatedexaminer__user=testuser, assignmentgroup__parentnode=baker.make_recipe('devilry.apps.core.assignment_activeperiod_start')) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-student')) self.assertTrue( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-examiner')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-anyadmin')) def test_user_is_superuser(self): testuser = baker.make(settings.AUTH_USER_MODEL, is_superuser=True) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-student')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-examiner')) self.assertTrue( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-anyadmin')) self.assertTrue(mockresponse.selector.exists('.devilry-frontpage-superuser-link')) def test_user_is_departmentadmin(self): testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=baker.make( 'devilry_account.SubjectPermissionGroup', permissiongroup__grouptype=PermissionGroup.GROUPTYPE_DEPARTMENTADMIN).permissiongroup) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-student')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-examiner')) self.assertTrue( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-anyadmin')) self.assertFalse(mockresponse.selector.exists('.devilry-frontpage-superuser-link')) def test_user_is_subjectadmin(self): testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=baker.make( 'devilry_account.SubjectPermissionGroup', permissiongroup__grouptype=PermissionGroup.GROUPTYPE_SUBJECTADMIN).permissiongroup) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-student')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-examiner')) self.assertTrue( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-anyadmin')) self.assertFalse(mockresponse.selector.exists('.devilry-frontpage-superuser-link')) def test_user_is_periodadmin(self): testuser = baker.make(settings.AUTH_USER_MODEL) baker.make('devilry_account.PermissionGroupUser', user=testuser, permissiongroup=baker.make('devilry_account.PeriodPermissionGroup').permissiongroup) mockresponse = self.mock_http200_getrequest_htmls(requestuser=testuser) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-student')) self.assertFalse( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-examiner')) self.assertTrue( mockresponse.selector.exists('.devilry-frontpage-listbuilder-roleselect-itemvalue-anyadmin')) self.assertFalse(mockresponse.selector.exists('.devilry-frontpage-superuser-link'))
null
4,858
"""Contains code for PIN2DMD.""" import logging import threading from mpf.core.utility_functions import Util from mpf.platforms.interfaces.dmd_platform import DmdPlatformInterface from mpf.core.platform import RgbDmdPlatform # pylint: disable-msg=ungrouped-imports try: import usb.core except ImportError as e: IMPORT_FAILED = e else: IMPORT_FAILED = None # type: ignore GAMMA_TABLE = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 21, 22, 22, 22, 23, 23, 23, 24, 24, 24, 25, 25, 25, 26, 26, 27, 27, 27, 28, 28, 29, 29, 29, 30, 30, 31, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 44, 45, 45, 46, 47, 47, 48, 48, 49, 49, 50, 50, 51, 52, 52, 53, 53, 54, 55, 55, 56, 56, 57, 58, 58, 59, 60, 60, 61, 62, 62, 63, 63, 63] class Pin2DmdHardwarePlatform(RgbDmdPlatform): """PIN2DMD RGB DMD hardware.""" __slots__ = ["device", "config"] def __init__(self, machine): """Initialise PIN2DMD.""" super().__init__(machine) self.features['tickless'] = True self.config = self.machine.config_validator.validate_config("pin2dmd", self.machine.config.get('pin2dmd', {})) self._configure_device_logging_and_debug('PIN2DMD', self.config) self.log.debug("Configuring PIN2DMD hardware interface.") self.device = Pin2DmdDevice(machine, self.debug, self.config['resolution'], self.config['panel']) if IMPORT_FAILED: raise AssertionError('Failed to load pyusb. Did you install pyusb? ' 'Try: "pip3 install pyusb".') from IMPORT_FAILED async def initialize(self): """Initialise platform.""" await self.device.connect() def stop(self): """Stop platform.""" self.device.stop() self.device = None def __repr__(self): """Return string representation.""" return '<Platform.Pin2Dmd>' def configure_rgb_dmd(self, name: str): """Configure rgb dmd.""" if name != "default": self.raise_config_error("Use dmd name 'default' for PIN2DMD.", 1) return self.device class Pin2DmdDevice(DmdPlatformInterface): """A PIN2DMD device.""" __slots__ = ["writer", "current_frame", "new_frame_event", "machine", "log", "device", "brightness", "debug", "resolution", "panel"] def __init__(self, machine, debug, resolution, panel): """Initialise smart matrix device.""" self.writer = None self.current_frame = None self.new_frame_event = None self.machine = machine self.device = None self.brightness = 255 self.log = logging.getLogger('Pin2DmdDevice') self.debug = debug self.resolution = resolution self.panel = panel def _send_brightness(self, brightness): data = [0x00] * 2052 data[0] = 0x81 data[1] = 0xc3 data[2] = 0xe7 data[3] = 0xff data[4] = 0x08 data[17] = brightness if self.debug: self.log.debug("Writing 0x01, %s", "".join(" 0x%02x" % b for b in data)) self.device.write(0x01, data) def _send_frame(self, buffer): if self.resolution == "128x32": elements = 2048 else: elements = 6144 output_buffer = [0] * (elements * 6 + 4) output_buffer[0] = 0x81 output_buffer[1] = 0xC3 output_buffer[2] = 0xE9 output_buffer[3] = 18 for i in range(0, elements): idx = i * 3 if self.panel == "rgb": # use these mappings for RGB panels pixel_r = buffer[idx] pixel_g = buffer[idx + 1] pixel_b = buffer[idx + 2] # lower half of display pixel_rl = buffer[elements * 3 + idx] pixel_gl = buffer[elements * 3 + idx + 1] pixel_bl = buffer[elements * 3 + idx + 2] else: # use these mappings for RBG panels pixel_r = buffer[idx] pixel_g = buffer[idx + 2] pixel_b = buffer[idx + 1] # lower half of display pixel_rl = buffer[elements * 3 + idx] pixel_gl = buffer[elements * 3 + idx + 2] pixel_bl = buffer[elements * 3 + idx + 1] # color correction pixel_r = GAMMA_TABLE[pixel_r] pixel_g = GAMMA_TABLE[pixel_g] pixel_b = GAMMA_TABLE[pixel_b] pixel_rl = GAMMA_TABLE[pixel_rl] pixel_gl = GAMMA_TABLE[pixel_gl] pixel_bl = GAMMA_TABLE[pixel_bl] target_idx = i + 4 for _ in range(0, 6): output_buffer[target_idx] = ((pixel_gl & 1) << 5) | ((pixel_bl & 1) << 4) | ((pixel_rl & 1) << 3) |\ ((pixel_g & 1) << 2) | ((pixel_b & 1) << 1) | ((pixel_r & 1) << 0) pixel_r >>= 1 pixel_g >>= 1 pixel_b >>= 1 pixel_rl >>= 1 pixel_gl >>= 1 pixel_bl >>= 1 target_idx += elements if self.debug: self.log.debug("Writing 0x01, %s, 1000", "".join(" 0x%02x" % b for b in output_buffer)) self.device.write(0x01, output_buffer, 1000) def _feed_hardware(self): """Feed hardware in separate thread. Wait for new_frame_event and send the last frame. If no event happened for 1s refresh the last frame. """ current_brightness = None while not self.machine.thread_stopper.is_set(): # wait for new frame or timeout self.new_frame_event.wait(1) # clear event self.new_frame_event.clear() # set brightness if it changed if self.brightness != current_brightness: current_brightness = self.brightness self._send_brightness(current_brightness) # do not crash on missing frame if self.current_frame is None: continue # send frame self._send_frame(self.current_frame) async def connect(self): """Connect to Pin2Dmd device.""" self.log.info("Connecting to Pin2DMD RGB DMD") self.device = usb.core.find(idVendor=0x0314, idProduct=0xE457) if self.device is None: raise AssertionError('Pin2Dmd USB device not found') self.new_frame_event = threading.Event() self.writer = self.machine.clock.loop.run_in_executor(None, self._feed_hardware) self.writer.add_done_callback(Util.raise_exceptions) self.log.info("Connected to Pin2DMD") def METHOD_NAME(self, brightness: float): """Set brightness.""" if brightness < 0.0 or brightness > 1.0: raise AssertionError("Brightness has to be between 0 and 1.") self.brightness = int(brightness * 255) def stop(self): """Stop platform.""" def update(self, data): """Update DMD data.""" self.current_frame = bytearray(data) self.new_frame_event.set()
null
4,859
import unittest from pyexcel import Sheet from ._compact import OrderedDict class TestSheetColumn(unittest.TestCase): def setUp(self): self.data = [ ["Column 1", "Column 2", "Column 3"], [1, 2, 3], [4, 5, 6], [7, 8, 9], ] def test_negative_row_index(self): s = Sheet(self.data, "test") data = s.column[-1] self.assertEqual(data, ["Column 3", 3, 6, 9]) def test_formatter_by_named_column(self): """Test one named column""" s = Sheet(self.data, "test") s.name_columns_by_row(0) s.column.format("Column 1", str) self.assertEqual(s.column["Column 1"], ["1", "4", "7"]) def test_formatter_by_named_columns(self): """Test multiple named columns""" s = Sheet(self.data, "test") s.name_columns_by_row(0) s.column.format(["Column 1", "Column 3"], str) self.assertEqual(s.column["Column 1"], ["1", "4", "7"]) self.assertEqual(s.column["Column 3"], ["3", "6", "9"]) def test_add(self): s = Sheet(self.data, "test") s.name_columns_by_row(0) data = OrderedDict({"Column 4": [10, 11, 12]}) s1 = s.column + data self.assertEqual(s1.column.Column_4, [10, 11, 12]) # check that we don't have the column in the original sheet with self.assertRaises((AttributeError)): self.assertEqual(s.column.Column_4, [10, 11, 12]) def test_iadd(self): s = Sheet(self.data, "test") s.name_columns_by_row(0) data = OrderedDict({"Column 4": [10, 11, 12]}) s.column += data self.assertEqual(s.column.Column_4, [10, 11, 12]) def test_add_wrong_type(self): """Add string type""" s = Sheet(self.data, "test") s.name_columns_by_row(0) with self.assertRaises((TypeError)): s = s.column + "string type" # bang def test_delete_named_column(self): s = Sheet(self.data, "test") s.name_columns_by_row(0) del s.column["Column 2"] assert s.number_of_columns() == 2 with self.assertRaises((ValueError)): s.column["Column 2"] # bang def test_delete_indexed_column1(self): s = Sheet(self.data, "test") s.name_columns_by_row(0) del s.column[1] assert s.number_of_columns() == 2 with self.assertRaises((ValueError)): s.column["Column 2"] # access it after deletion, bang def test_delete_indexed_column2(self): s = Sheet(self.data, "test") s.name_columns_by_row(0) del s.column["Column 2"] assert s.number_of_columns() == 2 with self.assertRaises((ValueError)): s.column["Column 2"] # access it after deletion, bang def test_delete_indexed_column(self): s = Sheet(self.data, "test") s.name_columns_by_row(0) s.delete_named_column_at(1) assert s.number_of_columns() == 2 with self.assertRaises((ValueError)): s.column["Column 2"] # access it after deletion, bang def test_delete_column(self): s = Sheet(self.data, "test") del s.column[1, 2] assert s.number_of_columns() == 1 with self.assertRaises((ValueError)): s.column["Column 2"] # access it after deletion, bang class TestSheetColumn2(unittest.TestCase): def setUp(self): self.data = [ [1, 2, 3], [4, 5, 6], ["Column 1", "Column 2", "Column 3"], [7, 8, 9], ] def test_series(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) self.assertEqual(s.colnames, ["Column 1", "Column 2", "Column 3"]) custom_columns = ["C1", "C2", "C3"] s.colnames = custom_columns self.assertEqual(s.colnames, custom_columns) def test_series2(self): custom_columns = ["C1", "C2", "C3"] s = Sheet(self.data, "test", colnames=custom_columns) self.assertEqual(s.colnames, custom_columns) def test_series3(self): custom_columns = ["C1", "C2", "C3"] with self.assertRaises((NotImplementedError)): Sheet( self.data, "test", colnames=custom_columns, name_columns_by_row=0, ) def test_formatter_by_named_column(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) s.column.format("Column 1", str) self.assertEqual(s.column["Column 1"], ["1", "4", "7"]) def test_add(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) data = OrderedDict({"Column 4": [10, 11, 12]}) s1 = s.column + data self.assertEqual(s1.column["Column 4"], [10, 11, 12]) self.assertNotIn("Column 4", s.column) def test_iadd(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) data = OrderedDict({"Column 4": [10, 11, 12]}) s.column += data self.assertEqual(s.column["Column 4"], [10, 11, 12]) def test_dot_notation(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) self.assertEqual(s.column.Column_3, [3, 6, 9]) def test_delete_named_column(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) del s.column["Column 2"] assert s.number_of_columns() == 2 with self.assertRaises((ValueError)): s.column["Column 2"] # bang def METHOD_NAME(self): s = Sheet(self.data, "test") s.name_columns_by_row(2) s.row[0] = [10000, 1, 11] self.assertEqual(s.row[0], [10000, 1, 11])
null
4,860
import os import subprocess import numpy as np from libensemble.message_numbers import EVAL_GEN_TAG, FINISHED_PERSISTENT_GEN_TAG, PERSIS_STOP, STOP_TAG from libensemble.tools.persistent_support import PersistentSupport def METHOD_NAME(x_f_pairs, gen_specs, noise_h_mat): U = gen_specs["user"] x0 = U["x0"] # This function constructs H0 to contain points to be sent back to the # manager to be evaluated n = len(x0) E = np.eye(n) nf = U["nf"] H0 = np.zeros(len(x_f_pairs) * nf, dtype=gen_specs["out"]) ind = 0 for i, j in x_f_pairs: for k in range(nf + 1): if k != nf // 2: H0["x"][ind] = x0 + (k - nf / 2) * noise_h_mat[i, j] * E[i] H0["x_ind"][ind] = i H0["f_ind"][ind] = j H0["n_ind"][ind] = k ind += 1 return H0 def fd_param_finder(H, persis_info, gen_specs, libE_info): """ This generation function loops through a set of suitable finite difference parameters for a mapping F from R^n to R^m. .. seealso:: `test_persistent_fd_param_finder.py` <https://github.com/Libensemble/libensemble/blob/develop/libensemble/tests/regression_tests/test_persistent_fd_param_finder.py>`_ # noqa """ U = gen_specs["user"] p = U["p"] x0 = U["x0"] nf = U["nf"] noise_h_mat = U["noise_h_mat"] inform = np.zeros_like(noise_h_mat) Fnoise = np.zeros_like(noise_h_mat) maxnoiseits = U["maxnoiseits"] ps = PersistentSupport(libE_info, EVAL_GEN_TAG) n = len(x0) Fhist0 = np.zeros((n, p, nf + 1)) tag = None # # Request evaluations of the base point x0 at all p f_inds # H0 = np.zeros(p, dtype=gen_specs["out"]) # for j in range(p): # H0["x"][j] = x0 # H0["x_ind"][j] = -1 # Marking these to know they are the basepoint # H0["f_ind"][j] = j # H0["n_ind"][j] = nf/2 # tag, Work, calc_in = sendrecv_mgr_worker_msg(comm, H0) for i in range(n): for j in range(p): # Fhist0[i, j, nf//2] = calc_in["f_val"][calc_in["f_ind"]==j] Fhist0[i, j, nf // 2] = U["f0"][j] x_f_pairs = np.array(np.meshgrid(range(n), range(p))).T.reshape(-1, n) H0 = METHOD_NAME(x_f_pairs, gen_specs, noise_h_mat) iters = np.ones_like(noise_h_mat) tag, Work, calc_in = ps.send_recv(H0) # import matlab.engine # eng = matlab.engine.start_matlab() # Send nf points for each (x_ind, f_ind) pair while tag not in [STOP_TAG, PERSIS_STOP]: x_f_pairs = np.unique(calc_in[["x_ind", "f_ind"]]) x_f_pairs_new = [] # Update Fhist0 for i, j in x_f_pairs: for k in range(nf + 1): if k != nf / 2: logical_conds = (calc_in["x_ind"] == i, calc_in["f_ind"] == j, calc_in["n_ind"] == k) Fhist0[i, j, k] = calc_in["f_val"][np.logical_and.reduce(logical_conds)][0] # Compute noise for (i, j): # [Fnoise(i, j), ~, inform(i, j)] = ECnoise(nf-1, Fhist0(i, j, 2:nf)); # t = eng.ECnoise(nf+1, matlab.double(Fhist0[i, j, :nf+1]), nargout=3) # # Optional: check to see what would get with 2 fewer evals (requires nf>=4): # [Fnoise2(i, j), ~, inform2(i, j)] = ECnoise(nf-1, Fhist0(i, j, 2:nf)); # cmd = ["/home/jlarson/software/MATLAB/R2019a/bin/matlab", "-batch", cmd = [ "octave", "--no-window-system", "--eval", "F=[" + " ".join([f"{x:18.18f}" for x in Fhist0[i, j, : nf + 1]]) + "];" "nf=" + str(nf) + "';" "[fnoise, ~, inform] = ECnoise(nf+1, F);" "dlmwrite('fnoise.out', fnoise, 'delimiter', ' ', 'precision', 16);" "dlmwrite('inform.out', inform, 'delimiter', ' ', 'precision', 16);" "exit", ] p = subprocess.call(cmd, shell=False, stdout=subprocess.DEVNULL) inform[i, j] = np.loadtxt("inform.out") if inform[i, j] >= 2: # Mark as needing more points for this noise_h_mat value if iters[i, j] < maxnoiseits: iters[i, j] += 1 x_f_pairs_new.append((i, j)) if inform[i, j] == 3: noise_h_mat[i, j] = noise_h_mat[i, j] / 100 else: noise_h_mat[i, j] = noise_h_mat[i, j] * 100 else: # We have successfully identified the Fnoise Fnoise[i, j] = np.loadtxt("fnoise.out") os.remove("inform.out") os.remove("fnoise.out") if np.all(inform == 1): break H0 = METHOD_NAME(x_f_pairs_new, gen_specs, noise_h_mat) tag, Work, calc_in = ps.send_recv(H0) persis_info["Fnoise"] = Fnoise return H0, persis_info, FINISHED_PERSISTENT_GEN_TAG
null
4,861
import pytest from dirty_equals import IsDict from fastapi.testclient import TestClient from fastapi.utils import match_pydantic_error_url @pytest.fixture(name="client") def get_client(): from docs_src.body_multiple_params.tutorial001_an import app client = TestClient(app) return client def test_post_body_q_bar_content(client: TestClient): response = client.put("/items/5?q=bar", json={"name": "Foo", "price": 50.5}) assert response.status_code == 200 assert response.json() == { "item_id": 5, "item": { "name": "Foo", "price": 50.5, "description": None, "tax": None, }, "q": "bar", } def test_post_no_body_q_bar(client: TestClient): response = client.put("/items/5?q=bar", json=None) assert response.status_code == 200 assert response.json() == {"item_id": 5, "q": "bar"} def METHOD_NAME(client: TestClient): response = client.put("/items/5", json=None) assert response.status_code == 200 assert response.json() == {"item_id": 5} def test_post_id_foo(client: TestClient): response = client.put("/items/foo", json=None) assert response.status_code == 422 assert response.json() == IsDict( { "detail": [ { "type": "int_parsing", "loc": ["path", "item_id"], "msg": "Input should be a valid integer, unable to parse string as an integer", "input": "foo", "url": match_pydantic_error_url("int_parsing"), } ] } ) | IsDict( # TODO: remove when deprecating Pydantic v1 { "detail": [ { "loc": ["path", "item_id"], "msg": "value is not a valid integer", "type": "type_error.integer", } ] } ) def test_openapi_schema(client: TestClient): response = client.get("/openapi.json") assert response.status_code == 200, response.text assert response.json() == { "openapi": "3.1.0", "info": {"title": "FastAPI", "version": "0.1.0"}, "paths": { "/items/{item_id}": { "put": { "responses": { "200": { "description": "Successful Response", "content": {"application/json": {"schema": {}}}, }, "422": { "description": "Validation Error", "content": { "application/json": { "schema": { "$ref": "#/components/schemas/HTTPValidationError" } } }, }, }, "summary": "Update Item", "operationId": "update_item_items__item_id__put", "parameters": [ { "required": True, "schema": { "title": "The ID of the item to get", "maximum": 1000.0, "minimum": 0.0, "type": "integer", }, "name": "item_id", "in": "path", }, { "required": False, "schema": IsDict( { "anyOf": [{"type": "string"}, {"type": "null"}], "title": "Q", } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "Q", "type": "string"} ), "name": "q", "in": "query", }, ], "requestBody": { "content": { "application/json": { "schema": IsDict( { "anyOf": [ {"$ref": "#/components/schemas/Item"}, {"type": "null"}, ], "title": "Item", } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"$ref": "#/components/schemas/Item"} ) } } }, } } }, "components": { "schemas": { "Item": { "title": "Item", "required": ["name", "price"], "type": "object", "properties": { "name": {"title": "Name", "type": "string"}, "description": IsDict( { "title": "Description", "anyOf": [{"type": "string"}, {"type": "null"}], } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "Description", "type": "string"} ), "price": {"title": "Price", "type": "number"}, "tax": IsDict( { "title": "Tax", "anyOf": [{"type": "number"}, {"type": "null"}], } ) | IsDict( # TODO: remove when deprecating Pydantic v1 {"title": "Tax", "type": "number"} ), }, }, "ValidationError": { "title": "ValidationError", "required": ["loc", "msg", "type"], "type": "object", "properties": { "loc": { "title": "Location", "type": "array", "items": { "anyOf": [{"type": "string"}, {"type": "integer"}] }, }, "msg": {"title": "Message", "type": "string"}, "type": {"title": "Error Type", "type": "string"}, }, }, "HTTPValidationError": { "title": "HTTPValidationError", "type": "object", "properties": { "detail": { "title": "Detail", "type": "array", "items": {"$ref": "#/components/schemas/ValidationError"}, } }, }, } }, }
null
4,862
# Status: ported. # Base revision: 45462 # # Copyright 2003 Dave Abrahams # Copyright 2002, 2003, 2004, 2005 Vladimir Prus # Distributed under the Boost Software License, Version 1.0. # (See accompanying file LICENSE_1_0.txt or http://www.boost.org/LICENSE_1_0.txt) # Implements scanners: objects that compute implicit dependencies for # files, such as includes in C++. # # Scanner has a regular expression used to find dependencies, some # data needed to interpret those dependencies (for example, include # paths), and a code which actually established needed relationship # between actual jam targets. # # Scanner objects are created by actions, when they try to actualize # virtual targets, passed to 'virtual-target.actualize' method and are # then associated with actual targets. It is possible to use # several scanners for a virtual-target. For example, a single source # might be used by to compile actions, with different include paths. # In this case, two different actual targets will be created, each # having scanner of its own. # # Typically, scanners are created from target type and action's # properties, using the rule 'get' in this module. Directly creating # scanners is not recommended, because it might create many equvivalent # but different instances, and lead in unneeded duplication of # actual targets. However, actions can also create scanners in a special # way, instead of relying on just target type. import property import bjam import os from b2.manager import get_manager from b2.util import is_iterable_typed def reset (): """ Clear the module state. This is mainly for testing purposes. """ global __scanners, __rv_cache, __scanner_cache # Maps registered scanner classes to relevant properties __scanners = {} # A cache of scanners. # The key is: class_name.properties_tag, where properties_tag is the concatenation # of all relevant properties, separated by '-' __scanner_cache = {} reset () def register(scanner_class, relevant_properties): """ Registers a new generator class, specifying a set of properties relevant to this scanner. Ctor for that class should have one parameter: list of properties. """ assert issubclass(scanner_class, Scanner) assert isinstance(relevant_properties, basestring) __scanners[str(scanner_class)] = relevant_properties def registered(scanner_class): """ Returns true iff a scanner of that class is registered """ return str(scanner_class) in __scanners def METHOD_NAME(scanner_class, properties): """ Returns an instance of previously registered scanner with the specified properties. """ assert issubclass(scanner_class, Scanner) assert is_iterable_typed(properties, basestring) scanner_name = str(scanner_class) if not registered(scanner_name): raise BaseException ("attempt to get unregistered scanner: %s" % scanner_name) relevant_properties = __scanners[scanner_name] r = property.select(relevant_properties, properties) scanner_id = scanner_name + '.' + '-'.join(r) if scanner_id not in __scanner_cache: __scanner_cache[scanner_id] = scanner_class(r) return __scanner_cache[scanner_id] class Scanner: """ Base scanner class. """ def __init__ (self): pass def pattern (self): """ Returns a pattern to use for scanning. """ raise BaseException ("method must be overridden") def process (self, target, matches, binding): """ Establish necessary relationship between targets, given actual target being scanned, and a list of pattern matches in that file. """ raise BaseException ("method must be overridden") # Common scanner class, which can be used when there's only one # kind of includes (unlike C, where "" and <> includes have different # search paths). class CommonScanner(Scanner): def __init__ (self, includes): Scanner.__init__(self) self.includes = includes def process(self, target, matches, binding): target_path = os.path.normpath(os.path.dirname(binding[0])) bjam.call("mark-included", target, matches) get_manager().engine().set_target_variable(matches, "SEARCH", [target_path] + self.includes) get_manager().scanners().propagate(self, matches) class ScannerRegistry: def __init__ (self, manager): self.manager_ = manager self.count_ = 0 self.exported_scanners_ = {} def install (self, scanner, target, vtarget): """ Installs the specified scanner on actual target 'target'. vtarget: virtual target from which 'target' was actualized. """ assert isinstance(scanner, Scanner) assert isinstance(target, basestring) assert isinstance(vtarget, basestring) engine = self.manager_.engine() engine.set_target_variable(target, "HDRSCAN", scanner.pattern()) if scanner not in self.exported_scanners_: exported_name = "scanner_" + str(self.count_) self.count_ = self.count_ + 1 self.exported_scanners_[scanner] = exported_name bjam.import_rule("", exported_name, scanner.process) else: exported_name = self.exported_scanners_[scanner] engine.set_target_variable(target, "HDRRULE", exported_name) # scanner reflects difference in properties affecting # binding of 'target', which will be known when processing # includes for it, will give information on how to # interpret quoted includes. engine.set_target_variable(target, "HDRGRIST", str(id(scanner))) pass def propagate(self, scanner, targets): assert isinstance(scanner, Scanner) assert is_iterable_typed(targets, basestring) or isinstance(targets, basestring) engine = self.manager_.engine() engine.set_target_variable(targets, "HDRSCAN", scanner.pattern()) engine.set_target_variable(targets, "HDRRULE", self.exported_scanners_[scanner]) engine.set_target_variable(targets, "HDRGRIST", str(id(scanner)))
null
4,863
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2021 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + # This file is part of the mantid workbench. from matplotlib import rcParams from matplotlib.font_manager import FontProperties from mantid.plots.legend import LegendProperties from mantid.plots.utility import convert_color_to_hex from workbench.plotting.plotscriptgenerator.utils import convert_args_to_string # Default values of all options that are accessible via the legend tab in the plot settings. mpl_default_kwargs = { "visible": True, "title": "", "background_color": convert_color_to_hex(rcParams["axes.facecolor"]), # inherits from axes by default "edge_color": convert_color_to_hex(rcParams["legend.edgecolor"]), "transparency": rcParams["legend.framealpha"], "entries_font": "DejaVu Sans", "entries_size": rcParams["legend.fontsize"], "entries_color": "#000000", "title_font": "DejaVu Sans", "title_size": rcParams["axes.labelsize"], # Uses axes size by default "title_color": "#000000", "marker_size": rcParams["legend.handlelength"], "box_visible": rcParams["legend.frameon"], "shadow": rcParams["legend.shadow"], "round_edges": rcParams["legend.fancybox"], "columns": 1, "column_spacing": rcParams["legend.columnspacing"], "label_spacing": rcParams["legend.labelspacing"], "marker_position": "Left of Entries", "markers": rcParams["legend.numpoints"], "border_padding": rcParams["legend.borderpad"], "marker_label_padding": rcParams["legend.handletextpad"], } # Dictionary to convert from the mantid legend interface to matplotlib legend argument names. MANTID_TO_MPL = { "background_color": "facecolor", "edge_color": "edgecolor", "transparency": "framealpha", "entries_size": "fontsize", "columns": "ncol", "markers": "numpoints", "marker_position": "markerfirst", "box_visible": "frameon", "round_edges": "fancybox", "shadow": "shadow", "title": "title", "border_padding": "borderpad", "label_spacing": "labelspacing", "marker_size": "handlelength", "marker_label_padding": "handletextpad", "column_spacing": "columnspacing", } def generate_legend_commands(legend): """ Generates a string containing a comma separated list of kwargs to set legend properties. """ kwargs = get_legend_command_kwargs(legend) return convert_args_to_string([], kwargs) def generate_title_font_commands(legend, legend_object_var): """ Generate commands for setting properties for the legend title font. """ title_commands = [] kwargs = LegendProperties.from_legend(legend) _remove_kwargs_if_default(kwargs) if "title_font" in kwargs: title_commands.append(legend_object_var + ".get_title().set_fontname('" + kwargs["title_font"] + "')") if "title_color" in kwargs: title_commands.append(legend_object_var + ".get_title().set_color('" + kwargs["title_color"] + "')") if "title_size" in kwargs: title_commands.append(legend_object_var + ".get_title().set_fontsize('" + str(kwargs["title_size"]) + "')") return title_commands def generate_label_font_commands(legend, legend_object_var): """ Generate python commands for setting the legend text label properties. The size is not present here because it is already included in the list of legend properties. """ label_commands = [] kwargs = LegendProperties.from_legend(legend) _remove_kwargs_if_default(kwargs) if "entries_font" in kwargs: label_commands.append("[label.set_fontname('" + kwargs["entries_font"] + "') for label in " + legend_object_var + ".get_texts()]") if "entries_color" in kwargs: label_commands.append("[label.set_color('" + kwargs["entries_color"] + "') for label in " + legend_object_var + ".get_texts()]") return label_commands def METHOD_NAME(legend, legend_object_var): """ Returns a command to set the visibility of the legend if it's different to the default value. It's returned as a list for convenience, so it can be added to the end of a list without checking if it's empty. """ visible_command = [] kwargs = LegendProperties.from_legend(legend) _remove_kwargs_if_default(kwargs) if "visible" in kwargs: visible_command.append(legend_object_var + ".set_visible(" + str(kwargs["visible"]) + ")") return visible_command def get_legend_command_kwargs(legend): """ Returns a list of matplotlib legend kwargs, removing any that are default values. """ kwargs = LegendProperties.from_legend(legend) _remove_kwargs_if_default(kwargs) # Convert the kwargs to the matplotlib ones. return get_mpl_kwargs(kwargs) def get_mpl_kwargs(kwargs): """ Keep only matplotlib legend kwargs, and convert the keys to matplotlib compatible ones. """ mpl_kwargs = {} for key, value in kwargs.items(): if key in MANTID_TO_MPL: mpl_kwargs[MANTID_TO_MPL[key]] = value # The markerfirst kwarg is a boolean in matplotlib, so need to convert it. if "markerfirst" in mpl_kwargs: mpl_kwargs["markerfirst"] = mpl_kwargs["markerfirst"] == "Left of Entries" return mpl_kwargs def _remove_kwargs_if_default(kwargs): """ Remove kwargs from the given dict if they're the default values """ for kwarg, default_value in mpl_default_kwargs.items(): if kwargs[kwarg] == default_value: kwargs.pop(kwarg) # Font size defaults are string values (e.g. 'medium', 'large', 'x-large'), so we need to convert the defaults to # point sizes before comparing. if "title_size" in kwargs: if convert_to_point_size(kwargs["title_size"]) == convert_to_point_size(mpl_default_kwargs["title_size"]): kwargs.pop("title_size") if "entries_size" in kwargs: if convert_to_point_size(kwargs["entries_size"]) == convert_to_point_size(mpl_default_kwargs["entries_size"]): kwargs.pop("entries_size") # Hex values of colours may not be the same case, so convert to lower before comparing. if "background_color" in kwargs: if kwargs["background_color"].lower() == mpl_default_kwargs["background_color"].lower(): kwargs.pop("background_color") if "edge_color" in kwargs: if kwargs["edge_color"].lower() == mpl_default_kwargs["edge_color"].lower(): kwargs.pop("edge_color") def convert_to_point_size(font_size): """ Convert font size (may be int or string, e.g. 'medium', 'large', ...) to point size. """ font = FontProperties() font.set_size(font_size) return font.get_size_in_points()
null
4,864
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2023, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import json import uuid from unittest.mock import patch from pgadmin.browser.server_groups.servers.databases.schemas.tables.tests \ import utils as tables_utils from pgadmin.browser.server_groups.servers.databases.schemas.tests import \ utils as schema_utils from pgadmin.browser.server_groups.servers.databases.tests import utils as \ database_utils from pgadmin.utils.route import BaseTestGenerator from regression import parent_node_dict from regression.python_test_utils import test_utils as utils from pgadmin.utils import server_utils from . import utils as columns_utils class ColumnAddTestCase(BaseTestGenerator): """This class will add new column under table node.""" url = '/browser/column/obj/' # Generates scenarios scenarios = utils.generate_scenarios("column_create", columns_utils.test_cases) def setUp(self): super().setUp() # Load test data self.data = self.test_data # Create db self.db_name = parent_node_dict["database"][-1]["db_name"] schema_info = parent_node_dict["schema"][-1] self.server_id = schema_info["server_id"] self.db_id = schema_info["db_id"] # Check DB version if "server_min_version" in self.data: server_con = server_utils.connect_server(self, self.server_id) if not server_con["info"] == "Server connected.": raise Exception("Could not connect to server to add " "a table.") if server_con["data"]["version"] < \ self.data["server_min_version"]: self.skipTest(self.data["skip_msg"]) # Create db connection db_con = database_utils.connect_database(self, utils.SERVER_GROUP, self.server_id, self.db_id) if not db_con['data']["connected"]: raise Exception("Could not connect to database to add a table.") # Create schema self.schema_id = schema_info["schema_id"] self.schema_name = schema_info["schema_name"] schema_response = schema_utils.verify_schemas(self.server, self.db_name, self.schema_name) if not schema_response: raise Exception("Could not find the schema to add a table.") # Create table self.table_name = "table_column_%s" % (str(uuid.uuid4())[1:8]) self.table_id = tables_utils.create_table(self.server, self.db_name, self.schema_name, self.table_name) def METHOD_NAME(self): """This function will add column under table node.""" if "name" in self.data: self.data["name"] = self.data["name"] + (str(uuid.uuid4())[1:8]) if self.is_positive_test: response = columns_utils.api_create(self) # Assert response utils.assert_status_code(self, response) # Verify in backend self.assertIsNotNone(columns_utils.verify_column (self.server, self.db_name, self.data["name"]), "Column not found") else: if self.mocking_required: with patch(self.mock_data["function_name"], side_effect=eval(self.mock_data["return_value"])): response = columns_utils.api_create(self) else: if 'table_id' in self.data: self.table_id = self.data['table_id'] response = columns_utils.api_create(self) # Assert response utils.assert_status_code(self, response) utils.assert_error_message(self, response) def tearDown(self): # Disconnect the database database_utils.disconnect_database(self, self.server_id, self.db_id)
null
4,865
# Copyright (C) 2015 Canonical Ltd. # Copyright (C) 2015 VMware Inc. # # Author: Sankar Tanguturi <[email protected]> # # This file is part of cloud-init. See LICENSE file for license information. from cloudinit.sources.helpers.vmware.imc.nic import Nic class Config: """ Stores the Contents specified in the Customization Specification file. """ CUSTOM_SCRIPT = "CUSTOM-SCRIPT|SCRIPT-NAME" DNS = "DNS|NAMESERVER|" DOMAINNAME = "NETWORK|DOMAINNAME" HOSTNAME = "NETWORK|HOSTNAME" MARKERID = "MISC|MARKER-ID" PASS = "PASSWORD|-PASS" RESETPASS = "PASSWORD|RESET" SUFFIX = "DNS|SUFFIX|" TIMEZONE = "DATETIME|TIMEZONE" UTC = "DATETIME|UTC" POST_GC_STATUS = "MISC|POST-GC-STATUS" DEFAULT_RUN_POST_SCRIPT = "MISC|DEFAULT-RUN-POST-CUST-SCRIPT" CLOUDINIT_META_DATA = "CLOUDINIT|METADATA" CLOUDINIT_USER_DATA = "CLOUDINIT|USERDATA" CLOUDINIT_INSTANCE_ID = "CLOUDINIT|INSTANCE-ID" def __init__(self, configFile): self._configFile = configFile @property def host_name(self): """Return the hostname.""" return self._configFile.get(Config.HOSTNAME, None) @property def domain_name(self): """Return the domain name.""" return self._configFile.get(Config.DOMAINNAME, None) @property def timezone(self): """Return the timezone.""" return self._configFile.get(Config.TIMEZONE, None) @property def admin_password(self): """Return the root password to be set.""" return self._configFile.get(Config.PASS, None) @property def name_servers(self): """Return the list of DNS servers.""" res = [] cnt = self._configFile.get_count_with_prefix(Config.DNS) for i in range(1, cnt + 1): key = Config.DNS + str(i) res.append(self._configFile[key]) return res @property def dns_suffixes(self): """Return the list of DNS Suffixes.""" res = [] cnt = self._configFile.get_count_with_prefix(Config.SUFFIX) for i in range(1, cnt + 1): key = Config.SUFFIX + str(i) res.append(self._configFile[key]) return res @property def nics(self): """Return the list of associated NICs.""" res = [] nics = self._configFile["NIC-CONFIG|NICS"] for nic in nics.split(","): res.append(Nic(nic, self._configFile)) return res @property def reset_password(self): """Retreives if the root password needs to be reset.""" resetPass = self._configFile.get(Config.RESETPASS, "no") resetPass = resetPass.lower() if resetPass not in ("yes", "no"): raise ValueError("ResetPassword value should be yes/no") return resetPass == "yes" @property def METHOD_NAME(self): """Returns marker id.""" return self._configFile.get(Config.MARKERID, None) @property def custom_script_name(self): """Return the name of custom (pre/post) script.""" return self._configFile.get(Config.CUSTOM_SCRIPT, None) @property def post_gc_status(self): """Return whether to post guestinfo.gc.status VMX property.""" postGcStatus = self._configFile.get(Config.POST_GC_STATUS, "no") postGcStatus = postGcStatus.lower() if postGcStatus not in ("yes", "no"): raise ValueError("PostGcStatus value should be yes/no") return postGcStatus == "yes" @property def default_run_post_script(self): """ Return enable-custom-scripts default value if enable-custom-scripts is absent in VM Tools configuration """ defaultRunPostScript = self._configFile.get( Config.DEFAULT_RUN_POST_SCRIPT, "no" ) defaultRunPostScript = defaultRunPostScript.lower() if defaultRunPostScript not in ("yes", "no"): raise ValueError("defaultRunPostScript value should be yes/no") return defaultRunPostScript == "yes" @property def meta_data_name(self): """Return the name of cloud-init meta data.""" return self._configFile.get(Config.CLOUDINIT_META_DATA, None) @property def user_data_name(self): """Return the name of cloud-init user data.""" return self._configFile.get(Config.CLOUDINIT_USER_DATA, None) @property def instance_id(self): """Return instance id""" return self._configFile.get(Config.CLOUDINIT_INSTANCE_ID, None) # vi: ts=4 expandtab
null
4,866
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetDashboardResult', 'AwaitableGetDashboardResult', 'get_dashboard', 'get_dashboard_output', ] @pulumi.output_type class GetDashboardResult: """ A collection of values returned by getDashboard. """ def __init__(__self__, dashboard_properties=None, display_name=None, id=None, location=None, name=None, resource_group_name=None, METHOD_NAME=None): if dashboard_properties and not isinstance(dashboard_properties, str): raise TypeError("Expected argument 'dashboard_properties' to be a str") pulumi.set(__self__, "dashboard_properties", dashboard_properties) if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") pulumi.set(__self__, "display_name", display_name) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if location and not isinstance(location, str): raise TypeError("Expected argument 'location' to be a str") pulumi.set(__self__, "location", location) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if resource_group_name and not isinstance(resource_group_name, str): raise TypeError("Expected argument 'resource_group_name' to be a str") pulumi.set(__self__, "resource_group_name", resource_group_name) if METHOD_NAME and not isinstance(METHOD_NAME, dict): raise TypeError("Expected argument 'tags' to be a dict") pulumi.set(__self__, "tags", METHOD_NAME) @property @pulumi.getter(name="dashboardProperties") def dashboard_properties(self) -> str: """ JSON data representing dashboard body. """ return pulumi.get(self, "dashboard_properties") @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[str]: return pulumi.get(self, "display_name") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter def location(self) -> str: """ The Azure Region where the shared Azure Portal dashboard exists. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> Optional[str]: return pulumi.get(self, "name") @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> str: return pulumi.get(self, "resource_group_name") @property @pulumi.getter def METHOD_NAME(self) -> Mapping[str, str]: """ A mapping of tags assigned to the shared Azure Portal dashboard. """ return pulumi.get(self, "tags") class AwaitableGetDashboardResult(GetDashboardResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetDashboardResult( dashboard_properties=self.dashboard_properties, display_name=self.display_name, id=self.id, location=self.location, name=self.name, resource_group_name=self.resource_group_name, METHOD_NAME=self.METHOD_NAME) def get_dashboard(dashboard_properties: Optional[str] = None, display_name: Optional[str] = None, name: Optional[str] = None, resource_group_name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetDashboardResult: """ Use this data source to access information about an existing shared dashboard in the Azure Portal. This is the data source of the `portal.Dashboard` resource. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.portal.get_dashboard(name="existing-dashboard", resource_group_name="dashboard-rg") pulumi.export("id", data["azurerm_dashboard"]["example"]["id"]) ``` :param str dashboard_properties: JSON data representing dashboard body. :param str display_name: Specifies the display name of the shared Azure Portal Dashboard. :param str name: Specifies the name of the shared Azure Portal Dashboard. :param str resource_group_name: Specifies the name of the resource group the shared Azure Portal Dashboard is located in. """ __args__ = dict() __args__['dashboardProperties'] = dashboard_properties __args__['displayName'] = display_name __args__['name'] = name __args__['resourceGroupName'] = resource_group_name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure:portal/getDashboard:getDashboard', __args__, opts=opts, typ=GetDashboardResult).value return AwaitableGetDashboardResult( dashboard_properties=pulumi.get(__ret__, 'dashboard_properties'), display_name=pulumi.get(__ret__, 'display_name'), id=pulumi.get(__ret__, 'id'), location=pulumi.get(__ret__, 'location'), name=pulumi.get(__ret__, 'name'), resource_group_name=pulumi.get(__ret__, 'resource_group_name'), METHOD_NAME=pulumi.get(__ret__, 'tags')) @_utilities.lift_output_func(get_dashboard) def get_dashboard_output(dashboard_properties: Optional[pulumi.Input[Optional[str]]] = None, display_name: Optional[pulumi.Input[Optional[str]]] = None, name: Optional[pulumi.Input[Optional[str]]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetDashboardResult]: """ Use this data source to access information about an existing shared dashboard in the Azure Portal. This is the data source of the `portal.Dashboard` resource. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.portal.get_dashboard(name="existing-dashboard", resource_group_name="dashboard-rg") pulumi.export("id", data["azurerm_dashboard"]["example"]["id"]) ``` :param str dashboard_properties: JSON data representing dashboard body. :param str display_name: Specifies the display name of the shared Azure Portal Dashboard. :param str name: Specifies the name of the shared Azure Portal Dashboard. :param str resource_group_name: Specifies the name of the resource group the shared Azure Portal Dashboard is located in. """ ...
null
4,867
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import numpy as np import pytest from mindspore import context, Tensor import mindspore.ops.operations.image_ops as P from mindspore import nn class NetCropAndResizeGradBoxes(nn.Cell): def __init__(self, method_="bilinear"): super(NetCropAndResizeGradBoxes, self).__init__() self.op = P.CropAndResizeGradBoxes(method_) def construct(self, grads, images, boxes, box_index): return self.op(grads, images, boxes, box_index) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize("image_type", [np.uint8, np.uint16, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]) def METHOD_NAME(image_type): """ Feature: Test CropAndResizeGradBoxes. Description: grads, boxes type is float32, output type is float32. Expectation: Check it by expected_output variable. """ context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") others_type = np.float32 batch_size = 2 image_height = 32 image_width = 18 channels = 3 crop_height = 8 crop_width = 9 num_boxes = 2 total_values_1 = num_boxes * crop_height * crop_width * channels input_grads = 1e-5 * np.arange(0, total_values_1).reshape((num_boxes, crop_height, crop_width, channels)) total_values_2 = batch_size * image_height * image_width * channels input_image_tmp = np.arange(0, 256) div = total_values_2 // 256 mod = total_values_2 % 256 input_image = np.append(np.repeat(input_image_tmp, div), input_image_tmp[:mod]).reshape( (batch_size, image_height, image_width, channels)) input_boxes = np.array([[0.1, 0.5, 0.5, 0.0], [0.1, 0, 0.75, 1.75]]) input_box_index = np.array([1, 0]).astype(np.int32) input_grads_tensor = Tensor(input_grads.astype(others_type)) input_image_tensor = Tensor(input_image.astype(image_type)) input_boxes_tensor = Tensor(input_boxes.astype(others_type)) input_box_index_tensor = Tensor(input_box_index) net = NetCropAndResizeGradBoxes() output = net(input_grads_tensor, input_image_tensor, input_boxes_tensor, input_box_index_tensor) output_ms = output.asnumpy() expected_output = np.array([[9.326791763305664, 0.4429844617843628, 20.578969955444336, 0.3551655411720276], [21.320859909057617, 0.7584426403045654, 27.210113525390625, 0.38604485988616943]]).astype(others_type) error = np.ones(shape=[num_boxes, 4]) * 1.0e-4 diff = output_ms - expected_output assert np.all(abs(diff) < error) @pytest.mark.level1 @pytest.mark.platform_x86_gpu_training @pytest.mark.env_onecard @pytest.mark.parametrize("image_type", [np.uint8, np.uint16, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]) def test_crop_and_resize_grad_boxes_float64(image_type): """ Feature: Test CropAndResizeGradBoxes. Description: grads, boxes type is float64, output type is float64. Expectation: Check it by expected_output variable. """ context.set_context(mode=context.GRAPH_MODE, device_target="GPU") others_type = np.float64 batch_size = 2 image_height = 34 image_width = 34 channels = 3 crop_height = 7 crop_width = 7 num_boxes = 2 total_values_1 = num_boxes * crop_height * crop_width * channels input_grads = 1e-5 * np.arange(0, total_values_1).reshape((num_boxes, crop_height, crop_width, channels)) total_values_2 = batch_size * image_height * image_width * channels input_image_tmp = np.arange(0, 256) div = total_values_2 // 256 mod = total_values_2 % 256 input_image = np.append(np.repeat(input_image_tmp, div), input_image_tmp[:mod]).reshape( (batch_size, image_height, image_width, channels)) input_boxes = np.array([[0.1, 0.5, 0.5, 0.7], [0.1, 0, 0.75, 0.85]]) input_box_index = np.array([0, 1]).astype(np.int32) input_grads_tensor = Tensor(input_grads.astype(others_type)) input_image_tensor = Tensor(input_image.astype(image_type)) input_boxes_tensor = Tensor(input_boxes.astype(others_type)) input_box_index_tensor = Tensor(input_box_index) net = NetCropAndResizeGradBoxes() output = net(input_grads_tensor, input_image_tensor, input_boxes_tensor, input_box_index_tensor) output_ms = output.asnumpy() expected_output = np.array([[4.165656089782715, 0.12503701448440552, 9.360515594482422, 0.20364297926425934], [18.26944351196289, 0.6215707063674927, 23.362707138061523, 1.013537049293518]]).astype(others_type) error = np.ones(shape=[num_boxes, 4]) * 1.0e-5 diff = output_ms - expected_output assert np.all(abs(diff) < error)
null
4,868
#!/usr/bin/env python3 # This file is part of cloud-init. See LICENSE file for license information. """Debug network config format conversions.""" import argparse import json import os import sys import yaml from cloudinit import distros, log, safeyaml from cloudinit.net import ( eni, netplan, network_manager, network_state, networkd, sysconfig, ) from cloudinit.sources import DataSourceAzure as azure from cloudinit.sources.helpers import openstack from cloudinit.sources.helpers.vmware.imc import guestcust_util NAME = "net-convert" def METHOD_NAME(parser=None): """Build or extend and arg parser for net-convert utility. @param parser: Optional existing ArgumentParser instance representing the subcommand which will be extended to support the args of this utility. @returns: ArgumentParser with proper argument configuration. """ if not parser: parser = argparse.ArgumentParser(prog=NAME, description=__doc__) parser.add_argument( "-p", "--network-data", type=open, metavar="PATH", required=True, help="The network configuration to read", ) parser.add_argument( "-k", "--kind", choices=[ "eni", "network_data.json", "yaml", "azure-imds", "vmware-imc", ], required=True, help="The format of the given network config", ) parser.add_argument( "-d", "--directory", metavar="PATH", help="directory to place output in", required=True, ) parser.add_argument( "-D", "--distro", choices=[ item for sublist in distros.OSFAMILIES.values() for item in sublist ], required=True, ) parser.add_argument( "-m", "--mac", metavar="name,mac", action="append", help="interface name to mac mapping", ) parser.add_argument( "--debug", action="store_true", help="enable debug logging to stderr." ) parser.add_argument( "-O", "--output-kind", choices=["eni", "netplan", "networkd", "sysconfig", "network-manager"], required=True, help="The network config format to emit", ) return parser def handle_args(name, args): if not args.directory.endswith("/"): args.directory += "/" if not os.path.isdir(args.directory): os.makedirs(args.directory) if args.debug: log.setupBasicLogging(level=log.DEBUG) else: log.setupBasicLogging(level=log.WARN) if args.mac: known_macs = {} for item in args.mac: iface_name, iface_mac = item.split(",", 1) known_macs[iface_mac] = iface_name else: known_macs = None net_data = args.network_data.read() if args.kind == "eni": pre_ns = eni.convert_eni_data(net_data) elif args.kind == "yaml": pre_ns = safeyaml.load(net_data) if "network" in pre_ns: pre_ns = pre_ns.get("network") if args.debug: sys.stderr.write( "\n".join(["Input YAML", safeyaml.dumps(pre_ns), ""]) ) elif args.kind == "network_data.json": pre_ns = openstack.convert_net_json( json.loads(net_data), known_macs=known_macs ) elif args.kind == "azure-imds": pre_ns = azure.generate_network_config_from_instance_network_metadata( json.loads(net_data)["network"] ) elif args.kind == "vmware-imc": config = guestcust_util.Config( guestcust_util.ConfigFile(args.network_data.name) ) pre_ns = guestcust_util.get_network_data_from_vmware_cust_cfg( config, False ) distro_cls = distros.fetch(args.distro) distro = distro_cls(args.distro, {}, None) if args.output_kind == "eni": r_cls = eni.Renderer config = distro.renderer_configs.get("eni") elif args.output_kind == "netplan": r_cls = netplan.Renderer config = distro.renderer_configs.get("netplan", {}) # don't run netplan generate/apply config["postcmds"] = False # trim leading slash config["netplan_path"] = config["netplan_path"][1:] # enable some netplan features config["features"] = ["dhcp-use-domains", "ipv6-mtu"] elif args.output_kind == "networkd": r_cls = networkd.Renderer config = distro.renderer_configs.get("networkd") elif args.output_kind == "sysconfig": r_cls = sysconfig.Renderer config = distro.renderer_configs.get("sysconfig") elif args.output_kind == "network-manager": r_cls = network_manager.Renderer config = distro.renderer_configs.get("network-manager") else: raise RuntimeError("Invalid output_kind") r = r_cls(config=config) ns = network_state.parse_net_config_data(pre_ns, renderer=r) if args.debug: sys.stderr.write("\n".join(["", "Internal State", yaml.dump(ns), ""])) sys.stderr.write( "".join( [ "Read input format '%s' from '%s'.\n" % (args.kind, args.network_data.name), "Wrote output format '%s' to '%s'\n" % (args.output_kind, args.directory), ] ) + "\n" ) r.render_network_state(network_state=ns, target=args.directory) if __name__ == "__main__": args = METHOD_NAME().parse_args() handle_args(NAME, args)
null
4,869
import os import shutil from pathlib import Path from typing import List, Optional import git from opal_common.security.tarsafe import TarSafe from pydantic.error_wrappers import ValidationError class TarFileToLocalGitExtractor: """This class takes tar file from remote api source and extract it to local git, so we could manage update to opal clients. Args: local_clone_path(str): path for the local git to manage policies tmp_bundle_path(Path): path to download bundle from api source """ def __init__( self, local_clone_path: str, tmp_bundle_path: Path, policy_bundle_git_add_pattern="*", ): self.local_clone_path = local_clone_path self.tmp_bundle_path = tmp_bundle_path self.policy_bundle_git_add_pattern = policy_bundle_git_add_pattern def METHOD_NAME( self, init_commit_msg: str = "Init", should_init: bool = False ): """ Commit first version of bundle or the updates that come after Args: init_commit_msg(str): text of the commit msg should_init(Path): should it init the repo or it is existing repo """ if should_init: local_git = git.Repo.init(self.local_clone_path) else: local_git = git.Repo(self.local_clone_path) prev_commit = None if len(local_git.index.repo.heads): prev_commit = local_git.index.repo.head.commit local_git.index.add(self.policy_bundle_git_add_pattern) new_commit = local_git.index.commit(init_commit_msg) return local_git, prev_commit, new_commit def create_local_git(self): """Extract bundle create local git and commit this initial state.""" self.extract_bundle_tar() local_git = TarFileToLocalGitExtractor.is_git_repo(self.local_clone_path) if not local_git or len(local_git.heads) == 0: local_git = self.METHOD_NAME(should_init=True) return local_git def extract_bundle_to_local_git(self, commit_msg: str): """ Update local git with new bundle Args: commit_msg(str): text of the commit msg """ tmp_path = f"{self.local_clone_path}.bak" os.rename(self.local_clone_path, tmp_path) try: self.extract_bundle_tar() shutil.move( os.path.join(tmp_path, ".git"), os.path.join(self.local_clone_path, ".git"), ) finally: shutil.rmtree(tmp_path) local_git, prev_commit, new_commit = self.METHOD_NAME(commit_msg) return local_git, prev_commit, new_commit def extract_bundle_tar(self, mode: str = "r:gz") -> bool: """ Extract bundle tar, tar path is at self.tmp_bundle_path Uses TarSafe that checks that our bundle file don't have vulnerabilities like path traversal Args: mode(str): mode for TarSafe default to r:gz that can open tar.gz files """ with TarSafe.open(self.tmp_bundle_path, mode=mode) as tar_file: tar_file_names = tar_file.getnames() TarFileToLocalGitExtractor.validate_tar_or_throw(tar_file_names) tar_file.extractall(path=self.local_clone_path) @staticmethod def is_git_repo(path) -> Optional[git.Repo]: """ Checks is this path is a git repo if it is return Repo obj Return: Repo obj if it is a git repo if not returns None """ local_git = False try: local_git = git.Repo(path) _ = local_git.git_dir return local_git except Exception: return None @staticmethod def validate_tar_or_throw( tar_file_names: List[str], forbidden_filename: str = ".git" ): if len(tar_file_names) == 0: raise ValidationError("No files in bundle") if forbidden_filename and forbidden_filename in tar_file_names: raise ValidationError( "No {forbidden_filename} files are allowed in OPAL api bundle".format( forbidden_filename=forbidden_filename ) )
null
4,870
# -*- coding: utf-8 -*- """elegant lattice parser. :copyright: Copyright (c) 2015 RadiaSoft LLC. All Rights Reserved. :license: http://www.apache.org/licenses/LICENSE-2.0.html """ from __future__ import absolute_import, division, print_function from pykern.pkcollections import PKDict from pykern.pkdebug import pkdc, pkdlog, pkdp import re from sirepo.template.line_parser import LineParser # a map of old elegant names to the new name _FIELD_ALIAS = PKDict(bmax="b_max") def METHOD_NAME(lattice_text, rpn_variables, maxId=0): parser = LineParser(maxId) lines = lattice_text.replace("\r", "").split("\n") prev_line = "" models = PKDict( beamlines=[], elements=[], default_beamline_name=None, rpnVariables=PKDict(), ) for line in lines: parser.increment_line_number() if re.search(r"^\s*\!", line): continue if re.search(r"\&\s*$", line): prev_line += re.sub(r"(\s*\&\s*)$", "", line) continue if not _parse_line(parser, prev_line + line, models): break prev_line = "" models["rpnVariables"] = [ PKDict(name=k, value=v) for k, v in models.rpnVariables.items() ] + rpn_variables return models def _parse_beamline(parser, name): parser.assert_char("=") return PKDict( name=name, id=parser.next_id(), items=_parse_beamline_items(parser), ) def _parse_beamline_items(parser): parser.assert_char("(") items = [] while True: value = parser.parse_value() if not value: if parser.peek_char() == ",": parser.assert_char(",") continue parser.raise_error("expecting beamline element") if re.search(r"^[0-9]+$", value): repeat_count = int(value) parser.assert_char("*") if parser.peek_char() == "(": repeat_items = _parse_beamline_items(parser) else: repeat_items = [parser.parse_value()] for _ in range(repeat_count): for item in repeat_items: items.append(item) else: items.append(value) if parser.peek_char() == ",": parser.assert_char(",") else: break parser.assert_char(")") return items def _parse_element(parser, name, type): el = PKDict( _id=parser.next_id(), type=type, name=name, ) while parser.peek_char() == ",": parser.assert_char(",") field = parser.parse_value() if not field: parser.assert_end_of_line() if parser.peek_char() == "=": parser.assert_char("=") f = field.lower() if f in _FIELD_ALIAS: f = _FIELD_ALIAS[f] el[f] = parser.parse_value() return el def _parse_line(parser, line, models): line = line.lstrip() # strip comments line = re.sub(r"\s!.*$", "", line) # ignore end of line ';' line = re.sub(r";\s*$", "", line) parser.set_line(line) name = "" while parser.peek_char() == ":": # need to strip leading ':' and add to name, used as value break below parser.assert_char(":") name += ":" name += parser.parse_value(r"[:\s,=)*]") if re.search(r"^\%", name): # rpn value line = re.sub(r"\s*%\s*", "", line) line = re.sub(r"\s+", " ", line) _save_rpn_variables(line, models["rpnVariables"]) return True if not name or not re.search(r"[:0-9A-Z]", name[0], re.IGNORECASE): if name and name.upper() == "#INCLUDE": parser.raise_error("#INCLUDE files not supported") return True if parser.peek_char() != ":": if name.upper() == "USE" and parser.peek_char() == ",": parser.assert_char(",") models["default_beamline_name"] = parser.parse_value() return True if name.upper() == "RETURN": return False # ignore non-definition lines return True parser.assert_char(":") type = parser.parse_value() if not type: parser.raise_error("expected type") if type.upper() == "LINE": models["beamlines"].append(_parse_beamline(parser, name)) else: models["elements"].append(_parse_element(parser, name, type)) parser.assert_end_of_line() return True def _save_rpn_variables(line, rpn_variables): m = re.match(r"(.*) sto ((\S+).*)", line) if m: val = _save_rpn_variables(m.group(1), rpn_variables) var = m.group(3) rpn_variables[var] = val return m.group(2) return line
null
4,871
""" Test basic functionality of olevba[3] """ import unittest import os from os.path import join, splitext import re import json # Directory with test data, independent of current working directory from tests.test_utils import DATA_BASE_DIR, call_and_capture class TestOlevbaBasic(unittest.TestCase): """Tests olevba basic functionality""" def test_text_behaviour(self): """Test behaviour of olevba when presented with pure text file.""" self.do_test_behaviour('text') def test_empty_behaviour(self): """Test behaviour of olevba when presented with pure text file.""" self.do_test_behaviour('empty') def do_test_behaviour(self, filename): """Helper for test_{text,empty}_behaviour.""" input_file = join(DATA_BASE_DIR, 'basic', filename) output, _ = call_and_capture('olevba', args=(input_file, )) # check output self.assertTrue(re.search(r'^Type:\s+Text\s*$', output, re.MULTILINE), msg='"Type: Text" not found in output:\n' + output) self.assertTrue(re.search(r'^No suspicious .+ found.$', output, re.MULTILINE), msg='"No suspicous...found" not found in output:\n' + \ output) self.assertNotIn('error', output.lower()) # check warnings for line in output.splitlines(): if line.startswith('WARNING ') and 'encrypted' in line: continue # encryption warnings are ok elif 'warn' in line.lower(): raise self.fail('Found "warn" in output line: "{}"' .format(line.rstrip())) # TODO: I disabled this test because we do not log "not encrypted" as warning anymore # to avoid other issues. # If we really want to test this, then the test should be run with log level INFO: # self.assertIn('not encrypted', output) def test_rtf_behaviour(self): """Test behaviour of olevba when presented with an rtf file.""" input_file = join(DATA_BASE_DIR, 'msodde', 'RTF-Spec-1.7.rtf') output, ret_code = call_and_capture('olevba', args=(input_file, ), accept_nonzero_exit=True) # check that return code is olevba.RETURN_OPEN_ERROR self.assertEqual(ret_code, 5) # check output: self.assertIn('FileOpenError', output) self.assertIn('is RTF', output) self.assertIn('rtfobj', output) # TODO: I disabled this test because we do not log "not encrypted" as warning anymore # to avoid other issues. # If we really want to test this, then the test should be run with log level INFO: # self.assertIn('not encrypted', output) # check warnings for line in output.splitlines(): if line.startswith('WARNING ') and 'encrypted' in line: continue # encryption warnings are ok elif 'warn' in line.lower(): raise self.fail('Found "warn" in output line: "{}"' .format(line.rstrip())) def METHOD_NAME(self): """ Test that encrypted files give a certain return code. Currently, only the encryption applied by Office 2010 (CryptoApi RC4 Encryption) is tested. """ CRYPT_DIR = join(DATA_BASE_DIR, 'encrypted') CRYPT_RETURN_CODE = 9 ADD_ARGS = [], ['-d', ], ['-a', ], ['-j', ], ['-t', ] # only 1st file EXCEPTIONS = ['autostart-encrypt-standardpassword.xls', # These ... 'autostart-encrypt-standardpassword.xlsm', # files ... 'autostart-encrypt-standardpassword.xlsb', # are ... 'dde-test-encrypt-standardpassword.xls', # automati... 'dde-test-encrypt-standardpassword.xlsx', # ...cally... 'dde-test-encrypt-standardpassword.xlsm', # decrypted. 'dde-test-encrypt-standardpassword.xlsb'] for filename in os.listdir(CRYPT_DIR): if filename in EXCEPTIONS: continue full_name = join(CRYPT_DIR, filename) for args in ADD_ARGS: _, ret_code = call_and_capture('olevba', args=[full_name, ] + args, accept_nonzero_exit=True) self.assertEqual(ret_code, CRYPT_RETURN_CODE, msg='Wrong return code {} for args {}'\ .format(ret_code, args + [filename, ])) # test only first file with all arg combinations, others just # without arg (test takes too long otherwise ADD_ARGS = ([], ) def test_xlm(self): """Test that xlm macros are found.""" XLM_DIR = join(DATA_BASE_DIR, 'excel4-macros') ADD_ARGS = ['-j'] for filename in os.listdir(XLM_DIR): full_name = join(XLM_DIR, filename) suffix = splitext(filename)[1] out_str, ret_code = call_and_capture('olevba', args=[full_name, ] + ADD_ARGS, accept_nonzero_exit=True) output = json.loads(out_str) self.assertEqual(len(output), 2) self.assertEqual(output[0]['type'], 'MetaInformation') self.assertEqual(output[0]['script_name'], 'olevba') result = output[1] self.assertTrue(result['json_conversion_successful']) if suffix in ('.xlsb', '.xltm', '.xlsm'): # TODO: cannot extract xlm macros for these types yet self.assertEqual(result['macros'], []) else: code = result['macros'][0]['code'] if suffix == '.slk': self.assertIn('Excel 4 macros extracted', code) else: self.assertIn('Excel 4.0 macro sheet', code) self.assertIn('Auto_Open', code) if 'excel5' not in filename: # TODO: is not found in excel5 self.assertIn('ALERT(', code) self.assertIn('HALT()', code) self.assertIn(len(result['analysis']), (2, 3)) types = [entry['type'] for entry in result['analysis']] keywords = [entry['keyword'] for entry in result['analysis']] self.assertIn('Auto_Open', keywords) self.assertIn('XLM macro', keywords) self.assertIn('AutoExec', types) self.assertIn('Suspicious', types) # just in case somebody calls this file as a script if __name__ == '__main__': unittest.main()
null
4,872
"""Test program for the fcntl C module. """ import platform import os import struct import sys import unittest from multiprocessing import Process from test.support import verbose, cpython_only from test.support.import_helper import import_module from test.support.os_helper import TESTFN, unlink # Skip test if no fcntl module. fcntl = import_module('fcntl') def get_lockdata(): try: os.O_LARGEFILE except AttributeError: start_len = "ll" else: start_len = "qq" if (sys.platform.startswith(('netbsd', 'freebsd', 'openbsd')) or sys.platform == 'darwin'): if struct.calcsize('l') == 8: off_t = 'l' pid_t = 'i' else: off_t = 'lxxxx' pid_t = 'l' lockdata = struct.pack(off_t + off_t + pid_t + 'hh', 0, 0, 0, fcntl.F_WRLCK, 0) elif sys.platform.startswith('gnukfreebsd'): lockdata = struct.pack('qqihhi', 0, 0, 0, fcntl.F_WRLCK, 0, 0) elif sys.platform in ['hp-uxB', 'unixware7']: lockdata = struct.pack('hhlllii', fcntl.F_WRLCK, 0, 0, 0, 0, 0, 0) else: lockdata = struct.pack('hh'+start_len+'hh', fcntl.F_WRLCK, 0, 0, 0, 0, 0) if lockdata: if verbose: print('struct.pack: ', repr(lockdata)) return lockdata lockdata = get_lockdata() class BadFile: def __init__(self, fn): self.fn = fn def fileno(self): return self.fn def try_lockf_on_other_process_fail(fname, cmd): f = open(fname, 'wb+') try: fcntl.lockf(f, cmd) except BlockingIOError: pass finally: f.close() def try_lockf_on_other_process(fname, cmd): f = open(fname, 'wb+') fcntl.lockf(f, cmd) fcntl.lockf(f, fcntl.LOCK_UN) f.close() class TestFcntl(unittest.TestCase): def setUp(self): self.f = None def tearDown(self): if self.f and not self.f.closed: self.f.close() unlink(TESTFN) def METHOD_NAME(self): # the example from the library docs self.f = open(TESTFN, 'wb') rv = fcntl.fcntl(self.f.fileno(), fcntl.F_SETFL, os.O_NONBLOCK) if verbose: print('Status from fcntl with O_NONBLOCK: ', rv) rv = fcntl.fcntl(self.f.fileno(), fcntl.F_SETLKW, lockdata) if verbose: print('String from fcntl with F_SETLKW: ', repr(rv)) self.f.close() def test_fcntl_file_descriptor(self): # again, but pass the file rather than numeric descriptor self.f = open(TESTFN, 'wb') rv = fcntl.fcntl(self.f, fcntl.F_SETFL, os.O_NONBLOCK) if verbose: print('Status from fcntl with O_NONBLOCK: ', rv) rv = fcntl.fcntl(self.f, fcntl.F_SETLKW, lockdata) if verbose: print('String from fcntl with F_SETLKW: ', repr(rv)) self.f.close() def test_fcntl_bad_file(self): with self.assertRaises(ValueError): fcntl.fcntl(-1, fcntl.F_SETFL, os.O_NONBLOCK) with self.assertRaises(ValueError): fcntl.fcntl(BadFile(-1), fcntl.F_SETFL, os.O_NONBLOCK) with self.assertRaises(TypeError): fcntl.fcntl('spam', fcntl.F_SETFL, os.O_NONBLOCK) with self.assertRaises(TypeError): fcntl.fcntl(BadFile('spam'), fcntl.F_SETFL, os.O_NONBLOCK) @cpython_only def test_fcntl_bad_file_overflow(self): from _testcapi import INT_MAX, INT_MIN # Issue 15989 with self.assertRaises(OverflowError): fcntl.fcntl(INT_MAX + 1, fcntl.F_SETFL, os.O_NONBLOCK) with self.assertRaises(OverflowError): fcntl.fcntl(BadFile(INT_MAX + 1), fcntl.F_SETFL, os.O_NONBLOCK) with self.assertRaises(OverflowError): fcntl.fcntl(INT_MIN - 1, fcntl.F_SETFL, os.O_NONBLOCK) with self.assertRaises(OverflowError): fcntl.fcntl(BadFile(INT_MIN - 1), fcntl.F_SETFL, os.O_NONBLOCK) @unittest.skipIf( platform.machine().startswith('arm') and platform.system() == 'Linux', "ARM Linux returns EINVAL for F_NOTIFY DN_MULTISHOT") def test_fcntl_64_bit(self): # Issue #1309352: fcntl shouldn't fail when the third arg fits in a # C 'long' but not in a C 'int'. try: cmd = fcntl.F_NOTIFY # This flag is larger than 2**31 in 64-bit builds flags = fcntl.DN_MULTISHOT except AttributeError: self.skipTest("F_NOTIFY or DN_MULTISHOT unavailable") fd = os.open(os.path.dirname(os.path.abspath(TESTFN)), os.O_RDONLY) try: fcntl.fcntl(fd, cmd, flags) finally: os.close(fd) def test_flock(self): # Solaris needs readable file for shared lock self.f = open(TESTFN, 'wb+') fileno = self.f.fileno() fcntl.flock(fileno, fcntl.LOCK_SH) fcntl.flock(fileno, fcntl.LOCK_UN) fcntl.flock(self.f, fcntl.LOCK_SH | fcntl.LOCK_NB) fcntl.flock(self.f, fcntl.LOCK_UN) fcntl.flock(fileno, fcntl.LOCK_EX) fcntl.flock(fileno, fcntl.LOCK_UN) self.assertRaises(ValueError, fcntl.flock, -1, fcntl.LOCK_SH) self.assertRaises(TypeError, fcntl.flock, 'spam', fcntl.LOCK_SH) # TODO RustPython @unittest.skipUnless(sys.platform == 'linux', 'test requires Linux') @unittest.skipIf(platform.system() == "AIX", "AIX returns PermissionError") def test_lockf_exclusive(self): self.f = open(TESTFN, 'wb+') cmd = fcntl.LOCK_EX | fcntl.LOCK_NB fcntl.lockf(self.f, cmd) p = Process(target=try_lockf_on_other_process_fail, args=(TESTFN, cmd)) p.start() p.join() fcntl.lockf(self.f, fcntl.LOCK_UN) self.assertEqual(p.exitcode, 0) # TODO RustPython @unittest.skipUnless(sys.platform == 'linux', 'test requires Linux') @unittest.skipIf(platform.system() == "AIX", "AIX returns PermissionError") def test_lockf_share(self): self.f = open(TESTFN, 'wb+') cmd = fcntl.LOCK_SH | fcntl.LOCK_NB fcntl.lockf(self.f, cmd) p = Process(target=try_lockf_on_other_process, args=(TESTFN, cmd)) p.start() p.join() fcntl.lockf(self.f, fcntl.LOCK_UN) self.assertEqual(p.exitcode, 0) @cpython_only def test_flock_overflow(self): import _testcapi self.assertRaises(OverflowError, fcntl.flock, _testcapi.INT_MAX+1, fcntl.LOCK_SH) @unittest.skipIf(sys.platform != 'darwin', "F_GETPATH is only available on macos") def test_fcntl_f_getpath(self): self.f = open(TESTFN, 'wb') expected = os.path.abspath(TESTFN).encode('utf-8') res = fcntl.fcntl(self.f.fileno(), fcntl.F_GETPATH, bytes(len(expected))) self.assertEqual(expected, res) @unittest.skipUnless( hasattr(fcntl, "F_SETPIPE_SZ") and hasattr(fcntl, "F_GETPIPE_SZ"), "F_SETPIPE_SZ and F_GETPIPE_SZ are not available on all platforms.") def test_fcntl_f_pipesize(self): test_pipe_r, test_pipe_w = os.pipe() try: # Get the default pipesize with F_GETPIPE_SZ pipesize_default = fcntl.fcntl(test_pipe_w, fcntl.F_GETPIPE_SZ) pipesize = pipesize_default // 2 # A new value to detect change. if pipesize < 512: # the POSIX minimum raise unittest.SkitTest( 'default pipesize too small to perform test.') fcntl.fcntl(test_pipe_w, fcntl.F_SETPIPE_SZ, pipesize) self.assertEqual(fcntl.fcntl(test_pipe_w, fcntl.F_GETPIPE_SZ), pipesize) finally: os.close(test_pipe_r) os.close(test_pipe_w) if __name__ == '__main__': unittest.main()
null
4,873
# SPDX-FileCopyrightText: Copyright DB Netz AG and the capellambse contributors # SPDX-License-Identifier: Apache-2.0 from __future__ import annotations import contextlib import logging import os import pathlib import subprocess import typing as t from capellambse import helpers from capellambse.loader.modelinfo import ModelInfo from . import abc LOGGER = logging.getLogger(__name__) class LocalFileHandler(abc.FileHandler): def __init__( self, path: str | os.PathLike, *, subdir: str | pathlib.PurePosixPath = "/", ) -> None: path = pathlib.Path(path, helpers.normalize_pure_path(subdir)) super().__init__(path) self.__transaction: set[pathlib.PurePosixPath] | None = None assert isinstance(self.path, pathlib.Path) def open( self, filename: str | pathlib.PurePosixPath, mode: t.Literal["r", "rb", "w", "wb"] = "rb", ) -> t.BinaryIO: assert isinstance(self.path, pathlib.Path) normpath = helpers.normalize_pure_path(filename) if "w" not in mode or self.__transaction is None: path = self.path / normpath return t.cast(t.BinaryIO, path.open(mode)) if normpath in self.__transaction: raise RuntimeError( f"File already written in this transaction: {normpath}" ) self.__transaction.add(normpath) tmppath = _tmpname(normpath) return t.cast(t.BinaryIO, (self.path / tmppath).open(mode)) def get_model_info(self) -> ModelInfo: assert isinstance(self.path, pathlib.Path) if (self.path / ".git").exists(): return ModelInfo( branch=self.__git_rev_parse("--abbrev-ref", "HEAD"), title=self.path.name, url=self.__git_get_remote_url(), rev_hash=self.__git_rev_parse("HEAD"), ) return ModelInfo(title=self.path.name) @contextlib.contextmanager def METHOD_NAME( self, *, dry_run: bool = False, **kw: t.Any ) -> t.Generator[t.Mapping[str, t.Any], None, None]: """Start a write transaction. During the transaction, file writes are redirected to temporary files next to the target files, and if the transaction ends successfully they are moved to their destinations all at once. Parameters ---------- dry_run Discard the temporary files after a successful transaction instead of committing them to their destinations. """ assert isinstance(self.path, pathlib.Path) with super().METHOD_NAME(**kw) as unused_kw: if self.__transaction is not None: raise RuntimeError("Another transaction is already open") self.__transaction = set() try: yield unused_kw except: LOGGER.debug("Aborting transaction due to exception") dry_run = True raise finally: for file in self.__transaction: tmpname = _tmpname(file) if dry_run: LOGGER.debug("Removing temporary file %s", tmpname) (self.path / tmpname).unlink() else: LOGGER.debug("Committing file %s to %s", tmpname, file) (self.path / tmpname).replace(self.path / file) self.__transaction = None @property def rootdir(self) -> LocalFilePath: return LocalFilePath(self, pathlib.PurePosixPath("/")) def iterdir( self, subdir: str | pathlib.PurePosixPath = "." ) -> t.Iterator[LocalFilePath]: assert isinstance(self.path, pathlib.Path) subdir = helpers.normalize_pure_path(subdir) for p in self.path.joinpath(subdir).iterdir(): yield LocalFilePath( self, pathlib.PurePosixPath(p.relative_to(self.path)), ) def __git_rev_parse(self, *options: str) -> str | None: assert isinstance(self.path, pathlib.Path) try: return ( subprocess.run( ["git", "rev-parse", *options], cwd=self.path, check=True, capture_output=True, ) .stdout.decode("utf-8") .strip() ) except Exception as err: LOGGER.debug( "Git rev-parse with options %s failed: %s: %s", options, type(err).__name__, err, ) return None def __git_get_remote_url(self) -> str | None: assert isinstance(self.path, pathlib.Path) try: remotes = ( subprocess.run( ["git", "remote"], cwd=self.path, check=True, capture_output=True, ) .stdout.decode("utf-8") .splitlines() ) return ( subprocess.run( ["git", "remote", "get-url", remotes[0]], cwd=self.path, check=True, capture_output=True, ) .stdout.decode("utf-8") .strip() ) except (IndexError, subprocess.CalledProcessError): return None def _tmpname(filename: pathlib.PurePosixPath) -> pathlib.PurePosixPath: prefix = "." suffix = ".tmp" name = filename.name[0 : 255 - (len(prefix) + len(suffix))] return filename.with_name(f"{prefix}{name}{suffix}") class LocalFilePath(abc.AbstractFilePath[LocalFileHandler]): def is_dir(self) -> bool: base = t.cast(pathlib.Path, self._parent.path) path = base.joinpath(self._path).resolve() return path.is_dir() def is_file(self) -> bool: base = t.cast(pathlib.Path, self._parent.path) path = base.joinpath(self._path).resolve() return path.is_file()
null
4,874
import warnings import random from typing import Any, Iterator, List, Optional import torch from torch import Tensor from avalanche.benchmarks.utils import make_classification_dataset from avalanche.benchmarks.utils.data import AvalancheDataset from avalanche.benchmarks.utils.data_loader import ( GroupBalancedInfiniteDataLoader, ) from avalanche.models import avalanche_forward from avalanche.training.plugins.strategy_plugin import SupervisedPlugin class AGEMPlugin(SupervisedPlugin): """Average Gradient Episodic Memory Plugin. AGEM projects the gradient on the current minibatch by using an external episodic memory of patterns from previous experiences. If the dot product between the current gradient and the (average) gradient of a randomly sampled set of memory examples is negative, the gradient is projected. This plugin does not use task identities. """ def __init__(self, patterns_per_experience: int, sample_size: int): """ :param patterns_per_experience: number of patterns per experience in the memory. :param sample_size: number of patterns in memory sample when computing reference gradient. """ super().__init__() self.patterns_per_experience = int(patterns_per_experience) self.sample_size = int(sample_size) # One AvalancheDataset for each experience self.buffers: List[AvalancheDataset] = [] self.buffer_dataloader: Optional[GroupBalancedInfiniteDataLoader] = None # Placeholder iterator to avoid typing issues self.buffer_dliter: Iterator[Any] = iter([]) # Placeholder Tensor to avoid typing issues self.reference_gradients: Tensor = torch.empty(0) def before_training_iteration(self, strategy, **kwargs): """ Compute reference gradient on memory sample. """ if len(self.buffers) > 0: strategy.model.train() strategy.optimizer.zero_grad() mb = self.sample_from_memory() xref, yref, tid = mb[0], mb[1], mb[-1] xref, yref = xref.to(strategy.device), yref.to(strategy.device) out = avalanche_forward(strategy.model, xref, tid) loss = strategy._criterion(out, yref) loss.backward() # gradient can be None for some head on multi-headed models reference_gradients_list = [ p.grad.view(-1) if p.grad is not None else torch.zeros(p.numel(), device=strategy.device) for n, p in strategy.model.named_parameters() ] self.reference_gradients = torch.cat(reference_gradients_list) strategy.optimizer.zero_grad() @torch.no_grad() def after_backward(self, strategy, **kwargs): """ Project gradient based on reference gradients """ if len(self.buffers) > 0: current_gradients_list = [ p.grad.view(-1) if p.grad is not None else torch.zeros(p.numel(), device=strategy.device) for n, p in strategy.model.named_parameters() ] current_gradients = torch.cat(current_gradients_list) assert ( current_gradients.shape == self.reference_gradients.shape ), "Different model parameters in AGEM projection" dotg = torch.dot(current_gradients, self.reference_gradients) if dotg < 0: alpha2 = dotg / torch.dot( self.reference_gradients, self.reference_gradients ) grad_proj = current_gradients - self.reference_gradients * alpha2 count = 0 for n, p in strategy.model.named_parameters(): n_param = p.numel() if p.grad is not None: p.grad.copy_(grad_proj[count : count + n_param].view_as(p)) count += n_param def METHOD_NAME(self, strategy, **kwargs): """Update replay memory with patterns from current experience.""" self.update_memory(strategy.experience.dataset, **kwargs) def sample_from_memory(self): """ Sample a minibatch from memory. Return a tuple of patterns (tensor), targets (tensor). """ return next(self.buffer_dliter) @torch.no_grad() def update_memory(self, dataset, num_workers=0, **kwargs): """ Update replay memory with patterns from current experience. """ if num_workers > 0: warnings.warn( "Num workers > 0 is known to cause heavy" "slowdowns in AGEM." ) removed_els = len(dataset) - self.patterns_per_experience if removed_els > 0: indices = list(range(len(dataset))) random.shuffle(indices) dataset = dataset.subset(indices[: self.patterns_per_experience]) self.buffers.append(dataset) persistent_workers = num_workers > 0 self.buffer_dataloader = GroupBalancedInfiniteDataLoader( self.buffers, batch_size=(self.sample_size // len(self.buffers)), num_workers=num_workers, pin_memory=False, persistent_workers=persistent_workers, ) self.buffer_dliter = iter(self.buffer_dataloader)
null
4,875
from __future__ import annotations import itertools from collections import defaultdict from typing import Iterator, Optional, Sequence, TYPE_CHECKING from game.ato.closestairfields import ObjectiveDistanceCache from game.dcs.aircrafttype import AircraftType from .squadrondefloader import SquadronDefLoader from ..campaignloader.squadrondefgenerator import SquadronDefGenerator from ..factions.faction import Faction from ..theater import ControlPoint, MissionTarget if TYPE_CHECKING: from game.game import Game from ..ato.flighttype import FlightType from .squadron import Squadron class AirWing: def __init__(self, player: bool, game: Game, faction: Faction) -> None: self.player = player self.squadrons: dict[AircraftType, list[Squadron]] = defaultdict(list) self.squadron_defs = SquadronDefLoader(game, faction).load() self.squadron_def_generator = SquadronDefGenerator(faction) self.settings = game.settings def unclaim_squadron_def(self, squadron: Squadron) -> None: if squadron.aircraft in self.squadron_defs: for squadron_def in self.squadron_defs[squadron.aircraft]: if squadron_def.claimed and squadron_def.name == squadron.name: squadron_def.claimed = False def add_squadron(self, squadron: Squadron) -> None: self.squadrons[squadron.aircraft].append(squadron) def squadrons_for(self, aircraft: AircraftType) -> Sequence[Squadron]: return self.squadrons[aircraft] def can_auto_plan(self, task: FlightType) -> bool: try: next(self.auto_assignable_for_task(task)) return True except StopIteration: return False def best_squadrons_for( self, location: MissionTarget, task: FlightType, size: int, this_turn: bool ) -> list[Squadron]: airfield_cache = ObjectiveDistanceCache.get_closest_airfields(location) best_aircraft = AircraftType.priority_list_for_task(task) ordered: list[Squadron] = [] for control_point in airfield_cache.operational_airfields: if control_point.captured != self.player: continue capable_at_base = [] for squadron in control_point.squadrons: if squadron.can_auto_assign_mission(location, task, size, this_turn): capable_at_base.append(squadron) if squadron.aircraft not in best_aircraft: # If it is not already in the list it should be the last one best_aircraft.append(squadron.aircraft) ordered.extend( sorted( capable_at_base, key=lambda s: best_aircraft.index(s.aircraft), ) ) return sorted( ordered, key=lambda s: ( # This looks like the opposite of what we want because False sorts # before True. s.primary_task != task, s.location.distance_to(location), ), ) def best_squadron_for( self, location: MissionTarget, task: FlightType, size: int, this_turn: bool ) -> Optional[Squadron]: for squadron in self.best_squadrons_for(location, task, size, this_turn): return squadron return None def best_available_aircrafts_for(self, task: FlightType) -> list[AircraftType]: """Returns an ordered list of available aircrafts for the given task""" aircrafts = [] best_aircraft_for_task = AircraftType.priority_list_for_task(task) for aircraft, squadrons in self.squadrons.items(): for squadron in squadrons: if squadron.untasked_aircraft and squadron.capable_of(task): aircrafts.append(aircraft) if aircraft not in best_aircraft_for_task: best_aircraft_for_task.append(aircraft) break # Sort the list ordered by the best capability return sorted( aircrafts, key=lambda ac: best_aircraft_for_task.index(ac), ) def auto_assignable_for_task(self, task: FlightType) -> Iterator[Squadron]: for squadron in self.iter_squadrons(): if squadron.can_auto_assign(task): yield squadron def auto_assignable_for_task_at( self, task: FlightType, base: ControlPoint ) -> Iterator[Squadron]: for squadron in self.iter_squadrons(): if squadron.can_auto_assign(task) and squadron.location == base: yield squadron def squadron_for(self, aircraft: AircraftType) -> Squadron: return self.squadrons_for(aircraft)[0] def iter_squadrons(self) -> Iterator[Squadron]: return itertools.chain.from_iterable(self.squadrons.values()) def METHOD_NAME(self, index: int) -> Squadron: return list(self.iter_squadrons())[index] def populate_for_turn_0(self, squadrons_start_full: bool) -> None: for squadron in self.iter_squadrons(): squadron.populate_for_turn_0(squadrons_start_full) def end_turn(self) -> None: for squadron in self.iter_squadrons(): squadron.end_turn() def reset(self) -> None: for squadron in self.iter_squadrons(): squadron.return_all_pilots_and_aircraft() @property def size(self) -> int: return sum(len(s) for s in self.squadrons.values())
null
4,876
#!/usr/bin/env python3 # Copyright 2021 the V8 project authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Test integrating the sequence processor into a simple test pipeline. """ import os import sys import unittest # Needed because the test runner contains relative imports. TOOLS_PATH = os.path.dirname( os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(TOOLS_PATH) from testrunner.testproc import base from testrunner.testproc.loader import LoadProc from testrunner.testproc.sequence import SequenceProc class FakeExecutionProc(base.TestProc): """Simulates the pipeline sink consuming and running the tests. Test execution is simulated for each test by calling run(). """ def __init__(self): super(FakeExecutionProc, self).__init__() self.tests = [] def next_test(self, test): self.tests.append(test) return True def run(self): test = self.tests.pop() self._send_result(test, test.n) class FakeResultObserver(base.TestProcObserver): """Observer to track all results sent back through the pipeline.""" def __init__(self): super(FakeResultObserver, self).__init__() self.tests = set([]) def _on_result_for(self, test, result): self.tests.add(test.n) class FakeTest(object): """Simple test representation to differentiate light/heavy tests.""" def __init__(self, n, is_heavy): self.n = n self.is_heavy = is_heavy self.keep_output = False class TestSequenceProc(unittest.TestCase): def _test(self, tests, batch_size, max_heavy): # Set up a simple processing pipeline: # Loader -> observe results -> sequencer -> execution. loader = LoadProc(iter(tests)) results = FakeResultObserver() sequence_proc = SequenceProc(max_heavy) execution = FakeExecutionProc() loader.connect_to(results) results.connect_to(sequence_proc) sequence_proc.connect_to(execution) # Fill the execution queue (with the number of tests potentially # executed in parallel). loader.load_initial_tests(batch_size) # Simulate the execution test by test. while execution.tests: # Assert the invariant of maximum heavy tests executed simultaneously. self.assertLessEqual( sum(int(test.is_heavy) for test in execution.tests), max_heavy) # As in the real pipeline, running a test and returning its result # will add another test into the pipeline. execution.run() # Ensure that all tests are processed and deliver results. self.assertEqual(set(test.n for test in tests), results.tests) def test_wrong_usage(self): with self.assertRaises(Exception): SequenceProc(0) def METHOD_NAME(self): self._test([], 1, 1) def test_large_batch_light(self): self._test([ FakeTest(0, False), FakeTest(1, False), FakeTest(2, False), ], 4, 1) def test_small_batch_light(self): self._test([ FakeTest(0, False), FakeTest(1, False), FakeTest(2, False), ], 2, 1) def test_large_batch_heavy(self): self._test([ FakeTest(0, True), FakeTest(1, True), FakeTest(2, True), ], 4, 1) def test_small_batch_heavy(self): self._test([ FakeTest(0, True), FakeTest(1, True), FakeTest(2, True), ], 2, 1) def test_large_batch_mixed(self): self._test([ FakeTest(0, True), FakeTest(1, False), FakeTest(2, True), FakeTest(3, False), ], 4, 1) def test_small_batch_mixed(self): self._test([ FakeTest(0, True), FakeTest(1, False), FakeTest(2, True), FakeTest(3, False), ], 2, 1) def test_large_batch_more_heavy(self): self._test([ FakeTest(0, True), FakeTest(1, True), FakeTest(2, True), FakeTest(3, False), FakeTest(4, True), FakeTest(5, True), FakeTest(6, False), ], 4, 2) def test_small_batch_more_heavy(self): self._test([ FakeTest(0, True), FakeTest(1, True), FakeTest(2, True), FakeTest(3, False), FakeTest(4, True), FakeTest(5, True), FakeTest(6, False), ], 2, 2) if __name__ == '__main__': unittest.main()
null
4,877
#!/usr/bin/env python3 # SPDX-License-Identifier: LGPL-2.1-or-later OUTFILE_HEADER = """#!/usr/bin/env python3 # SPDX-License-Identifier: LGPL-2.1-or-later # # create-sys-script.py # # © 2017 Canonical Ltd. # Author: Dan Streetman <[email protected]> """ # Use this only to (re-)create the test/sys-script.py script, # after adding or modifying anything in the test/sys/ directory import os, sys import stat import tempfile import filecmp import subprocess OUTFILE_MODE = 0o775 OUTFILE_FUNCS = r""" import os, sys import shutil def d(path, mode): os.mkdir(path, mode) def l(path, src): os.symlink(src, path) def f(path, mode, contents): with open(path, "wb") as f: f.write(contents) os.chmod(path, mode) """ OUTFILE_MAIN = """ if len(sys.argv) < 2: exit("Usage: {} <target dir>".format(sys.argv[0])) if not os.path.isdir(sys.argv[1]): exit("Target dir {} not found".format(sys.argv[1])) os.chdir(sys.argv[1]) if os.path.exists('sys'): shutil.rmtree('sys') """ def METHOD_NAME(outfile, path): m = os.lstat(path).st_mode & 0o777 outfile.write(f"d('{path}', {m:#o})\n") def handle_link(outfile, path): src = os.readlink(path) outfile.write(f"l('{path}', '{src}')\n") def escape_single_quotes(b): # remove the b'' wrapping each line repr r = repr(b)[2:-1] # python escapes all ' only if there are ' and " in the string if '"' not in r: r = r.replace("'", r"\'") # return line with all ' escaped return r def handle_file(outfile, path): m = os.lstat(path).st_mode & 0o777 with open(path, "rb") as f: b = f.read() if b.count(b"\n") > 1: r = "\n".join( escape_single_quotes(l) for l in b.split(b"\n") ) r = f"b'''{r}'''" else: r = repr(b) outfile.write(f"f('{path}', {m:#o}, {r})\n") def process_sysdir(outfile): for (dirpath, dirnames, filenames) in os.walk('sys'): METHOD_NAME(outfile, dirpath) for d in dirnames: path = os.path.join(dirpath, d) if stat.S_ISLNK(os.lstat(path).st_mode): handle_link(outfile, path) for f in filenames: path = os.path.join(dirpath, f) mode = os.lstat(path).st_mode if stat.S_ISLNK(mode): handle_link(outfile, path) elif stat.S_ISREG(mode): handle_file(outfile, path) def verify_dir(tmpd, path_a): path_b = os.path.join(tmpd, path_a) mode_a = os.lstat(path_a).st_mode mode_b = os.lstat(path_b).st_mode if not stat.S_ISDIR(mode_b): raise Exception("Not directory") if (mode_a & 0o777) != (mode_b & 0o777): raise Exception("Permissions mismatch") def verify_link(tmpd, path_a): path_b = os.path.join(tmpd, path_a) if not stat.S_ISLNK(os.lstat(path_b).st_mode): raise Exception("Not symlink") if os.readlink(path_a) != os.readlink(path_b): raise Exception("Symlink dest mismatch") def verify_file(tmpd, path_a): path_b = os.path.join(tmpd, path_a) mode_a = os.lstat(path_a).st_mode mode_b = os.lstat(path_b).st_mode if not stat.S_ISREG(mode_b): raise Exception("Not file") if (mode_a & 0o777) != (mode_b & 0o777): raise Exception("Permissions mismatch") if not filecmp.cmp(path_a, path_b, shallow=False): raise Exception("File contents mismatch") def verify_script(tmpd): any = False for (dirpath, dirnames, filenames) in os.walk("sys"): any = True try: path = dirpath verify_dir(tmpd, path) for d in dirnames: path = os.path.join(dirpath, d) if stat.S_ISLNK(os.lstat(path).st_mode): verify_link(tmpd, path) for f in filenames: path = os.path.join(dirpath, f) mode = os.lstat(path).st_mode if stat.S_ISLNK(mode): verify_link(tmpd, path) elif stat.S_ISREG(mode): verify_file(tmpd, path) except Exception: print(f'FAIL on "{path}"', file=sys.stderr) raise if not any: exit('Nothing found!') if __name__ == "__main__": if len(sys.argv) < 2: exit('Usage: create-sys-script.py /path/to/test/') outfile = os.path.abspath(os.path.dirname(sys.argv[0]) + '/sys-script.py') print(f'Creating {outfile} using contents of {sys.argv[1]}/sys') os.chdir(sys.argv[1]) with open(outfile, "w") as f: os.chmod(outfile, OUTFILE_MODE) f.write(OUTFILE_HEADER.replace(os.path.basename(sys.argv[0]), os.path.basename(outfile))) f.write(OUTFILE_FUNCS) f.write(OUTFILE_MAIN) process_sysdir(f) with tempfile.TemporaryDirectory() as tmpd: print(f'Recreating sys/ using {outfile} at {tmpd}') subprocess.check_call([outfile, tmpd]) verify_script(tmpd) print(f'Verification successful, {outfile} is correct')
null
4,878
import tempfile import pytest from policyengine_core.parameters import ( ParameterNode, ParameterNodeAtInstant, ParameterNotFoundError, load_parameter_file, ) def test_get_at_instant(tax_benefit_system): parameters = tax_benefit_system.parameters assert isinstance(parameters, ParameterNode), parameters parameters_at_instant = parameters("2016-01-01") assert isinstance( parameters_at_instant, ParameterNodeAtInstant ), parameters_at_instant assert parameters_at_instant.taxes.income_tax_rate == 0.15 assert parameters_at_instant.benefits.basic_income == 600 def test_param_values(tax_benefit_system): dated_values = { "2015-01-01": 0.15, "2014-01-01": 0.14, "2013-01-01": 0.13, "2012-01-01": 0.16, } for date, value in dated_values.items(): assert ( tax_benefit_system.get_parameters_at_instant( date ).taxes.income_tax_rate == value ) def test_param_before_it_is_defined(tax_benefit_system): with pytest.raises(ParameterNotFoundError): tax_benefit_system.get_parameters_at_instant( "1997-12-31" ).taxes.income_tax_rate # The placeholder should have no effect on the parameter computation def test_param_with_placeholder(tax_benefit_system): assert ( tax_benefit_system.get_parameters_at_instant( "2018-01-01" ).taxes.income_tax_rate == 0.15 ) def test_stopped_parameter_before_end_value(tax_benefit_system): assert ( tax_benefit_system.get_parameters_at_instant( "2011-12-31" ).benefits.housing_allowance == 0.25 ) def test_stopped_parameter_after_end_value(tax_benefit_system): with pytest.raises(ParameterNotFoundError): tax_benefit_system.get_parameters_at_instant( "2016-12-01" ).benefits.housing_allowance def test_parameter_for_period(tax_benefit_system): income_tax_rate = tax_benefit_system.parameters.taxes.income_tax_rate assert income_tax_rate("2015") == income_tax_rate("2015-01-01") def METHOD_NAME(tax_benefit_system): income_tax_rate = tax_benefit_system.parameters.taxes.income_tax_rate with pytest.raises(ValueError): income_tax_rate("test") def test_parameter_repr(tax_benefit_system): parameters = tax_benefit_system.parameters tf = tempfile.NamedTemporaryFile(delete=False) tf.write(repr(parameters).encode("utf-8")) tf.close() tf_parameters = load_parameter_file(file_path=tf.name) assert repr(parameters) == repr(tf_parameters) def test_parameters_metadata(tax_benefit_system): parameter = tax_benefit_system.parameters.benefits.basic_income assert ( parameter.metadata["reference"] == "https://law.gov.example/basic-income/amount" ) assert parameter.metadata["unit"] == "currency-EUR" assert ( parameter.values_list[0].metadata["reference"] == "https://law.gov.example/basic-income/amount/2015-12" ) assert parameter.values_list[0].metadata["unit"] == "currency-EUR" scale = tax_benefit_system.parameters.taxes.social_security_contribution assert scale.metadata["threshold_unit"] == "currency-EUR" assert scale.metadata["rate_unit"] == "/1" def test_parameter_node_metadata(tax_benefit_system): parameter = tax_benefit_system.parameters.benefits assert parameter.description == "Social benefits" parameter_2 = tax_benefit_system.parameters.taxes.housing_tax assert parameter_2.description == "Housing tax" def test_parameter_documentation(tax_benefit_system): parameter = tax_benefit_system.parameters.benefits.housing_allowance assert ( parameter.documentation == "A fraction of the rent.\nFrom the 1st of Dec 2016, the housing allowance no longer exists.\n" ) def test_get_descendants(tax_benefit_system): all_parameters = { parameter.name for parameter in tax_benefit_system.parameters.get_descendants() } assert all_parameters.issuperset( {"taxes", "taxes.housing_tax", "taxes.housing_tax.minimal_amount"} ) def test_name(): parameter_data = { "description": "Parameter indexed by a numeric key", "2010": {"values": {"2006-01-01": 0.0075}}, } parameter = ParameterNode("root", data=parameter_data) assert parameter.children["2010"].name == "root.2010"
null
4,879
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2023 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + import unittest from mantid.simpleapi import ( FindSXPeaksConvolve, LoadParameterFile, AnalysisDataService, SortPeaksWorkspace, ) from testhelpers import WorkspaceCreationHelper from numpy import array, sqrt XML_PARAMS = """ <?xml version="1.0" encoding="UTF-8" ?> <parameter-file instrument = "basic_rect" valid-from = "2013-11-06T00:00:00"> <component-link name = "bank1"> <parameter name="BackToBackExponential:A" type="fitting"> <formula eq="2" unit="TOF" result-unit="1/TOF" /> <fixed /> </parameter> <parameter name="BackToBackExponential:B" type="fitting"> <formula eq="2" unit="TOF" result-unit="1/TOF" /> <fixed /> </parameter> <parameter name="BackToBackExponential:S" type="fitting"> <formula eq="0.1" unit="TOF" result-unit="TOF" /> </parameter> </component-link> </parameter-file> """ class FindSXPeaksConvolveTest(unittest.TestCase): @classmethod def setUpClass(cls): # load empty instrument with RectangularDetector banks and create a peak table cls.ws = WorkspaceCreationHelper.create2DWorkspaceWithRectangularInstrument(1, 7, 13) # nbanks, npix, nbins AnalysisDataService.addOrReplace("ws_rect", cls.ws) axis = cls.ws.getAxis(0) axis.setUnit("TOF") # fake peak centred on ispec=30 (detid=79) and TOF=5 - near middle of bank peak_1D = array([0, 0, 0, 0, 4, 6, 4, 0, 0, 0, 0, 0, 0]) cls.ws.setY(30, cls.ws.readY(30) + peak_1D) for ispec in [23, 29, 30, 31, 37]: cls.ws.setY(ispec, cls.ws.readY(ispec) + peak_1D) cls.ws.setE(ispec, sqrt(cls.ws.readY(ispec))) # fake peak centred on ispec=12 (detid=61) and TOF=7 - near detector edge cls.ws.setY(12, cls.ws.readY(12) + peak_1D[::-1]) for ispec in [5, 11, 12, 13, 19]: cls.ws.setY(ispec, cls.ws.readY(ispec) + peak_1D[::-1]) cls.ws.setE(ispec, sqrt(cls.ws.readY(ispec))) # Add back-to-back exponential params LoadParameterFile(cls.ws, ParameterXML=XML_PARAMS) @classmethod def tearDownClass(cls): AnalysisDataService.clear() def _assert_found_correct_peaks(self, peak_ws): self.assertEqual(peak_ws.getNumberPeaks(), 2) peak_ws = SortPeaksWorkspace( InputWorkspace=peak_ws, OutputWorkspace=peak_ws.name(), ColumnNameToSortBy="DetID", SortAscending=False ) pk = peak_ws.getPeak(0) self.assertEqual(pk.getDetectorID(), 79) self.assertAlmostEqual(pk.getTOF(), 5.0, delta=1e-8) self.assertAlmostEqual(pk.getIntensityOverSigma(), 6.0622, delta=1e-4) pk = peak_ws.getPeak(1) self.assertEqual(pk.getDetectorID(), 61) self.assertAlmostEqual(pk.getTOF(), 7.0, delta=1e-8) self.assertAlmostEqual(pk.getIntensityOverSigma(), 5.3981, delta=1e-4) def METHOD_NAME(self): out = FindSXPeaksConvolve( InputWorkspace=self.ws, PeaksWorkspace="peaks1", NRows=3, NCols=3, NBins=3, ThresholdIoverSigma=3.0, MinFracSize=0.02 ) self._assert_found_correct_peaks(out) def test_exec_get_nbins_from_back_to_back_params(self): out = FindSXPeaksConvolve( InputWorkspace=self.ws, PeaksWorkspace="peaks1", NRows=3, NCols=3, GetNBinsFromBackToBackParams=True, ThresholdIoverSigma=3.0, MinFracSize=0.02, ) self._assert_found_correct_peaks(out) def test_exec_IoverSigma_threshold(self): out = FindSXPeaksConvolve(InputWorkspace=self.ws, PeaksWorkspace="peaks3", NRows=3, NCols=3, NBins=3, ThresholdIoverSigma=100.0) self.assertEqual(out.getNumberPeaks(), 0) def test_exec_remove_on_edge(self): out = FindSXPeaksConvolve( InputWorkspace=self.ws, PeaksWorkspace="peaks1", NRows=3, NCols=3, NBins=3, ThresholdIoverSigma=3.0, MinFracSize=0.02, RemoveOnEdge=True, ) self.assertEqual(out.getNumberPeaks(), 1) # check it's the correct peak pk = out.getPeak(0) self.assertEqual(pk.getDetectorID(), 79) def test_exec_min_frac_size(self): out = FindSXPeaksConvolve( InputWorkspace=self.ws, PeaksWorkspace="peaks1", NRows=3, NCols=3, NBins=5, ThresholdIoverSigma=3.0, MinFracSize=0.5 ) self.assertEqual(out.getNumberPeaks(), 0) if __name__ == "__main__": unittest.main()
null
4,880
########################################################################## # # pgAdmin 4 - PostgreSQL Tools # # Copyright (C) 2013 - 2023, The pgAdmin Development Team # This software is released under the PostgreSQL Licence # ########################################################################## import sys import traceback from urllib.parse import urlencode from regression.python_test_utils import test_utils as utils import os import json # Load test data from json file. CURRENT_PATH = os.path.dirname(os.path.realpath(__file__)) with open(CURRENT_PATH + "/index_constraint_test_data.json") as data_file: test_cases = json.load(data_file) # api method call def api_create(self): return self.tester.post("{0}{1}/{2}/{3}/{4}/{5}/". format(self.url, utils.SERVER_GROUP, self.server_id, self.db_id, self.schema_id, self.table_id), data=json.dumps(self.data), content_type='html/json' ) def api_delete(self, index_constraint_id=None): if index_constraint_id is None: index_constraint_id = self.index_constraint_id return self.tester.delete("{0}{1}/{2}/{3}/{4}/{5}/{6}". format(self.url, utils.SERVER_GROUP, self.server_id, self.db_id, self.schema_id, self.table_id, index_constraint_id), data=json.dumps(self.data), follow_redirects=True ) def api_get(self, index_constraint_id=None): if index_constraint_id is None: index_constraint_id = self.index_constraint_id return self.tester.get("{0}{1}/{2}/{3}/{4}/{5}/{6}". format(self.url, utils.SERVER_GROUP, self.server_id, self.db_id, self.schema_id, self.table_id, index_constraint_id), data=json.dumps(self.data), follow_redirects=True ) def METHOD_NAME(self, url_encode_data): return self.tester.get("{0}{1}/{2}/{3}/{4}/{5}/{6}?{7}". format(self.url, utils.SERVER_GROUP, self.server_id, self.db_id, self.schema_id, self.table_id, self.index_constraint_id, urlencode(url_encode_data)), data=json.dumps(self.data), follow_redirects=True ) def api_put(self): return self.tester.put("{0}{1}/{2}/{3}/{4}/{5}/{6}". format(self.url, utils.SERVER_GROUP, self.server_id, self.db_id, self.schema_id, self.table_id, self.index_constraint_id ), data=json.dumps(self.data), follow_redirects=True ) def create_index_constraint(server, db_name, schema_name, table_name, key_name, key_type): """ This function creates a index constraint(PK or UK) under provided table. :param server: server details :type server: dict :param db_name: database name :type db_name: str :param schema_name: schema name :type schema_name: str :param table_name: table name :type table_name: str :param key_name: test name for primary or unique key :type key_name: str :param key_type: key type i.e. primary or unique key :type key_type: str :return oid: key constraint id :rtype: int """ try: connection = utils.get_db_connection(db_name, server['username'], server['db_password'], server['host'], server['port'], server['sslmode']) old_isolation_level = connection.isolation_level utils.set_isolation_level(connection, 0) pg_cursor = connection.cursor() query = "ALTER TABLE %s.%s ADD CONSTRAINT %s %s (id)" % \ (schema_name, table_name, key_name, key_type) pg_cursor.execute(query) utils.set_isolation_level(connection, old_isolation_level) connection.commit() # Get oid of newly added index constraint pg_cursor.execute("SELECT conindid FROM pg_catalog.pg_constraint " "where conname='%s'" % key_name) index_constraint = pg_cursor.fetchone() connection.close() oid = index_constraint[0] return oid except Exception: traceback.print_exc(file=sys.stderr) def verify_index_constraint(server, db_name, constraint_name): """ This function verifies that index constraint(PK or UK) is exists or not. :param constraint_name: :param server: server details :type server: dict :param db_name: database name :type db_name: str :return index_constraint: index constraint record from database :rtype: tuple """ try: connection = utils.get_db_connection(db_name, server['username'], server['db_password'], server['host'], server['port'], server['sslmode']) pg_cursor = connection.cursor() pg_cursor.execute("SELECT oid FROM pg_catalog.pg_constraint " "where conname='%s'" % constraint_name) index_constraint = pg_cursor.fetchone() connection.close() return index_constraint except Exception: traceback.print_exc(file=sys.stderr) def create_unique_index(server, db_name, schema_name, table_name, index_name, column_name): """ This function creates a unique index for provided table. :param server: server details :type server: dict :param db_name: database name :type db_name: str :param schema_name: schema name :type schema_name: str :param table_name: table name :type table_name: str :param index_name: index name :type index_name: str :param column_name: column on which index to be created :type column_name: str """ try: connection = utils.get_db_connection(db_name, server['username'], server['db_password'], server['host'], server['port'], server['sslmode']) old_isolation_level = connection.isolation_level utils.set_isolation_level(connection, 0) pg_cursor = connection.cursor() query = "CREATE UNIQUE INDEX CONCURRENTLY %s ON %s.%s (%s)" % \ (index_name, schema_name, table_name, column_name) pg_cursor.execute(query) utils.set_isolation_level(connection, old_isolation_level) connection.commit() connection.close() except Exception: traceback.print_exc(file=sys.stderr)
null
4,881
import hyperion, time, random # Convert x/y (0.0 - 1.0) point to proper int values based on Hyperion image width/height # Or get a random value # @param bool rand Randomize point if true # @param float x Point at the x axis between 0.0-1.0 # @param float y Point at the y axis between 0.0-1.0 # @return Tuple with (x,y) as Integer def getPoint(rand = True ,x = 0.5, y = 0.5): if rand: x = random.uniform(0.0, 1.0) y = random.uniform(0.0, 1.0) x = int(round(x*hyperion.imageWidth())) y = int(round(y*hyperion.imageHeight())) return (x,y) # Returns the required sleep time for a interval function based on rotationtime and steps # Adapts also to led device latchTime if required # @param float rt RotationTime in seconds (time for one ration, based on steps) # @param int steps The steps it should calc the rotation time # @return Tuple with (x,y) as Integer def getSTime(rt, steps = 360): rt = float(rt) sleepTime = max(0.1, rt) / steps # adapt sleeptime to hardware minStepTime= float(hyperion.latchTime)/1000.0 if minStepTime == 0: minStepTime = 0.001 if minStepTime > sleepTime: sleepTime = minStepTime return sleepTime # Creates a PRGBA bytearray gradient based on provided colors (RGB or RGBA (0-255, 0-1 for alpha)), the color stop positions are calculated based on color count. Requires at least 2 colors! # @param tuple cc Colors in a tuple of RGB or RGBA # @param bool closeCircle If True use last color as first color # @return bytearray A bytearray of RGBA for hyperion.image*Gradient functions def buildGradient(cc, closeCircle = True): if len(cc) > 1: withAlpha = False posfac = int(255/len(cc)) ba = bytearray() pos = 0 if len(cc[0]) == 4: withAlpha = True for c in cc: if withAlpha: alpha = int(c[3]*255) else: alpha = 255 pos += posfac ba += bytearray([pos,c[0],c[1],c[2],alpha]) if closeCircle: # last color as first color lC = cc[-1] if withAlpha: alpha = int(lC[3]*255) else: alpha = 255 ba += bytearray([0,lC[0],lC[1],lC[2],alpha]) return ba return bytearray() def METHOD_NAME( increment = 1): global angle angle += increment if angle > 360: angle=0 if angle < 0: angle=360 return angle def rotateAngle2( increment = 1): global angle2 angle2 += increment if angle2 > 360: angle2=0 if angle2 < 0: angle2=360 return angle2 # set minimum image size - must be done asap hyperion.imageMinSize(64,64) iW = hyperion.imageWidth() iH = hyperion.imageHeight() # Get the parameters rotationTime = float(hyperion.args.get('rotation-time', 10.0)) reverse = bool(hyperion.args.get('reverse', False)) centerX = float(hyperion.args.get('center_x', 0.5)) centerY = float(hyperion.args.get('center_y', 0.5)) randomCenter = bool(hyperion.args.get('random-center', False)) custColors = hyperion.args.get('custom-colors', ((255,0,0),(0,255,0),(0,0,255))) enableSecond = bool(hyperion.args.get('enable-second', False)) #rotationTime2 = float(hyperion.args.get('rotation-time2', 5.0)) reverse2 = bool(hyperion.args.get('reverse2', True)) centerX2 = float(hyperion.args.get('center_x2', 0.5)) centerY2 = float(hyperion.args.get('center_y2', 0.5)) randomCenter2 = bool(hyperion.args.get('random-center2', False)) custColors2 = hyperion.args.get('custom-colors2', ((255,255,255,0),(0,255,255,0),(255,255,255,1),(0,255,255,0),(0,255,255,0),(0,255,255,0),(255,255,255,1),(0,255,255,0),(0,255,255,0),(0,255,255,0),(255,255,255,1),(0,255,255,0))) # process parameters pointS1 = getPoint(randomCenter ,centerX, centerY) pointS2 = getPoint(randomCenter2 ,centerX2, centerY2) sleepTime = getSTime(rotationTime) #sleepTime2 = getSTime(rotationTime2) angle = 0 angle2 = 0 S2 = False increment = -1 if reverse else 1 increment2 = -1 if reverse2 else 1 if len(custColors) > 1: baS1 = buildGradient(custColors) else: baS1 = bytearray([ 0 ,255,0 ,0, 255, 25 ,255,230,0, 255, 63 ,255,255,0, 255, 100,0 ,255,0, 255, 127,0 ,255,200, 255, 159,0 ,255,255, 255, 191,0 ,0 ,255, 255, 224,255,0 ,255, 255, 255,255,0 ,127, 255, ]) # check if the second swirl should be build if enableSecond and len(custColors2) > 1: S2 = True baS2 = buildGradient(custColors2) # effect loop while not hyperion.abort(): angle += increment if angle > 360: angle=0 if angle < 0: angle=360 angle2 += increment2 if angle2 > 360: angle2=0 if angle2 < 0: angle2=360 hyperion.imageConicalGradient(pointS1[0], pointS1[1], angle, baS1) if S2: hyperion.imageConicalGradient(pointS2[0], pointS2[1], angle2, baS2) hyperion.imageShow() time.sleep(sleepTime)
null
4,882
# THIS FILE IS PART OF THE CYLC WORKFLOW ENGINE. # Copyright (C) NIWA & British Crown (Met Office) & Contributors. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import asyncio import logging from pathlib import Path from random import random import pytest from cylc.flow.async_util import ( pipe, asyncqgen, scandir, ) LOG = logging.getLogger('test') @pipe() async def a_range(n): for num in range(n): LOG.info(f'a_range({n})') yield num @pipe async def even(x): LOG.info(f'even({x})') return x % 2 == 0 @pipe async def mult(x, y, kwarg='useless kwarg'): LOG.info(f'mult{x, y}') return x * y @pipe async def sleepy(x): """A filter which waits a while then passes.""" LOG.info(f'sleepy({x})') await asyncio.sleep(0.1) return True @pytest.mark.parametrize('preserve_order', (True, False)) async def test_pipe(preserve_order): """It passes values through the pipe.""" pipe = a_range(5) | even | mult(2) pipe.preserve_order = preserve_order result = [] async for num in pipe: result.append(num) assert result == [ 0, 4, 8, ] @pytest.mark.parametrize('preserve_order', (True, False)) async def test_pipe_single(preserve_order): """It allow single-step pipes.""" pipe = a_range(5) pipe.preserve_order = preserve_order result = [] async for num in pipe: result.append(num) assert result == [ 0, 1, 2, 3, 4 ] @pytest.mark.parametrize('preserve_order', (True, False)) async def METHOD_NAME(preserve_order): """It can be re-used once depleted.""" pipe = a_range(5) | even | mult(2) pipe.preserve_order = preserve_order for _ in range(5): result = [] async for num in pipe: result.append(num) assert result == [ 0, 4, 8, ] @pytest.mark.parametrize('preserve_order', (True, False)) async def test_pipe_filter_stop(preserve_order): """It yields values early with the filter_stop argument.""" pipe = a_range(5) | even(filter_stop=False) pipe |= mult(10) pipe.preserve_order = preserve_order result = [] async for num in pipe: result.append(num) # the even numbers should be multiplied by 10 # the odd numbers should be yielded early (so don't get multiplied) assert result == [ 0, 1, 20, 3, 40, ] @pipe async def one(x): await asyncio.sleep(random() / 5) return x @pytest.mark.parametrize('preserve_order', (True, False)) async def test_pipe_preserve_order(preserve_order): """It should control result order according to pipe configuration.""" n = 50 pipe = a_range(n) | one | one | one pipe.preserve_order = preserve_order result = [] async for item in pipe: result.append(item) # the odds of getting 50 items in order by chance are pretty slim assert (result == list(range(n))) is preserve_order @pytest.mark.parametrize('preserve_order', (True, False)) async def test_pipe_concurrent(caplog, preserve_order): """It runs pipes concurrently. It is easy to make something which appears to be concurrent, this test is intended to ensure that it actually IS concurrent. """ pipe = a_range(5) | even | sleepy | mult(2) pipe.preserve_order = preserve_order caplog.set_level(logging.INFO, 'test') async for num in pipe: pass order = [ # a list of the log messages generated by each step of the pipe # as it processes an item x[2].split('(')[0] for x in caplog.record_tuples ] assert 'mult' in order assert len(order) == 4 * 4 # 4 steps * 4 items yielded by a_range # ensure that the steps aren't completed in order (as sync code would) # the sleep should ensure this # NOTE: not the best test but better than nothing assert order != [ 'a_range', 'even', 'sleepy', 'mult' ] * 4 def test_pipe_str(): """It has helpful textual representations.""" pipe = a_range(5) | even(filter_stop=False) | mult(10, kwarg=42) assert str(pipe) == 'a_range(5)' assert repr(pipe) == 'a_range(5) | even() | mult(10, kwarg=42)' @pipe() # NOTE: these brackets are what the next function is testing async def div(x, y): return x / y def test_pipe_brackets(): """Ensure that pipe functions can be declared with or without brackets.""" pipe = a_range(5) | div assert repr(pipe) == 'a_range(5) | div()' @pipe async def documented(x): """The docstring for the pipe function.""" pass def test_documentation(): """It should preserve the docstring of pipe functions.""" assert documented.__doc__ == 'The docstring for the pipe function.' def test_rewind(): """It should be possible to move throught the pipe stages.""" pipe = a_range | mult | even assert pipe.fastforward().rewind() == pipe async def test_asyncqgen(): """It should provide an async gen interface to an async queue.""" queue = asyncio.Queue() gen = asyncqgen(queue) await queue.put(1) await queue.put(2) await queue.put(3) ret = [] async for item in gen: ret.append(item) assert ret == [1, 2, 3] async def test_scandir(tmp_path: Path): """It should list directory contents (including symlinks).""" (tmp_path / 'a').touch() (tmp_path / 'b').touch() (tmp_path / 'c').symlink_to(tmp_path / 'b') assert sorted(await scandir(tmp_path)) == [ Path(tmp_path, 'a'), Path(tmp_path, 'b'), Path(tmp_path, 'c') ] async def test_scandir_non_exist(tmp_path: Path): """scandir() should raise FileNotFoundError if called on a path that doesn't exist.""" with pytest.raises(FileNotFoundError): await scandir(tmp_path / 'HORSE')
null
4,883
import asyncio import dataclasses import gc import warnings import pyngrok.conf import pyngrok.ngrok import pytest from kopf._cogs.structs.references import Insights, Resource from kopf._cogs.structs.reviews import CreateOptions, Request, RequestKind, RequestPayload, \ RequestResource, UserInfo, WebhookFn from kopf._core.engines.indexing import OperatorIndexers from kopf._kits.webhooks import WebhookServer # TODO: LATER: Fix this issue some day later. @pytest.fixture() def no_serverside_resource_warnings(): """ Hide an irrelevant ResourceWarning on the server side: It happens when a client disconnects from the webhook server, and the server closes the transport for that client. The garbage collector calls ``__del__()`` on the SSL proto object, despite it is not close to the moment. """ with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=ResourceWarning, module='asyncio.sslproto', message='unclosed transport') yield # Provoke the garbage collection of SSL sockets to trigger the warnings. # Otherwise, in PyPy, these warnings leak to other tests due to delayed gc. gc.collect() # TODO: LATER: Fix this issue after aiohttp 4.0.0 is used. @pytest.fixture() async def METHOD_NAME(): """ Hide an irrelevant ResourceWarning on the client side. https://docs.aiohttp.org/en/stable/client_advanced.html#graceful-shutdown """ yield await asyncio.sleep(0.100) @pytest.fixture() async def no_sslproto_warnings(no_serverside_resource_warnings, METHOD_NAME): pass # cert generation is somewhat slow (~1s) @pytest.fixture(scope='module') def certpkey(): cert, pkey = WebhookServer.build_certificate(['localhost', '127.0.0.1']) return cert, pkey @pytest.fixture() def certfile(tmpdir, certpkey): path = tmpdir.join('cert.pem') path.write_binary(certpkey[0]) return str(path) @pytest.fixture() def pkeyfile(tmpdir, certpkey): path = tmpdir.join('pkey.pem') path.write_binary(certpkey[1]) return str(path) @pytest.fixture() def adm_request(resource, namespace): return Request( apiVersion='admission.k8s.io/v1', kind='AdmissionReview', request=RequestPayload( uid='uid1', kind=RequestKind(group=resource.group, version=resource.version, kind=resource.kind), resource=RequestResource(group=resource.group, version=resource.version, resource=resource.plural), subResource=None, requestKind=RequestKind(group=resource.group, version=resource.version, kind=resource.kind), requestResource=RequestResource(group=resource.group, version=resource.version, resource=resource.plural), requestSubResource=None, userInfo=UserInfo(username='user1', uid='useruid1', groups=['group1']), name='name1', namespace=namespace, operation='CREATE', options=CreateOptions(apiVersion='meta.k8s.io/v1', kind='CreateOptions'), object={'spec': {'field': 'value'}}, oldObject=None, dryRun=False, )) @dataclasses.dataclass(frozen=True) class Responder: fn: WebhookFn fut: asyncio.Future # asyncio.Future[Response] @pytest.fixture() async def responder() -> Responder: fut = asyncio.Future() async def fn(*_, **__): return await fut return Responder(fn=fn, fut=fut) @pytest.fixture() async def insights(settings, resource): val_resource = Resource('admissionregistration.k8s.io', 'v1', 'validatingwebhookconfigurations') mut_resource = Resource('admissionregistration.k8s.io', 'v1', 'mutatingwebhookconfigurations') insights = Insights() insights.watched_resources.add(resource) insights.webhook_resources.add(resource) await insights.backbone.fill(resources=[val_resource, mut_resource]) insights.ready_resources.set() return insights @pytest.fixture() def indices(): indexers = OperatorIndexers() return indexers.indices @pytest.fixture(autouse=True) def pyngrok_mock(mocker): mocker.patch.object(pyngrok.conf, 'get_default') mocker.patch.object(pyngrok.ngrok, 'set_auth_token') mocker.patch.object(pyngrok.ngrok, 'connect') mocker.patch.object(pyngrok.ngrok, 'disconnect') pyngrok.ngrok.connect.return_value.public_url = 'https://nowhere' return pyngrok
null
4,884
from collections import OrderedDict from conans.client.graph.graph import RECIPE_SYSTEM_TOOL from conans.errors import ConanException from conans.model.recipe_ref import RecipeReference from conans.model.conanfile_interface import ConanFileInterface class UserRequirementsDict(object): """ user facing dict to allow access of dependencies by name """ def __init__(self, data, require_filter=None): self._data = data # dict-like self._require_filter = require_filter # dict {trait: value} for requirements def filter(self, require_filter): def filter_fn(require): for k, v in require_filter.items(): if getattr(require, k) != v: return False return True data = OrderedDict((k, v) for k, v in self._data.items() if filter_fn(k)) return UserRequirementsDict(data, require_filter) def __bool__(self): return bool(self._data) def METHOD_NAME(self, ref, build=None, **kwargs): return self._get(ref, build, **kwargs)[1] def _get(self, ref, build=None, **kwargs): if build is None: current_filters = self._require_filter or {} if "build" not in current_filters: # By default we search in the "host" context kwargs["build"] = False else: kwargs["build"] = build data = self.filter(kwargs) ret = [] if "/" in ref: # FIXME: Validate reference ref = RecipeReference.loads(ref) for require, value in data.items(): if require.ref == ref: ret.append((require, value)) else: name = ref for require, value in data.items(): if require.ref.name == name: ret.append((require, value)) if len(ret) > 1: current_filters = data._require_filter or "{}" requires = "\n".join(["- {}".format(require) for require, _ in ret]) raise ConanException("There are more than one requires matching the specified filters:" " {}\n{}".format(current_filters, requires)) if not ret: raise KeyError("'{}' not found in the dependency set".format(ref)) key, value = ret[0] return key, value def __getitem__(self, name): return self.METHOD_NAME(name) def __delitem__(self, name): r, _ = self._get(name) del self._data[r] def items(self): return self._data.items() def values(self): return self._data.values() class ConanFileDependencies(UserRequirementsDict): @staticmethod def from_node(node): d = OrderedDict((require, ConanFileInterface(transitive.node.conanfile)) for require, transitive in node.transitive_deps.items()) return ConanFileDependencies(d) def filter(self, require_filter, remove_system_tools=False): # FIXME: Copy of hte above, to return ConanFileDependencies class object def filter_fn(require): for k, v in require_filter.items(): if getattr(require, k) != v: return False return True data = OrderedDict((k, v) for k, v in self._data.items() if filter_fn(k)) if remove_system_tools: data = OrderedDict((k, v) for k, v in data.items() # TODO: Make "recipe" part of ConanFileInterface model if v._conanfile._conan_node.recipe != RECIPE_SYSTEM_TOOL) return ConanFileDependencies(data, require_filter) def transitive_requires(self, other): """ :type other: ConanFileDependencies """ data = OrderedDict() for k, v in self._data.items(): for otherk, otherv in other._data.items(): if v == otherv: data[k] = v return ConanFileDependencies(data) @property def topological_sort(self): # Return first independent nodes, final ones are the more direct deps result = OrderedDict() opened = self._data.copy() while opened: opened_values = set(opened.values()) new_opened = OrderedDict() for req, conanfile in opened.items(): deps_in_opened = any(d in opened_values for d in conanfile.dependencies.values()) if deps_in_opened: new_opened[req] = conanfile # keep it for next iteration else: result[req] = conanfile # No dependencies in open set! opened = new_opened return ConanFileDependencies(result) @property def direct_host(self): return self.filter({"build": False, "direct": True, "test": False, "skip": False}) @property def direct_build(self): return self.filter({"build": True, "direct": True}, remove_system_tools=True) @property def host(self): return self.filter({"build": False, "test": False, "skip": False}) @property def test(self): # Not needed a direct_test because they are visible=False so only the direct consumer # will have them in the graph return self.filter({"build": False, "test": True, "skip": False}) @property def build(self): return self.filter({"build": True}, remove_system_tools=True) def get_transitive_requires(consumer, dependency): """ the transitive requires that we need are the consumer ones, not the current dependencey ones, so we get the current ones, then look for them in the consumer, and return those """ pkg_deps = dependency.dependencies.filter({"direct": True}) result = consumer.dependencies.transitive_requires(pkg_deps) result = result.filter({"skip": False}) return result
null
4,885
from time import perf_counter import pyglet.gl as pgl from sympy.plotting.pygletplot.managed_window import ManagedWindow from sympy.plotting.pygletplot.plot_camera import PlotCamera from sympy.plotting.pygletplot.plot_controller import PlotController class PlotWindow(ManagedWindow): def __init__(self, plot, antialiasing=True, ortho=False, invert_mouse_zoom=False, linewidth=1.5, caption="SymPy Plot", **kwargs): """ Named Arguments =============== antialiasing = True True OR False ortho = False True OR False invert_mouse_zoom = False True OR False """ self.plot = plot self.camera = None self._calculating = False self.antialiasing = antialiasing self.ortho = ortho self.invert_mouse_zoom = invert_mouse_zoom self.linewidth = linewidth self.title = caption self.last_caption_update = 0 self.caption_update_interval = 0.2 self.drawing_first_object = True super().__init__(**kwargs) def setup(self): self.camera = PlotCamera(self, ortho=self.ortho) self.controller = PlotController(self, invert_mouse_zoom=self.invert_mouse_zoom) self.push_handlers(self.controller) pgl.glClearColor(1.0, 1.0, 1.0, 0.0) pgl.glClearDepth(1.0) pgl.glDepthFunc(pgl.GL_LESS) pgl.glEnable(pgl.GL_DEPTH_TEST) pgl.glEnable(pgl.GL_LINE_SMOOTH) pgl.glShadeModel(pgl.GL_SMOOTH) pgl.glLineWidth(self.linewidth) pgl.glEnable(pgl.GL_BLEND) pgl.glBlendFunc(pgl.GL_SRC_ALPHA, pgl.GL_ONE_MINUS_SRC_ALPHA) if self.antialiasing: pgl.glHint(pgl.GL_LINE_SMOOTH_HINT, pgl.GL_NICEST) pgl.glHint(pgl.GL_POLYGON_SMOOTH_HINT, pgl.GL_NICEST) self.camera.setup_projection() def on_resize(self, w, h): super().on_resize(w, h) if self.camera is not None: self.camera.setup_projection() def update(self, dt): self.controller.update(dt) def METHOD_NAME(self): self.plot._render_lock.acquire() self.camera.apply_transformation() calc_verts_pos, calc_verts_len = 0, 0 calc_cverts_pos, calc_cverts_len = 0, 0 should_update_caption = (perf_counter() - self.last_caption_update > self.caption_update_interval) if len(self.plot._functions.values()) == 0: self.drawing_first_object = True iterfunctions = iter(self.plot._functions.values()) for r in iterfunctions: if self.drawing_first_object: self.camera.set_rot_preset(r.default_rot_preset) self.drawing_first_object = False pgl.glPushMatrix() r._draw() pgl.glPopMatrix() # might as well do this while we are # iterating and have the lock rather # than locking and iterating twice # per frame: if should_update_caption: try: if r.calculating_verts: calc_verts_pos += r.calculating_verts_pos calc_verts_len += r.calculating_verts_len if r.calculating_cverts: calc_cverts_pos += r.calculating_cverts_pos calc_cverts_len += r.calculating_cverts_len except ValueError: pass for r in self.plot._pobjects: pgl.glPushMatrix() r._draw() pgl.glPopMatrix() if should_update_caption: self.update_caption(calc_verts_pos, calc_verts_len, calc_cverts_pos, calc_cverts_len) self.last_caption_update = perf_counter() if self.plot._screenshot: self.plot._screenshot._execute_saving() self.plot._render_lock.release() def update_caption(self, calc_verts_pos, calc_verts_len, calc_cverts_pos, calc_cverts_len): caption = self.title if calc_verts_len or calc_cverts_len: caption += " (calculating" if calc_verts_len > 0: p = (calc_verts_pos / calc_verts_len) * 100 caption += " vertices %i%%" % (p) if calc_cverts_len > 0: p = (calc_cverts_pos / calc_cverts_len) * 100 caption += " colors %i%%" % (p) caption += ")" if self.caption != caption: self.set_caption(caption)
null
4,886
"""Tests for computing Galois groups. """ from sympy.abc import x from sympy.combinatorics.galois import ( S1TransitiveSubgroups, S2TransitiveSubgroups, S3TransitiveSubgroups, S4TransitiveSubgroups, S5TransitiveSubgroups, S6TransitiveSubgroups, ) from sympy.polys.domains.rationalfield import QQ from sympy.polys.numberfields.galoisgroups import ( tschirnhausen_transformation, galois_group, _galois_group_degree_4_root_approx, _galois_group_degree_5_hybrid, ) from sympy.polys.numberfields.subfield import field_isomorphism from sympy.polys.polytools import Poly from sympy.testing.pytest import raises def test_tschirnhausen_transformation(): for T in [ Poly(x**2 - 2), Poly(x**2 + x + 1), Poly(x**4 + 1), Poly(x**4 - x**3 + x**2 - x + 1), ]: _, U = tschirnhausen_transformation(T) assert U.degree() == T.degree() assert U.is_monic assert U.is_irreducible K = QQ.alg_field_from_poly(T) L = QQ.alg_field_from_poly(U) assert field_isomorphism(K.ext, L.ext) is not None # Test polys are from: # Cohen, H. *A Course in Computational Algebraic Number Theory*. test_polys_by_deg = { # Degree 1 1: [ (x, S1TransitiveSubgroups.S1, True) ], # Degree 2 2: [ (x**2 + x + 1, S2TransitiveSubgroups.S2, False) ], # Degree 3 3: [ (x**3 + x**2 - 2*x - 1, S3TransitiveSubgroups.A3, True), (x**3 + 2, S3TransitiveSubgroups.S3, False), ], # Degree 4 4: [ (x**4 + x**3 + x**2 + x + 1, S4TransitiveSubgroups.C4, False), (x**4 + 1, S4TransitiveSubgroups.V, True), (x**4 - 2, S4TransitiveSubgroups.D4, False), (x**4 + 8*x + 12, S4TransitiveSubgroups.A4, True), (x**4 + x + 1, S4TransitiveSubgroups.S4, False), ], # Degree 5 5: [ (x**5 + x**4 - 4*x**3 - 3*x**2 + 3*x + 1, S5TransitiveSubgroups.C5, True), (x**5 - 5*x + 12, S5TransitiveSubgroups.D5, True), (x**5 + 2, S5TransitiveSubgroups.M20, False), (x**5 + 20*x + 16, S5TransitiveSubgroups.A5, True), (x**5 - x + 1, S5TransitiveSubgroups.S5, False), ], # Degree 6 6: [ (x**6 + x**5 + x**4 + x**3 + x**2 + x + 1, S6TransitiveSubgroups.C6, False), (x**6 + 108, S6TransitiveSubgroups.S3, False), (x**6 + 2, S6TransitiveSubgroups.D6, False), (x**6 - 3*x**2 - 1, S6TransitiveSubgroups.A4, True), (x**6 + 3*x**3 + 3, S6TransitiveSubgroups.G18, False), (x**6 - 3*x**2 + 1, S6TransitiveSubgroups.A4xC2, False), (x**6 - 4*x**2 - 1, S6TransitiveSubgroups.S4p, True), (x**6 - 3*x**5 + 6*x**4 - 7*x**3 + 2*x**2 + x - 4, S6TransitiveSubgroups.S4m, False), (x**6 + 2*x**3 - 2, S6TransitiveSubgroups.G36m, False), (x**6 + 2*x**2 + 2, S6TransitiveSubgroups.S4xC2, False), (x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 + 170*x + 25, S6TransitiveSubgroups.PSL2F5, True), (x**6 + 10*x**5 + 55*x**4 + 140*x**3 + 175*x**2 - 3019*x + 25, S6TransitiveSubgroups.PGL2F5, False), (x**6 + 6*x**4 + 2*x**3 + 9*x**2 + 6*x - 4, S6TransitiveSubgroups.G36p, True), (x**6 + 2*x**4 + 2*x**3 + x**2 + 2*x + 2, S6TransitiveSubgroups.G72, False), (x**6 + 24*x - 20, S6TransitiveSubgroups.A6, True), (x**6 + x + 1, S6TransitiveSubgroups.S6, False), ], } def test_galois_group(): """ Try all the test polys. """ for deg in range(1, 7): polys = test_polys_by_deg[deg] for T, G, alt in polys: assert galois_group(T, by_name=True) == (G, alt) def test_galois_group_degree_out_of_bounds(): raises(ValueError, lambda: galois_group(Poly(0, x))) raises(ValueError, lambda: galois_group(Poly(1, x))) raises(ValueError, lambda: galois_group(Poly(x ** 7 + 1))) def test_galois_group_not_by_name(): """ Check at least one polynomial of each supported degree, to see that conversion from name to group works. """ for deg in range(1, 7): T, G_name, _ = test_polys_by_deg[deg][0] G, _ = galois_group(T) assert G == G_name.get_perm_group() def test_galois_group_not_monic_over_ZZ(): """ Check that we can work with polys that are not monic over ZZ. """ for deg in range(1, 7): T, G, alt = test_polys_by_deg[deg][0] assert galois_group(T/2, by_name=True) == (G, alt) def test__galois_group_degree_4_root_approx(): for T, G, alt in test_polys_by_deg[4]: assert _galois_group_degree_4_root_approx(Poly(T)) == (G, alt) def METHOD_NAME(): for T, G, alt in test_polys_by_deg[5]: assert _galois_group_degree_5_hybrid(Poly(T)) == (G, alt) def test_AlgebraicField_galois_group(): k = QQ.alg_field_from_poly(Poly(x**4 + 1)) G, _ = k.galois_group(by_name=True) assert G == S4TransitiveSubgroups.V k = QQ.alg_field_from_poly(Poly(x**4 - 2)) G, _ = k.galois_group(by_name=True) assert G == S4TransitiveSubgroups.D4
null
4,887
import abc import io import os from typing import Any, BinaryIO, Iterable, Iterator, NoReturn, Text, Optional from typing import runtime_checkable, Protocol from typing import Union StrPath = Union[str, os.PathLike[str]] __all__ = ["ResourceReader", "Traversable", "TraversableResources"] class ResourceReader(metaclass=abc.ABCMeta): """Abstract base class for loaders to provide resource reading support.""" @abc.abstractmethod def open_resource(self, resource: Text) -> BinaryIO: """Return an opened, file-like object for binary reading. The 'resource' argument is expected to represent only a file name. If the resource cannot be found, FileNotFoundError is raised. """ # This deliberately raises FileNotFoundError instead of # NotImplementedError so that if this method is accidentally called, # it'll still do the right thing. raise FileNotFoundError @abc.abstractmethod def resource_path(self, resource: Text) -> Text: """Return the file system path to the specified resource. The 'resource' argument is expected to represent only a file name. If the resource does not exist on the file system, raise FileNotFoundError. """ # This deliberately raises FileNotFoundError instead of # NotImplementedError so that if this method is accidentally called, # it'll still do the right thing. raise FileNotFoundError @abc.abstractmethod def is_resource(self, path: Text) -> bool: """Return True if the named 'path' is a resource. Files are resources, directories are not. """ raise FileNotFoundError @abc.abstractmethod def contents(self) -> Iterable[str]: """Return an iterable of entries in `package`.""" raise FileNotFoundError @runtime_checkable class Traversable(Protocol): """ An object with a subset of pathlib.Path methods suitable for traversing directories and opening files. Any exceptions that occur when accessing the backing resource may propagate unaltered. """ @abc.abstractmethod def iterdir(self) -> Iterator["Traversable"]: """ Yield Traversable objects in self """ def read_bytes(self) -> bytes: """ Read contents of self as bytes """ with self.open('rb') as strm: return strm.read() def read_text(self, encoding: Optional[str] = None) -> str: """ Read contents of self as text """ with self.open(encoding=encoding) as strm: return strm.read() @abc.abstractmethod def is_dir(self) -> bool: """ Return True if self is a directory """ @abc.abstractmethod def is_file(self) -> bool: """ Return True if self is a file """ @abc.abstractmethod def METHOD_NAME(self, *descendants: StrPath) -> "Traversable": """ Return Traversable resolved with any descendants applied. Each descendant should be a path segment relative to self and each may contain multiple levels separated by ``posixpath.sep`` (``/``). """ def __truediv__(self, child: StrPath) -> "Traversable": """ Return Traversable child in self """ return self.METHOD_NAME(child) @abc.abstractmethod def open(self, mode='r', *args, **kwargs): """ mode may be 'r' or 'rb' to open as text or binary. Return a handle suitable for reading (same as pathlib.Path.open). When opening as text, accepts encoding parameters such as those accepted by io.TextIOWrapper. """ @abc.abstractproperty def name(self) -> str: """ The base name of this object without any parent references. """ class TraversableResources(ResourceReader): """ The required interface for providing traversable resources. """ @abc.abstractmethod def files(self) -> "Traversable": """Return a Traversable object for the loaded package.""" def open_resource(self, resource: StrPath) -> io.BufferedReader: return self.files().METHOD_NAME(resource).open('rb') def resource_path(self, resource: Any) -> NoReturn: raise FileNotFoundError(resource) def is_resource(self, path: StrPath) -> bool: return self.files().METHOD_NAME(path).is_file() def contents(self) -> Iterator[str]: return (item.name for item in self.files().iterdir())
null
4,888
import json import logging import urllib.request import xml.etree.ElementTree as ET from backend.gene_info.config import GeneInfoConfig class NCBIException(Exception): pass class NCBIAPIException(NCBIException): pass class NCBIUnexpectedResultException(NCBIException): pass class NCBIProvider: """ Provider class used to generate NCBI URL """ def __init__(self) -> None: self.base_ncbi_uri = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/" gene_info_config = GeneInfoConfig() try: self.api_key = f"&api_key={gene_info_config.ncbi_api_key}" except RuntimeError: logging.error("Could not find NCBI API key") self.api_key = None def fetch_gene_info_tree(self, uid): """ Given a gene UID from NCBI, returns an XML tree of gene information """ if self.api_key is None: raise NCBIAPIException fetch_url = f"{self.base_ncbi_uri}efetch.fcgi?db=gene&id={uid}{self.api_key}&retmode=xml" try: return urllib.request.urlopen(fetch_url).read() except Exception: raise NCBIUnexpectedResultException from None def fetch_gene_uid(self, geneID, gene): """ Given a gene ensembl ID and gene name, returns a tuple with NCBI's corresponding gene UID and a boolean noting if the result is from searching by the gene name, instead of the gene ENSEMBL id. Initially, uses ensembl ID to find gene UID, but in the event that this returns an unexpected result, call the NCBI API again with gene name. This is successful if the response returns only 1 result for UID. """ if self.api_key is None: raise NCBIAPIException # first search with gene ENSEMBL id try: search_response = self._search_gene_uid(geneID) except NCBIUnexpectedResultException: raise NCBIUnexpectedResultException from None # search with gene name if needed if not self._is_valid_search_result(search_response) and gene and gene != "": try: # to refine the search parameters, gene is searched with the label "Gene Name" and human "Organism" gene_search_term = "(" + str(gene) + "%5BGene%20Name%5D)%20AND%20human%5BOrganism%5D" search_response = self._search_gene_uid(gene_search_term) if self._is_valid_search_result(search_response): show_warning_banner = False return (int(search_response["esearchresult"]["idlist"][0]), show_warning_banner) else: logging.error(f"Unexpected NCBI search result, got {search_response}") raise NCBIUnexpectedResultException except NCBIUnexpectedResultException: raise NCBIUnexpectedResultException from None elif not self._is_valid_search_result(search_response): logging.error(f"Unexpected NCBI search result, got {search_response}") raise NCBIUnexpectedResultException else: show_warning_banner = False return (int(search_response["esearchresult"]["idlist"][0]), show_warning_banner) def _search_gene_uid(self, term): """ Conducts an Esearch using NCBI's E-Utilities API with provided term """ search_url = f"{self.base_ncbi_uri}esearch.fcgi?db=gene&term={term}{self.api_key}&retmode=json" try: search_response = urllib.request.urlopen(search_url).read() except Exception: raise NCBIUnexpectedResultException from None return json.loads(search_response) def _is_valid_search_result(self, search_result): """ Checks that a search result contains only one UID as a result """ try: int(search_result["esearchresult"]["idlist"][0]) if len(search_result["esearchresult"]["idlist"]) != 1: return False except (ValueError, KeyError, IndexError): return False return True def METHOD_NAME(self, tree_response): """ Parse NCBI XML response into relevant values to return by gene_info API """ result_tree = ET.ElementTree(ET.fromstring(tree_response)) root = result_tree.getroot() synonyms = [] summary = "" name = "" summary_tag = "Entrezgene_summary" gene_tag = "Entrezgene_gene" desc_tag = "Gene-ref_desc" syn_tag = "Gene-ref_syn" if len(root) > 0: for x in root[0]: if x.tag == summary_tag: summary = x.text elif x.tag == gene_tag and len(x) > 0: for y in x[0]: if y.tag == desc_tag: name = y.text elif y.tag == syn_tag: for syn in y: synonyms.append(syn.text) return dict( name=name, summary=summary, synonyms=synonyms, )
null
4,889
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import copy import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = [ 'GetGroupResult', 'AwaitableGetGroupResult', 'get_group', 'get_group_output', ] @pulumi.output_type class GetGroupResult: """ A collection of values returned by getGroup. """ def __init__(__self__, all_management_group_ids=None, all_subscription_ids=None, display_name=None, id=None, METHOD_NAME=None, name=None, parent_management_group_id=None, subscription_ids=None): if all_management_group_ids and not isinstance(all_management_group_ids, list): raise TypeError("Expected argument 'all_management_group_ids' to be a list") pulumi.set(__self__, "all_management_group_ids", all_management_group_ids) if all_subscription_ids and not isinstance(all_subscription_ids, list): raise TypeError("Expected argument 'all_subscription_ids' to be a list") pulumi.set(__self__, "all_subscription_ids", all_subscription_ids) if display_name and not isinstance(display_name, str): raise TypeError("Expected argument 'display_name' to be a str") pulumi.set(__self__, "display_name", display_name) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if METHOD_NAME and not isinstance(METHOD_NAME, list): raise TypeError("Expected argument 'management_group_ids' to be a list") pulumi.set(__self__, "management_group_ids", METHOD_NAME) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if parent_management_group_id and not isinstance(parent_management_group_id, str): raise TypeError("Expected argument 'parent_management_group_id' to be a str") pulumi.set(__self__, "parent_management_group_id", parent_management_group_id) if subscription_ids and not isinstance(subscription_ids, list): raise TypeError("Expected argument 'subscription_ids' to be a list") pulumi.set(__self__, "subscription_ids", subscription_ids) @property @pulumi.getter(name="allManagementGroupIds") def all_management_group_ids(self) -> Sequence[str]: """ A list of Management Group IDs which directly or indirectly belong to this Management Group. """ return pulumi.get(self, "all_management_group_ids") @property @pulumi.getter(name="allSubscriptionIds") def all_subscription_ids(self) -> Sequence[str]: """ A list of Subscription IDs which are assigned to this Management Group or its children Management Groups. """ return pulumi.get(self, "all_subscription_ids") @property @pulumi.getter(name="displayName") def display_name(self) -> str: return pulumi.get(self, "display_name") @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="managementGroupIds") def METHOD_NAME(self) -> Sequence[str]: """ A list of Management Group IDs which directly belong to this Management Group. """ return pulumi.get(self, "management_group_ids") @property @pulumi.getter def name(self) -> str: return pulumi.get(self, "name") @property @pulumi.getter(name="parentManagementGroupId") def parent_management_group_id(self) -> str: """ The ID of any Parent Management Group. """ return pulumi.get(self, "parent_management_group_id") @property @pulumi.getter(name="subscriptionIds") def subscription_ids(self) -> Sequence[str]: """ A list of Subscription IDs which are directly assigned to this Management Group. """ return pulumi.get(self, "subscription_ids") class AwaitableGetGroupResult(GetGroupResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetGroupResult( all_management_group_ids=self.all_management_group_ids, all_subscription_ids=self.all_subscription_ids, display_name=self.display_name, id=self.id, METHOD_NAME=self.METHOD_NAME, name=self.name, parent_management_group_id=self.parent_management_group_id, subscription_ids=self.subscription_ids) def get_group(display_name: Optional[str] = None, name: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetGroupResult: """ Use this data source to access information about an existing Management Group. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.management.get_group(name="00000000-0000-0000-0000-000000000000") pulumi.export("displayName", example.display_name) ``` :param str display_name: Specifies the display name of this Management Group. > **NOTE** Whilst multiple management groups may share the same display name, when filtering, the provider expects a single management group to be found with this name. :param str name: Specifies the name or UUID of this Management Group. """ __args__ = dict() __args__['displayName'] = display_name __args__['name'] = name opts = pulumi.InvokeOptions.merge(_utilities.get_invoke_opts_defaults(), opts) __ret__ = pulumi.runtime.invoke('azure:management/getGroup:getGroup', __args__, opts=opts, typ=GetGroupResult).value return AwaitableGetGroupResult( all_management_group_ids=pulumi.get(__ret__, 'all_management_group_ids'), all_subscription_ids=pulumi.get(__ret__, 'all_subscription_ids'), display_name=pulumi.get(__ret__, 'display_name'), id=pulumi.get(__ret__, 'id'), METHOD_NAME=pulumi.get(__ret__, 'management_group_ids'), name=pulumi.get(__ret__, 'name'), parent_management_group_id=pulumi.get(__ret__, 'parent_management_group_id'), subscription_ids=pulumi.get(__ret__, 'subscription_ids')) @_utilities.lift_output_func(get_group) def get_group_output(display_name: Optional[pulumi.Input[Optional[str]]] = None, name: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetGroupResult]: """ Use this data source to access information about an existing Management Group. ## Example Usage ```python import pulumi import pulumi_azure as azure example = azure.management.get_group(name="00000000-0000-0000-0000-000000000000") pulumi.export("displayName", example.display_name) ``` :param str display_name: Specifies the display name of this Management Group. > **NOTE** Whilst multiple management groups may share the same display name, when filtering, the provider expects a single management group to be found with this name. :param str name: Specifies the name or UUID of this Management Group. """ ...
null
4,890
import json import numpy as np # mimics relative error function in the src/rascal/math/utils.hh def compute_relative_error( reference_values, test_values, epsilon=100 * np.finfo(np.double).resolution ): relative_error = test_values - reference_values non_zero_idx = np.abs(reference_values) > epsilon relative_error[non_zero_idx] /= reference_values[non_zero_idx] return np.abs(relative_error) def METHOD_NAME(X, Y=None): if Y is None: return list(X.keys()) else: return list(set(X.keys()).METHOD_NAME(Y.keys())) def dot(X, Y=None): key_intersection = METHOD_NAME(X, Y) if Y is None: Y = X N = X[key_intersection[0]].shape[0] M = Y[key_intersection[0]].shape[0] K = np.zeros((N, M)) for key in key_intersection: K += np.dot(X[key], Y[key].T) return K def adapt_structure(cell, positions, numbers, pbc): cell = np.array(cell.T, order="F") positions = np.array(positions.T, order="F") numbers = numbers.reshape(-1, 1) pbc = pbc.reshape(3, 1) return dict(cell=cell, positions=positions, atom_types=numbers, pbc=pbc) def dump_json_frame(fn, frames): from collections import Iterable if not isinstance(frames, Iterable): frames = [frames] data = dict() for ii, frame in enumerate(frames): data[ii] = dict( positions=frame.get_positions().tolist(), cell=frame.get_cell().tolist(), numbers=frame.get_atomic_numbers().tolist(), pbc=frame.get_pbc().tolist(), ) data["ids"] = np.arange(len(frames)).tolist() data["nextid"] = 2 with open(fn, "w") as f: json.dump(data, f, indent=2, separators=(",", ": ")) def load_json_frame(fn): with open(fn, "r") as f: data = json.load(f) ids = data["ids"] keys = ["cell", "positions", "numbers", "pbc"] structure = {key: np.array(data[str(idx)][key]) for idx in ids for key in keys} return adapt_structure(**structure) class BoxList(object): def __init__(self, max_cutoff, cell, pbc, centers): # Compute reciprocal lattice vectors. b1_c, b2_c, b3_c = np.linalg.pinv(cell).T # Compute distances of cell faces (height between 2 # consecutive faces [010] l1 = np.linalg.norm(b1_c) l2 = np.linalg.norm(b2_c) l3 = np.linalg.norm(b3_c) face_dist_c = np.array( [ 1 / l1 if l1 > 0 else 1, 1 / l2 if l2 > 0 else 1, 1 / l3 if l3 > 0 else 1, ] ) # We use a minimum bin size of 3 A self.bin_size = max_cutoff # Compute number of bins such that a sphere of radius # cutoff fit into eight neighboring bins. self.nbins_c = np.maximum((face_dist_c / self.bin_size).astype(int), [1, 1, 1]) self.nbins = np.prod(self.nbins_c) # Compute over how many bins we need to loop in the # neighbor list search. self.neigh_search = np.ceil(self.bin_size * self.nbins_c / face_dist_c).astype( int ) self.bin2icenters = [[] for bin_idx in range(self.nbins)] scaled_positions_ic = np.linalg.solve(cell.T, centers.T).T self.h_sizes = np.linalg.norm(cell, axis=1) self.part2bin = {} for icenter in range(len(centers)): bin_index_ic = np.floor(scaled_positions_ic[icenter] * self.nbins_c).astype( int ) bin_id = self.cell2lin(bin_index_ic) self.bin2icenters[bin_id].append(icenter) self.part2bin[icenter] = bin_id self.list = [] # print(self.nbins) for bin_id in range(self.nbins): self.list.append( Box( bin_id, self.nbins_c, self.neigh_search, self.bin2icenters[bin_id], pbc, self, ) ) def cell2lin(self, ids): return int(ids[0] + self.nbins_c[0] * (ids[1] + self.nbins_c[1] * ids[2])) def iter_box(self): for bin_id in range(self.nbins): yield self.list[bin_id] def __getitem__(self, bin_id): return self.list[bin_id] class Box(object): def __init__(self, lin_pos, nbins_c, neigh_search, icenters, pbc, boxlist): self.nbins_c = nbins_c self.neigh_search = neigh_search self.icenters = icenters self.pbc = pbc self.lin_pos = lin_pos self.mult_pos = self.lin2cell(lin_pos) self.boxlist = boxlist self.search_idx = [] for ii, p in enumerate(self.pbc): if 0 == self.mult_pos[ii] and p is False: self.search_idx.append( [self.mult_pos[ii] + jj for jj in range(self.neigh_search[ii] + 1)] ) elif self.nbins_c[ii] - 1 == self.mult_pos[ii] and p is False: self.search_idx.append( [ self.mult_pos[ii] + jj for jj in range(-self.neigh_search[ii], 0 + 1) ] ) else: self.search_idx.append( [ self.mult_pos[ii] + jj for jj in range( -self.neigh_search[ii], self.neigh_search[ii] + 1 ) ] ) self.neighbour_bin_index, self.neighbour_bin_shift = [], [] for ii in self.search_idx[0]: for jj in self.search_idx[1]: for kk in self.search_idx[2]: box_shift, box_pos = np.divmod([ii, jj, kk], self.nbins_c) neigh_box_idx = self.cell2lin(box_pos) self.neighbour_bin_index.append(neigh_box_idx) self.neighbour_bin_shift.append(box_shift) def cell2lin(self, ids): return int(ids[0] + self.nbins_c[0] * (ids[1] + self.nbins_c[1] * ids[2])) def lin2cell(self, lin_ids): fac = 1 cell_pos = np.array([0, 0, 0]) for ii in range(3): cell_pos[ii] = lin_ids / fac % self.nbins_c[ii] fac *= self.nbins_c[ii] return cell_pos def iter_neigh_box(self): from copy import deepcopy for ii in self.search_idx[0]: for jj in self.search_idx[1]: for kk in self.search_idx[2]: box_shift, box_pos = np.divmod([ii, jj, kk], self.nbins_c) neigh_box_idx = self.cell2lin(box_pos) jcenters = deepcopy(self.boxlist[neigh_box_idx].icenters) for jneigh in jcenters: yield jneigh, deepcopy(box_shift)
null
4,891
import unittest from mock import patch from django.urls import reverse from django.test import TestCase from devilry.project.develop.testhelpers.corebuilder import PeriodBuilder from devilry.project.develop.testhelpers.corebuilder import UserBuilder from devilry.project.develop.testhelpers.soupselect import cssGet from devilry.project.develop.testhelpers.soupselect import cssFind from devilry.devilry_gradingsystem.pluginregistry import GradingSystemPluginRegistry from .base import AdminViewTestMixin from .base import MockApprovedPluginApi from .base import MockPointsPluginApi from .base import MockRequiresConfigurationPluginApi @unittest.skip('devilry_gradingsystem will most likely be replaced in 3.0') class TestSelectPluginView(TestCase, AdminViewTestMixin): def setUp(self): self.admin1 = UserBuilder('admin1').user self.assignmentbuilder = PeriodBuilder.quickadd_ducku_duck1010_active()\ .add_assignment('assignment1')\ .add_admins(self.admin1) self.url = reverse('devilry_gradingsystem_admin_selectplugin', kwargs={ 'assignmentid': self.assignmentbuilder.assignment.id, }) def test_get_not_admin_404_with_pluginselected(self): nobody = UserBuilder('nobody').user myregistry = GradingSystemPluginRegistry() myregistry.add(MockPointsPluginApi) with patch('devilry.devilry_gradingsystem.views.admin.selectplugin.gradingsystempluginregistry', myregistry): self.assertIn(MockPointsPluginApi.id, myregistry) response = self.get_as(nobody, { 'grading_system_plugin_id': MockPointsPluginApi.id }) self.assertEqual(response.status_code, 404) def test_render(self): myregistry = GradingSystemPluginRegistry() myregistry.add(MockPointsPluginApi) myregistry.add(MockApprovedPluginApi) with patch('devilry.devilry_gradingsystem.views.admin.selectplugin.gradingsystempluginregistry', myregistry): response = self.get_as(self.admin1) self.assertEqual(response.status_code, 200) html = response.content self.assertEqual(cssGet(html, '.page-header h1').text.strip(), 'How would you like to provide feedback to your students?') self.assertEqual(len(cssFind(html, '.devilry_gradingsystem_verbose_selectbox')), 2) def test_next_page_requires_configuration(self): myregistry = GradingSystemPluginRegistry() myregistry.add(MockRequiresConfigurationPluginApi) with patch('devilry.devilry_gradingsystem.views.admin.selectplugin.gradingsystempluginregistry', myregistry): response = self.get_as(self.admin1, { 'grading_system_plugin_id': MockRequiresConfigurationPluginApi.id }) self.assertEqual(response.status_code, 302) self.assertEqual(response["Location"], 'http://testserver/mock/requiresconfiguration/configure/{}'.format( self.assignmentbuilder.assignment.id)) self.assignmentbuilder.reload_from_db() self.assertEqual(self.assignmentbuilder.assignment.grading_system_plugin_id, MockRequiresConfigurationPluginApi.id) def test_next_page_no_configuration_required(self): myregistry = GradingSystemPluginRegistry() myregistry.add(MockPointsPluginApi) with patch('devilry.devilry_gradingsystem.views.admin.selectplugin.gradingsystempluginregistry', myregistry): response = self.get_as(self.admin1, { 'grading_system_plugin_id': MockPointsPluginApi.id }) self.assertEqual(response.status_code, 302) self.assertTrue(response["Location"].endswith( reverse('devilry_gradingsystem_admin_setmaxpoints', kwargs={ 'assignmentid': self.assignmentbuilder.assignment.id}))) self.assignmentbuilder.reload_from_db() self.assertEqual(self.assignmentbuilder.assignment.grading_system_plugin_id, MockPointsPluginApi.id) def METHOD_NAME(self): myregistry = GradingSystemPluginRegistry() myregistry.add(MockPointsPluginApi) with patch('devilry.devilry_gradingsystem.views.admin.selectplugin.gradingsystempluginregistry', myregistry): response = self.get_as(self.admin1, { 'grading_system_plugin_id': 'doesnotexist' }) self.assertEqual(response.status_code, 200) self.assertIn('Invalid grading system plugin ID: doesnotexist', response.content)
null
4,892
"""From https://github.com/orweis/emport.""" import collections import glob import inspect import os import sys __author__ = "orw" class ObjectUtils(object): @staticmethod def is_derived_of(obj, possible_parent_class): if hasattr(obj, "__bases__"): return possible_parent_class in inspect.getmro(obj) else: return False @staticmethod def get_properties(obj): def filter(x): return not isinstance(x, collections.Callable) return { k: v for k, v in inspect.getmembers(obj, filter) if not k.startswith("__") } @staticmethod def get_members_who_are_instance_of(obj, class_type): def filter(x): return isinstance(x, class_type) return inspect.getmembers(obj, filter) @classmethod def get_class_members_who_derive_of(cls, obj, parent_class): def filter(x): return ( inspect.isclass(x) and cls.is_derived_of(x, parent_class) and list(inspect.getmro(x)).index(parent_class) != 0 ) return inspect.getmembers(obj, filter) class PyFrame(object): def __init__(self): self._frame = inspect.currentframe() def __enter__(self): return self._frame.f_back def __exit__(self, exc_type, exc_value, traceback): del self._frame class Emport(object): def __init__(self, module, members): self.__original__ = module self._members = [] for member in members: self._members.append(member[1]) setattr(self, member[0], member[1]) def get_original_module(self): return self.__original__ def METHOD_NAME(self): return self._members def get_flat_list(self): """ :return: all the members of this Emport (And submodules) as one list """ res = [] for member in self._members: # if a member is an Emport itself flatten it as well if isinstance(member, Emport): res += member.get_flat_list() else: res.append(member) return res def __repr__(self): return "EMPORT - %s" % self.__original__ def get_caller_module(depth=0): """ :param depth: stack depth of the caller. 0 == yourself, 1 == your parent :return: the module object of the caller function (in set stack depth) """ with PyFrame() as frame: for i in range(0, depth): frame = frame.f_back return sys.modules[frame.f_globals["__name__"]] def co_to_dict(co): return { "co_argcount": co.co_argcount, "co_nlocals": co.co_nlocals, "co_stacksize": co.co_stacksize, "co_flags": co.co_flags, "co_consts": co.co_consts, "co_names": co.co_names, "co_varnames": co.co_varnames, "co_filename": co.co_filename, "co_name": co.co_name, "co_firstlineno": co.co_firstlineno, "co_lnotab": co.co_lnotab, } def get_caller(depth=0): """ :param depth: stack depth of the caller. 0 == yourself, 1 == your parent :return: the frame object of the caller function (in set stack depth) """ with PyFrame() as frame: for i in range(0, depth): frame = frame.f_back return co_to_dict(frame.f_code) def emport_by_class(from_path, cls, import_items=None): """Wrap __import__ to import modules and filter only classes deriving from the given cls. :param from_path: dot separated package path :param cls: class to filter import contents by :param import_items: the items to import form the package path (can also be ['*']) :return: an Emport object with contents filtered according to given cls """ import_items = import_items or ["*"] module_obj = __import__(from_path, globals(), locals(), import_items, 0) clean_items = ObjectUtils.get_class_members_who_derive_of(module_obj, cls) for (sub_name, sub_module) in ObjectUtils.get_members_who_are_instance_of( module_obj, module_obj.__class__ ): results = ObjectUtils.get_class_members_who_derive_of(sub_module, cls) # Keep only modules with sub values if len(results) > 0: clean_sub_module = Emport(sub_module, results) clean_items.append((sub_name, clean_sub_module)) clean_module = Emport(module_obj, clean_items) return clean_module def emport_objects_by_class(from_path, cls, import_items=None): """Wrap __import__ to import modules and filter only classes deriving from the given cls Return a flat list of objects without the modules themselves. :param from_path: dot separated package path :param cls: class to filter import contents by :param import_items: the items to import form the package path (can also be ['*']) :return: an Emport object with contents filtered according to given cls """ results = [] import_items = import_items or ["*"] module_obj = __import__(from_path, globals(), locals(), import_items, 0) # direct objects clean_items = ObjectUtils.get_class_members_who_derive_of(module_obj, cls) results.extend(clean_items) # nested for (sub_name, sub_module) in ObjectUtils.get_members_who_are_instance_of( module_obj, module_obj.__class__ ): objects = ObjectUtils.get_class_members_who_derive_of(sub_module, cls) results.extend(objects) return results def dynamic_all(init_file_path): """return a list of all the py files in a dir usage (in __init__.py file) : from emport import dynamic_all __all__ = dynamic_all(__file__) """ modules = glob.glob(os.path.join(os.path.dirname(init_file_path), "*.py*")) target_modules = set([]) for module in modules: name = os.path.splitext(os.path.basename(module))[0] if os.path.isfile(module) and not name.startswith("_"): target_modules.add(name) return list(target_modules)
null
4,893
# EnergyPlus, Copyright (c) 1996-2023, The Board of Trustees of the University # of Illinois, The Regents of the University of California, through Lawrence # Berkeley National Laboratory (subject to receipt of any required approvals # from the U.S. Dept. of Energy), Oak Ridge National Laboratory, managed by UT- # Battelle, Alliance for Sustainable Energy, LLC, and other contributors. All # rights reserved. # # NOTICE: This Software was developed under funding from the U.S. Department of # Energy and the U.S. Government consequently retains certain rights. As such, # the U.S. Government has been granted for itself and others acting on its # behalf a paid-up, nonexclusive, irrevocable, worldwide license in the # Software to reproduce, distribute copies to the public, prepare derivative # works, and perform publicly and display publicly, and to permit others to do # so. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # (1) Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # (2) Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # (3) Neither the name of the University of California, Lawrence Berkeley # National Laboratory, the University of Illinois, U.S. Dept. of Energy nor # the names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # (4) Use of EnergyPlus(TM) Name. If Licensee (i) distributes the software in # stand-alone form without changes from the version obtained under this # License, or (ii) Licensee makes a reference solely to the software # portion of its product, Licensee must refer to the software as # "EnergyPlus version X" software, where "X" is the version number Licensee # obtained under this License and may not use a different name for the # software. Except as specifically required in this Section (4), Licensee # shall not use in a company name, a product name, in advertising, # publicity, or other promotional activities any name, trade name, # trademark, logo, or other designation of "EnergyPlus", "E+", "e+" or # confusingly similar designation, without the U.S. Department of Energy's # prior written consent. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import os import platform import subprocess from eplaunch.workflows.base import BaseEPLaunchWorkflow1, EPLaunchWorkflowResponse1 class ConvertInputFormatWorkflow(BaseEPLaunchWorkflow1): def name(self): return "ConvertInputFormat-${CMAKE_VERSION_MAJOR}.${CMAKE_VERSION_MINOR}.${CMAKE_VERSION_PATCH}" def context(self): return "EnergyPlus-${CMAKE_VERSION_MAJOR}.${CMAKE_VERSION_MINOR}.${CMAKE_VERSION_PATCH}-${CMAKE_VERSION_BUILD}" def description(self): return "Run ConvertInputFormat" def METHOD_NAME(self): return ["*.idf", "*.epJSON"] def get_output_suffixes(self): return [".idf", ".epJSON"] def get_extra_data(self): return {"Hey, it's extra": "data"} def get_interface_columns(self): return [] def main(self, run_directory, file_name, args): if 'workflow location' in args: energyplus_root_folder, _ = os.path.split(args['workflow location']) if platform.system() == 'Windows': convertinputformat_binary = os.path.join(energyplus_root_folder, 'ConvertInputFormat.exe') else: convertinputformat_binary = os.path.join(energyplus_root_folder, 'ConvertInputFormat') if not os.path.exists(convertinputformat_binary): return EPLaunchWorkflowResponse1( success=False, message="ConvertInputFormat binary not found: {}!".format(convertinputformat_binary), column_data=[] ) else: return EPLaunchWorkflowResponse1( success=False, message="Workflow location missing: {}!".format(args['worflow location']), column_data=[] ) original_with_path = os.path.join(run_directory, file_name) converted_file_no_ext, original_ext = os.path.splitext(original_with_path) if original_ext.lower() == '.idf': converted_file_with_path = converted_file_no_ext + '.epJSON' elif original_ext.lower() == '.epjson': converted_file_with_path = converted_file_no_ext + '.idf' else: return EPLaunchWorkflowResponse1( success=False, message="Invalid extension {} on file: {}!".format(original_ext, original_with_path), column_data=[] ) if os.path.exists(original_with_path) and os.path.exists(convertinputformat_binary) and os.path.exists(run_directory): # execute utility command_line_args = [convertinputformat_binary, original_with_path] try: for message in self.execute_for_callback(command_line_args, run_directory): self.callback(message) except subprocess.CalledProcessError: self.callback("ConvertInputFormat FAILED") return EPLaunchWorkflowResponse1( success=False, message="ConvertInputFormat failed for file: %s!" % original_with_path, column_data={} ) return EPLaunchWorkflowResponse1( success=True, message="Ran ConvertInputFormat OK for file: {}!".format(original_with_path), column_data=[] ) else: return EPLaunchWorkflowResponse1( success=False, message="ConvertInputFormat file not found: {}!".format(original_with_path), column_data=[] )
null
4,894
from fastapi import APIRouter, FastAPI from fastapi.responses import HTMLResponse, JSONResponse, PlainTextResponse from fastapi.testclient import TestClient class OverrideResponse(JSONResponse): media_type = "application/x-override" app = FastAPI() router_a = APIRouter() router_a_a = APIRouter() router_a_b_override = APIRouter() # Overrides default class router_b_override = APIRouter() # Overrides default class router_b_a = APIRouter() router_b_a_c_override = APIRouter() # Overrides default class again @app.get("/") def get_root(): return {"msg": "Hello World"} @app.get("/override", response_class=PlainTextResponse) def get_path_override(): return "Hello World" @router_a.get("/") def get_a(): return {"msg": "Hello A"} @router_a.get("/override", response_class=PlainTextResponse) def get_a_path_override(): return "Hello A" @router_a_a.get("/") def get_a_a(): return {"msg": "Hello A A"} @router_a_a.get("/override", response_class=PlainTextResponse) def get_a_a_path_override(): return "Hello A A" @router_a_b_override.get("/") def get_a_b(): return "Hello A B" @router_a_b_override.get("/override", response_class=HTMLResponse) def get_a_b_path_override(): return "Hello A B" @router_b_override.get("/") def get_b(): return "Hello B" @router_b_override.get("/override", response_class=HTMLResponse) def get_b_path_override(): return "Hello B" @router_b_a.get("/") def get_b_a(): return "Hello B A" @router_b_a.get("/override", response_class=HTMLResponse) def METHOD_NAME(): return "Hello B A" @router_b_a_c_override.get("/") def get_b_a_c(): return "Hello B A C" @router_b_a_c_override.get("/override", response_class=OverrideResponse) def get_b_a_c_path_override(): return {"msg": "Hello B A C"} router_b_a.include_router( router_b_a_c_override, prefix="/c", default_response_class=HTMLResponse ) router_b_override.include_router(router_b_a, prefix="/a") router_a.include_router(router_a_a, prefix="/a") router_a.include_router( router_a_b_override, prefix="/b", default_response_class=PlainTextResponse ) app.include_router(router_a, prefix="/a") app.include_router( router_b_override, prefix="/b", default_response_class=PlainTextResponse ) client = TestClient(app) json_type = "application/json" text_type = "text/plain; charset=utf-8" html_type = "text/html; charset=utf-8" override_type = "application/x-override" def test_app(): with client: response = client.get("/") assert response.json() == {"msg": "Hello World"} assert response.headers["content-type"] == json_type def test_app_override(): with client: response = client.get("/override") assert response.content == b"Hello World" assert response.headers["content-type"] == text_type def test_router_a(): with client: response = client.get("/a") assert response.json() == {"msg": "Hello A"} assert response.headers["content-type"] == json_type def test_router_a_override(): with client: response = client.get("/a/override") assert response.content == b"Hello A" assert response.headers["content-type"] == text_type def test_router_a_a(): with client: response = client.get("/a/a") assert response.json() == {"msg": "Hello A A"} assert response.headers["content-type"] == json_type def test_router_a_a_override(): with client: response = client.get("/a/a/override") assert response.content == b"Hello A A" assert response.headers["content-type"] == text_type def test_router_a_b(): with client: response = client.get("/a/b") assert response.content == b"Hello A B" assert response.headers["content-type"] == text_type def test_router_a_b_override(): with client: response = client.get("/a/b/override") assert response.content == b"Hello A B" assert response.headers["content-type"] == html_type def test_router_b(): with client: response = client.get("/b") assert response.content == b"Hello B" assert response.headers["content-type"] == text_type def test_router_b_override(): with client: response = client.get("/b/override") assert response.content == b"Hello B" assert response.headers["content-type"] == html_type def test_router_b_a(): with client: response = client.get("/b/a") assert response.content == b"Hello B A" assert response.headers["content-type"] == text_type def test_router_b_a_override(): with client: response = client.get("/b/a/override") assert response.content == b"Hello B A" assert response.headers["content-type"] == html_type def test_router_b_a_c(): with client: response = client.get("/b/a/c") assert response.content == b"Hello B A C" assert response.headers["content-type"] == html_type def test_router_b_a_c_override(): with client: response = client.get("/b/a/c/override") assert response.json() == {"msg": "Hello B A C"} assert response.headers["content-type"] == override_type
null
4,895
import base64 import logging try: from Crypto.Cipher import AES from Crypto import Random except ImportError: from .nocrypto import AES, Random from ably.types.typedbuffer import TypedBuffer from ably.util.exceptions import AblyException log = logging.getLogger(__name__) class CipherParams: def __init__(self, algorithm='AES', mode='CBC', secret_key=None, iv=None): self.__algorithm = algorithm.upper() self.__secret_key = secret_key self.__key_length = len(secret_key) * 8 if secret_key is not None else 128 self.__mode = mode.upper() self.__iv = iv @property def algorithm(self): return self.__algorithm @property def secret_key(self): return self.__secret_key @property def iv(self): return self.__iv @property def key_length(self): return self.__key_length @property def mode(self): return self.__mode class CbcChannelCipher: def __init__(self, cipher_params): self.__secret_key = (cipher_params.secret_key or self.__random(cipher_params.key_length / 8)) if isinstance(self.__secret_key, str): self.__secret_key = self.__secret_key.encode() self.__iv = cipher_params.iv or self.__random(16) self.__block_size = len(self.__iv) if cipher_params.algorithm != 'AES': raise NotImplementedError('Only AES algorithm is supported') self.__algorithm = cipher_params.algorithm if cipher_params.mode != 'CBC': raise NotImplementedError('Only CBC mode is supported') self.__mode = cipher_params.mode self.__key_length = cipher_params.key_length self.__encryptor = AES.new(self.__secret_key, AES.MODE_CBC, self.__iv) def __pad(self, data): padding_size = self.__block_size - (len(data) % self.__block_size) padding_char = bytes((padding_size,)) padded = data + padding_char * padding_size return padded def __unpad(self, data): padding_size = data[-1] if padding_size > len(data): # Too short raise AblyException('invalid-padding', 0, 0) if padding_size == 0: # Missing padding raise AblyException('invalid-padding', 0, 0) for i in range(padding_size): # Invalid padding bytes if padding_size != data[-i - 1]: raise AblyException('invalid-padding', 0, 0) return data[:-padding_size] def __random(self, length): rndfile = Random.new() return rndfile.read(length) def encrypt(self, plaintext): if isinstance(plaintext, bytearray): plaintext = bytes(plaintext) padded_plaintext = self.__pad(plaintext) encrypted = self.__iv + self.__encryptor.encrypt(padded_plaintext) self.__iv = encrypted[-self.__block_size:] return encrypted def decrypt(self, ciphertext): if isinstance(ciphertext, bytearray): ciphertext = bytes(ciphertext) iv = ciphertext[:self.__block_size] ciphertext = ciphertext[self.__block_size:] decryptor = AES.new(self.__secret_key, AES.MODE_CBC, iv) decrypted = decryptor.decrypt(ciphertext) return bytearray(self.__unpad(decrypted)) @property def secret_key(self): return self.__secret_key @property def iv(self): return self.__iv @property def cipher_type(self): return ("%s-%s-%s" % (self.__algorithm, self.__key_length, self.__mode)).lower() class CipherData(TypedBuffer): ENCODING_ID = 'cipher' def __init__(self, buffer, type, cipher_type=None, **kwargs): self.__cipher_type = cipher_type super().__init__(buffer, type, **kwargs) @property def METHOD_NAME(self): return self.ENCODING_ID + '+' + self.__cipher_type DEFAULT_KEYLENGTH = 256 DEFAULT_BLOCKLENGTH = 16 def generate_random_key(length=DEFAULT_KEYLENGTH): rndfile = Random.new() return rndfile.read(length // 8) def get_default_params(params=None): if type(params) in [str, bytes]: raise ValueError("Calling get_default_params with a key directly is deprecated, it expects a params dict") key = params.get('key') algorithm = params.get('algorithm') or 'AES' iv = params.get('iv') or generate_random_key(DEFAULT_BLOCKLENGTH * 8) mode = params.get('mode') or 'CBC' if not key: raise ValueError("Crypto.get_default_params: a key is required") if type(key) == str: key = base64.b64decode(key) cipher_params = CipherParams(algorithm=algorithm, secret_key=key, iv=iv, mode=mode) validate_cipher_params(cipher_params) return cipher_params def get_cipher(params): if isinstance(params, CipherParams): cipher_params = params else: cipher_params = get_default_params(params) return CbcChannelCipher(cipher_params) def validate_cipher_params(cipher_params): if cipher_params.algorithm == 'AES' and cipher_params.mode == 'CBC': key_length = cipher_params.key_length if key_length == 128 or key_length == 256: return raise ValueError( 'Unsupported key length %s for aes-cbc encryption. Encryption key must be 128 or 256 bits' ' (16 or 32 ASCII characters)' % key_length)
null
4,896
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2019 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + from mantidqt.utils.observer_pattern import GenericObservable, GenericObserver, GenericObserverWithArgPassing from mantidqtinterfaces.Muon.GUI.Common.utilities.run_string_utils import run_string_to_list from mantidqtinterfaces.Muon.GUI.Common import thread_model from mantidqtinterfaces.Muon.GUI.Common.thread_model_wrapper import ThreadModelWrapper class EAGroupingTabPresenter(object): """ The grouping tab presenter is responsible for synchronizing the group table. """ @staticmethod def string_to_list(text): return run_string_to_list(text) def __init__(self, view, model, grouping_table_widget=None): self._view = view self._model = model self.grouping_table_widget = grouping_table_widget self._view.set_description_text(self.text_for_description()) # monitors for loaded data changing self.loadObserver = GenericObserver(self.handle_new_data_loaded) self.instrumentObserver = GenericObserver(self.on_clear_requested) # notifiers self.groupingNotifier = GenericObservable() self.enable_editing_notifier = GenericObservable() self.disable_editing_notifier = GenericObservable() self.calculation_finished_notifier = GenericObservable() self.message_observer = GenericObserverWithArgPassing(self._view.display_warning_box) self.gui_variables_observer = GenericObserver(self.handle_update_all_clicked) self.enable_observer = GenericObserver(self.enable_editing) self.disable_observer = GenericObserver(self.disable_editing) self.disable_tab_observer = GenericObserver(self.disable_editing_without_notifying_subscribers) self.enable_tab_observer = GenericObserver(self.enable_editing_without_notifying_subscribers) self.update_view_from_model_observer = GenericObserver(self.update_view_from_model) def update_view_from_model(self): self.grouping_table_widget.update_view_from_model() def show(self): self._view.show() def text_for_description(self): """ Generate the text for the description edit at the top of the widget. """ text = "\u03BCx: exp2k : file type .dat" return text def update_description_text(self, description_text=""): if not description_text: description_text = self.text_for_description() self._view.set_description_text(description_text) def disable_editing(self): self.grouping_table_widget.disable_editing() self.disable_editing_notifier.notify_subscribers() def enable_editing(self): self.grouping_table_widget.enable_editing() self.enable_editing_notifier.notify_subscribers() def disable_editing_without_notifying_subscribers(self): self.grouping_table_widget.disable_editing() def enable_editing_without_notifying_subscribers(self): self.grouping_table_widget.enable_editing() def error_callback(self, error_message): self.enable_editing() self._view.display_warning_box(error_message) def handle_update_finished(self): self.enable_editing() self.groupingNotifier.notify_subscribers() self.calculation_finished_notifier.notify_subscribers() def on_clear_requested(self): self._model.clear() self.grouping_table_widget.update_view_from_model() self.update_description_text() def handle_new_data_loaded(self): if self._model.is_data_loaded(): self.update_view_from_model() self.update_description_text() self.METHOD_NAME() else: self.on_clear_requested() def METHOD_NAME(self): # if we have no groups selected, generate a default plot if len(self._model.selected_groups) == 0: self.grouping_table_widget.plot_default_case() def handle_update_all_clicked(self): self.update_thread = self.create_update_thread() self.update_thread.threadWrapperSetUp(self.disable_editing, self.handle_update_finished, self.error_callback) self.update_thread.start() def create_update_thread(self): self._update_model = ThreadModelWrapper(self.calculate_all_data) return thread_model.ThreadModel(self._update_model) def calculate_all_data(self): self._model.show_all_groups()
null
4,897
# Mantid Repository : https://github.com/mantidproject/mantid # # Copyright &copy; 2018 ISIS Rutherford Appleton Laboratory UKRI, # NScD Oak Ridge National Laboratory, European Spallation Source, # Institut Laue - Langevin & CSNS, Institute of High Energy Physics, CAS # SPDX - License - Identifier: GPL - 3.0 + import unittest from unittest import mock from mantidqt.utils.qt.testing import start_qapplication from mantidqtinterfaces.Muon.GUI.ElementalAnalysis.PeriodicTable.periodic_table import PeriodicTable as silxPT, PeriodicTableItem from mantidqtinterfaces.Muon.GUI.ElementalAnalysis.PeriodicTable.periodic_table_model import PeriodicTableModel from mantidqtinterfaces.Muon.GUI.ElementalAnalysis.PeriodicTable.periodic_table_presenter import PeriodicTablePresenter from mantidqtinterfaces.Muon.GUI.ElementalAnalysis.PeriodicTable.periodic_table_view import PeriodicTableView @start_qapplication class PeriodicTablePresenterTest(unittest.TestCase): def setUp(self): self._model = mock.create_autospec(PeriodicTableModel) self.view = PeriodicTableView() self.presenter = PeriodicTablePresenter(self.view, self._model) self.presenter.is_selected = mock.Mock() self.mock_elem = mock.create_autospec(PeriodicTableItem) self.mock_elem.symbol = mock.Mock() self.view.ptable = mock.create_autospec(silxPT) self.view.ptable.getSelection = mock.Mock(return_value=self.mock_elem) self.view.ptable.isElementSelected = mock.Mock(return_value=True) self.view.on_table_lclicked = mock.Mock() self.view.on_table_rclicked = mock.Mock() self.view.on_table_changed = mock.Mock() self.view.unreg_on_table_lclicked = mock.Mock() self.view.unreg_on_table_rclicked = mock.Mock() self.view.unreg_on_table_changed = mock.Mock() self.presenter.view = self.view # checks if subsequent function is called on func() def check_second_func_called(self, register_func, signal_func): test_slot = mock.Mock() register_func(test_slot) assert signal_func.call_count == 1 def test_register_table_lclicked(self): self.check_second_func_called(self.presenter.register_table_lclicked, self.view.on_table_lclicked) def test_unregister_table_lclicked(self): self.check_second_func_called(self.presenter.unregister_table_lclicked, self.view.unreg_on_table_lclicked) def test_register_table_rclicked(self): self.check_second_func_called(self.presenter.register_table_rclicked, self.view.on_table_rclicked) def test_unregister_table_rclicked(self): self.check_second_func_called(self.presenter.unregister_table_rclicked, self.view.unreg_on_table_rclicked) def METHOD_NAME(self): self.check_second_func_called(self.presenter.register_table_changed, self.view.on_table_changed) def test_unregister_table_changed(self): self.check_second_func_called(self.presenter.unregister_table_changed, self.view.unreg_on_table_changed) def test_selection(self): assert self.presenter.selection == self.mock_elem def test_is_selected(self): assert self.presenter.is_selected(mock.Mock()) def test_select_element(self): self.check_second_func_called(self.presenter.select_element, self.view.ptable.setElementSelected) def test_add_elements(self): self.check_second_func_called(self.presenter.add_elements, self.view.ptable.setSelection) def test_set_buttons(self): self.presenter.model.peak_data = [self.mock_elem.symbol] self.view.ptable.elements = [self.mock_elem] self.presenter.set_buttons() assert self.view.ptable.silentSetElementSelected.call_count == 1 assert self.view.ptable.enableElementButton.call_count == 1 def test_set_peak_datafile(self): self.presenter.set_buttons = mock.Mock() test_filename = mock.Mock self.presenter.set_peak_datafile(test_filename) assert self.presenter.model.peak_data_file == test_filename if __name__ == "__main__": unittest.main()
null
4,898
# ******************************************************* # Copyright (c) VMware, Inc. 2020-2023. All Rights Reserved. # SPDX-License-Identifier: MIT # ******************************************************* # * # * DISCLAIMER. THIS PROGRAM IS PROVIDED TO YOU "AS IS" WITHOUT # * WARRANTIES OR CONDITIONS OF ANY KIND, WHETHER ORAL OR WRITTEN, # * EXPRESS OR IMPLIED. THE AUTHOR SPECIFICALLY DISCLAIMS ANY IMPLIED # * WARRANTIES OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, # * NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE. """Tests for the macOS Registry credential provider.""" import sys import pytest import platform if platform.system() == 'Darwin': from cbc_sdk.credential_providers.keychain_credential_provider import KeychainCredentialProvider from cbc_sdk.errors import CredentialError INVALID_JSON = """{\nurl: "http://example.test/",\n"token" : "TTTTT/TTTTT",\n"org_key": "TT123TT", \n"ssl_verify": true,\n"ssl_verify_hostname": true,\n"ssl_cert_file": "test.cert",\n"ssl_force_tls_1_2": true, \n"proxy": "proxy.example",\n"ignore_system_proxy": true,\n"integration": "test"\n} """ VALID_JSON = """{\n"url": "http://example.test/",\n"token" : "TTTTT/TTTTT",\n"org_key": "TT123TT", \n"ssl_verify": true,\n"ssl_verify_hostname": true,\n"ssl_cert_file": "test.cert",\n"ssl_force_tls_1_2": true, \n"proxy": "proxy.example",\n"ignore_system_proxy": true,\n"integration": "test"\n} """ @pytest.mark.skipif(platform.system() != 'Darwin', reason="only run on mac os") def METHOD_NAME(monkeypatch): """Test that creating the KeychainCredentialProvider breaks if we're not on macOS.""" monkeypatch.setattr(sys, "platform", "linux") with pytest.raises(CredentialError): KeychainCredentialProvider("test", "test") @pytest.mark.skipif(platform.system() != 'Darwin', reason="only run on mac os") def test_password_parser(monkeypatch): """Test that checks if the password is parsed correctly.""" monkeypatch.setattr(sys, "platform", "darwin") parsed = KeychainCredentialProvider("test", "test")._parse_credentials(VALID_JSON) assert isinstance(parsed, dict) assert parsed["url"] == "http://example.test/" assert parsed["token"] == "TTTTT/TTTTT" assert parsed["org_key"] == "TT123TT" assert parsed["ssl_verify"] assert parsed["ssl_verify_hostname"] assert parsed["ssl_cert_file"] == "test.cert" assert parsed["ssl_force_tls_1_2"] assert parsed["proxy"] == "proxy.example" assert parsed["ignore_system_proxy"] assert parsed["integration"] == "test" @pytest.mark.skipif(platform.system() != 'Darwin', reason="only run on mac os") def test_password_parser_invalid_json(monkeypatch): """Test that checks if the password is parsed correctly.""" monkeypatch.setattr(sys, "platform", "darwin") with pytest.raises(CredentialError): KeychainCredentialProvider("test", "test")._parse_credentials(INVALID_JSON) @pytest.mark.skipif(platform.system() != 'Darwin', reason="only run on mac os") def test_get_credentials_valid(monkeypatch): """Tests if it parses the Credential data correctly.""" monkeypatch.setattr(sys, "platform", "darwin") monkeypatch.setattr(KeychainCredentialProvider, "_get_keyring_credentials", lambda c: VALID_JSON) keychain_provider = KeychainCredentialProvider("test", "test").get_credentials() assert keychain_provider.url == "http://example.test/" assert keychain_provider.token == "TTTTT/TTTTT" assert keychain_provider.org_key == "TT123TT" assert keychain_provider.ssl_verify assert keychain_provider.ssl_verify_hostname assert keychain_provider.ssl_cert_file == "test.cert" assert keychain_provider.ssl_force_tls_1_2 assert keychain_provider.proxy == "proxy.example" assert keychain_provider.ignore_system_proxy assert keychain_provider.integration == "test" @pytest.mark.skipif(platform.system() != 'Darwin', reason="only run on mac os") def test_get_credentials_invalid(monkeypatch): """Tests if it raises the CredentialError with the given invalid json.""" monkeypatch.setattr(sys, "platform", "darwin") monkeypatch.setattr(KeychainCredentialProvider, "_get_keyring_credentials", lambda c: INVALID_JSON) with pytest.raises(CredentialError): KeychainCredentialProvider("test", "test").get_credentials() @pytest.mark.skipif(platform.system() != 'Darwin', reason="only run on mac os") def test_get_credentials_none_found(monkeypatch): """Tests if it raises the CredentialError if credentials are not found.""" monkeypatch.setattr(sys, "platform", "darwin") monkeypatch.setattr(KeychainCredentialProvider, "_get_keyring_credentials", lambda c: None) with pytest.raises(CredentialError): KeychainCredentialProvider("test", "test").get_credentials()
null
4,899
############################################################################## # Copyright by The HDF Group. # # All rights reserved. # # # # This file is part of HSDS (HDF5 Scalable Data Service), Libraries and # # Utilities. The full HSDS copyright notice, including # # terms governing use, modification, and redistribution, is contained in # # the file COPYING, which can be found at the root of the source code # # distribution tree. If you do not have access to this file, you may # # request a copy from [email protected]. # ############################################################################## import unittest import json import math import time import config import helper # Test the binary PUTs and GETs work for request larger than # max_request_size (by default 100MB) # max_request_size should only apply to JSON streaming or # variable length datatypes class StreamTest(unittest.TestCase): def __init__(self, *args, **kwargs): super(StreamTest, self).__init__(*args, **kwargs) self.base_domain = config.get("stream_test_domain") self.username = config.get("user_name") self.password = config.get("user_password") helper.setupDomain( self.base_domain, username=self.username, password=self.password ) self.endpoint = helper.getEndpoint() def METHOD_NAME(self): self.session = helper.getSession() def tearDown(self): if self.session: self.session.close() def getUUIDByPath(self, domain, h5path): return helper.getUUIDByPath( domain, h5path, username=self.username, password=self.password, session=self.session, ) def getRootUUID(self, domain): return helper.getRootUUID( domain, username=self.username, password=self.password, session=self.session ) def testStream2D(self): # write a large request for a 2d dataset print("testStream2D", self.base_domain) kwargs = {} if self.username: kwargs["username"] = self.username if self.password: kwargs["password"] = self.password headers = helper.getRequestHeaders(domain=self.base_domain, **kwargs) headers_bin_req = helper.getRequestHeaders(domain=self.base_domain, **kwargs) headers_bin_req["Content-Type"] = "application/octet-stream" headers_bin_rsp = helper.getRequestHeaders(domain=self.base_domain, **kwargs) headers_bin_rsp["accept"] = "application/octet-stream" req = self.endpoint + "/" # Get root uuid rsp = self.session.get(req, headers=headers) self.assertEqual(rsp.status_code, 200) rspJson = json.loads(rsp.text) root_uuid = rspJson["root"] helper.validateId(root_uuid) create_dataset = True dset_id = None dset_name = "dset2d" num_col = int(config.get("stream_test_ncols")) num_row = int(config.get("stream_test_nrows")) item_size = 8 # 8 bytes for H5T_STD_U64LE print(f"dataset shape: [{num_row}, {num_col}]") try: dset_id = self.getUUIDByPath(self.base_domain, "/dset2d") print("got dset_id:", dset_id) # get the dset json req = self.endpoint + "/datasets/" + dset_id rsp = self.session.get(req, headers=headers) self.assertEqual(rsp.status_code, 200) rspJson = json.loads(rsp.text) shape = rspJson["shape"] dims = shape["dims"] # can re-use this if the shape is what we need if len(dims) == 2 and dims[0] == num_row and dims[1] == num_col: create_dataset = False else: print("dims don't match - delete and create new dataset") except KeyError: pass # will create a new dataset if create_dataset and dset_id: # delete the old datsaet print(f"deleting dataset: {dset_id}") req = self.endpoint + "/datasets/" + dset_id rsp = self.session.delete(req, headers=headers) self.assertEqual(rsp.status_code, 200) # delete the link req = self.endpoint + "/groups/" + root_uuid + "/links/" + dset_name rsp = self.session.delete(req, headers=headers) self.assertEqual(rsp.status_code, 200) if create_dataset: # create dataset print(f"create datset with shape: [{num_row}, {num_col}]") data = {"type": "H5T_STD_U64LE", "shape": [num_row, num_col]} req = self.endpoint + "/datasets" rsp = self.session.post(req, data=json.dumps(data), headers=headers) self.assertEqual(rsp.status_code, 201) rspJson = json.loads(rsp.text) dset_id = rspJson["id"] print(f"got dset_id: {dset_id}") # link new dataset req = self.endpoint + "/groups/" + root_uuid + "/links/" + dset_name payload = {"id": dset_id} rsp = self.session.put(req, data=json.dumps(payload), headers=headers) self.assertEqual(rsp.status_code, 201) # initialize bytearray to test values num_bytes = item_size * num_row * num_col print( f"initializing test data ({num_bytes} bytes, {num_bytes/(1024*1024):.2f} MiB)" ) bin_data = bytearray(num_bytes) exp = int(math.log10(num_col)) + 1 for i in range(num_row): row_start_value = i * 10 ** exp for j in range(num_col): n = row_start_value + j + 1 int_bytes = n.to_bytes(8, "little") offset_start = (i * num_col + j) * item_size offset_end = offset_start + item_size bin_data[offset_start:offset_end] = int_bytes print("writing...") ts = time.time() req = self.endpoint + "/datasets/" + dset_id + "/value" rsp = self.session.put(req, data=bin_data, headers=headers_bin_req) self.assertEqual(rsp.status_code, 200) elapsed = time.time() - ts mb_per_sec = num_bytes / (1024 * 1024 * elapsed) print(f" elapsed: {elapsed:.2f} s, {mb_per_sec:.2f} MB/s") # read back the data as binary print("reading...") ts = time.time() rsp = self.session.get(req, headers=headers_bin_rsp) self.assertEqual(rsp.status_code, 200) elapsed = time.time() - ts mb_per_sec = num_bytes / (1024 * 1024 * elapsed) print(f" elapsed: {elapsed:.2f} s, {mb_per_sec:.2f} MB/s") print("comparing sent vs. received") data = rsp.content self.assertEqual(len(data), num_bytes) self.assertEqual(data, bin_data) print("passed!") if __name__ == "__main__": # setup test files unittest.main()
null