File size: 19,793 Bytes
9ef89a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
"""Megatron tokenizers."""
from abc import ABC
from abc import abstractmethod
from .bert_tokenization import FullTokenizer as FullBertTokenizer
from .gpt2_tokenization import GPT2Tokenizer
def build_tokenizer(args):
"""Initialize tokenizer."""
if args.rank == 0:
print('> building {} tokenizer ...'.format(args.tokenizer_type),
flush=True)
if args.tokenizer_type != 'FalconTokenizer':
assert args.vocab_file is not None
# Select and instantiate the tokenizer.
if args.tokenizer_type == 'BertWordPieceLowerCase':
tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
lower_case=True,
vocab_extra_ids=args.vocab_extra_ids)
elif args.tokenizer_type == 'BertWordPieceCase':
tokenizer = _BertWordPieceTokenizer(vocab_file=args.vocab_file,
lower_case=False,
vocab_extra_ids=args.vocab_extra_ids)
elif args.tokenizer_type == 'GPT2BPETokenizer':
assert args.merge_file is not None
tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file)
elif args.tokenizer_type == 'SentencePieceTokenizer':
tokenizer = _SentencePieceTokenizer(args.vocab_file, vocab_extra_ids=args.vocab_extra_ids,
vocab_extra_ids_list=args.vocab_extra_ids_list, new_tokens=args.new_tokens)
elif args.tokenizer_type == 'FalconTokenizer':
tokenizer = _FalconTokenizer(vocab_extra_ids_list=args.vocab_extra_ids_list, new_tokens=args.new_tokens)
elif args.tokenizer_type == "PretrainedFromHF":
assert args.vocab_file is not None
# prevent transformers from logging info and warnings on each rank
import transformers
import logging
if args.rank == 0:
transformers.utils.logging.set_verbosity(logging.INFO)
else:
# shut the warnings on replicas
transformers.utils.logging.set_verbosity(logging.ERROR)
if args.rank == 0:
print(" vocab file is un-used. loading tokenizer from pre-trained model")
tokenizer = _AutoTokenizer(args.vocab_file, vocab_extra_ids=args.vocab_extra_ids)
else:
raise NotImplementedError('{} tokenizer is not '
'implemented.'.format(args.tokenizer_type))
# Add vocab size.
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size,
args)
return tokenizer
def _vocab_size_with_padding(orig_vocab_size, args):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
multiple = args.make_vocab_size_divisible_by * \
args.tensor_model_parallel_size
while (after % multiple) != 0:
after += 1
if args.rank == 0:
print(' > padded vocab (size: {}) with {} dummy tokens '
'(new size: {})'.format(
orig_vocab_size, after - orig_vocab_size, after), flush=True)
return after
class AbstractTokenizer(ABC):
"""Abstract class for tokenizer."""
def __init__(self, name):
self.name = name
super().__init__()
@property
@abstractmethod
def vocab_size(self):
pass
@property
@abstractmethod
def vocab(self):
"""Dictionary from vocab text token to id token."""
pass
@property
@abstractmethod
def inv_vocab(self):
"""Dictionary from vocab id token to text token."""
pass
@abstractmethod
def tokenize(self, text):
pass
def detokenize(self, token_ids):
raise NotImplementedError('detokenizer is not implemented for {} '
'tokenizer'.format(self.name))
@property
def cls(self):
raise NotImplementedError('CLS is not provided for {} '
'tokenizer'.format(self.name))
@property
def sep(self):
raise NotImplementedError('SEP is not provided for {} '
'tokenizer'.format(self.name))
@property
def pad(self):
raise NotImplementedError('PAD is not provided for {} '
'tokenizer'.format(self.name))
@property
def eod(self):
raise NotImplementedError('EOD is not provided for {} '
'tokenizer'.format(self.name))
@property
def mask(self):
raise NotImplementedError('MASK is not provided for {} '
'tokenizer'.format(self.name))
class _BertWordPieceTokenizer(AbstractTokenizer):
"""Original BERT wordpiece tokenizer."""
def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
if lower_case:
name = 'BERT Lower Case'
else:
name = 'BERT Upper Case'
super().__init__(name)
self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
self.cls_id = self.tokenizer.vocab['[CLS]']
self.sep_id = self.tokenizer.vocab['[SEP]']
self.pad_id = self.tokenizer.vocab['[PAD]']
self.mask_id = self.tokenizer.vocab['[MASK]']
self._additional_special_tokens = []
# (dsachan) Add BOS and EOS tokens
SPECIAL_TOKENS = {'eos_token': '[EOS]',
'bos_token': '[BOS]'}
self._bos_token = '[BOS]'
self.add_token(self._bos_token)
self._bos_token_id = self.vocab.get(self._bos_token)
self._eos_token = '[EOS]'
self.add_token(self._eos_token)
self._eos_token_id = self.vocab.get(self._eos_token)
# (dsachan) Add additional special tokens
# These can be used as sentinel tokens in T5 model inputs
additional_special_tokens = []
additional_special_tokens.extend(
["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
self.add_additional_special_tokens(additional_special_tokens)
def add_token(self, token):
if token not in self.vocab:
self.inv_vocab[self.vocab_size] = token
# self.vocab_size comes from len(vocab)
# and it will increase as we add elements
self.vocab[token] = self.vocab_size
def add_additional_special_tokens(self, tokens_list):
setattr(self, "additional_special_tokens", tokens_list)
for value in tokens_list:
self.add_token(value)
@property
def vocab_size(self):
return self.tokenizer.vocab_size()
@property
def vocab(self):
return self.tokenizer.vocab
@property
def inv_vocab(self):
return self.tokenizer.inv_vocab
def tokenize(self, text):
text_tokens = self.tokenizer.tokenize(text)
return self.tokenizer.convert_tokens_to_ids(text_tokens)
def decode(self, ids):
tokens = self.tokenizer.convert_ids_to_tokens(ids)
return self.tokenizer.convert_tokens_to_string(tokens)
def decode_token_ids(self, token_ids):
tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
exclude_list = ['[PAD]', '[CLS]']
non_pads = [t for t in tokens if t not in exclude_list]
result = ""
for s in non_pads:
if s.startswith("##"):
result += s[2:]
else:
result += " " + s
return result
@property
def cls(self):
return self.cls_id
@property
def sep(self):
return self.sep_id
@property
def pad(self):
return self.pad_id
@property
def mask(self):
return self.mask_id
@property
def bos_token(self):
""" Beginning of sentence token id """
return self._bos_token
@property
def eos_token(self):
""" End of sentence token id """
return self._eos_token
@property
def additional_special_tokens(self):
""" All the additional special tokens you may want to use (list of strings)."""
return self._additional_special_tokens
@property
def bos_token_id(self):
""" Id of the beginning of sentence token in the vocabulary."""
return self._bos_token_id
@property
def eos_token_id(self):
""" Id of the end of sentence token in the vocabulary."""
return self._eos_token_id
@property
def additional_special_tokens_ids(self):
""" Ids of all the additional special tokens in the vocabulary (list of integers)."""
return [self.vocab.get(token) for token in self._additional_special_tokens]
@additional_special_tokens.setter
def additional_special_tokens(self, value):
self._additional_special_tokens = value
class _GPT2BPETokenizer(AbstractTokenizer):
"""Original GPT2 BPE tokenizer."""
def __init__(self, vocab_file, merge_file):
name = 'GPT2 BPE'
super().__init__(name)
self.tokenizer = GPT2Tokenizer(vocab_file, merge_file, errors='replace',
special_tokens=[], max_len=None)
self.eod_id = self.tokenizer.encoder['<|endoftext|>']
@property
def vocab_size(self):
return len(self.tokenizer.encoder)
@property
def vocab(self):
return self.tokenizer.encoder
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text):
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class _FalconTokenizer(AbstractTokenizer):
"""Wrapper of huggingface tokenizer."""
def __init__(self, vocab_extra_ids_list=None, new_tokens=True):
name = 'FalconTokenizer'
super().__init__(name)
from transformers import AutoTokenizer
self.tokenizer = AutoTokenizer.from_pretrained('tiiuae/falcon-40b')
self._eod = self.tokenizer.vocab['<|endoftext|>']
if vocab_extra_ids_list and new_tokens:
self.tokenizer.add_special_tokens({'additional_special_tokens': self.tokenizer.additional_special_tokens + vocab_extra_ids_list.split(",")})
self._inv_vocab = {idx: token for token, idx in self.tokenizer.vocab.items()}
@property
def vocab_size(self):
return len(self.tokenizer.vocab)
@property
def vocab(self):
return self.tokenizer.vocab
def tokenize(self, text):
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def inv_vocab(self):
return self._inv_vocab
@property
def eod(self):
return self._eod
class _SentencePieceTokenizer(AbstractTokenizer):
"""SentencePieceTokenizer-Megatron wrapper"""
def __init__(self, model_file, vocab_extra_ids=0, vocab_extra_ids_list=None, new_tokens=True):
name = 'SentencePieceTokenizer'
super().__init__(name)
import sentencepiece
self._tokenizer = sentencepiece.SentencePieceProcessor(model_file=model_file)
self._initalize(vocab_extra_ids, vocab_extra_ids_list, new_tokens)
def _initalize(self, vocab_extra_ids, vocab_extra_ids_list, new_tokens):
self._vocab = {}
self._inv_vocab = {}
self._special_tokens = {}
self._inv_special_tokens = {}
self._t5_tokens = []
for i in range(len(self._tokenizer)):
t = self._tokenizer.id_to_piece(i)
self._inv_vocab[i] = t
self._vocab[t] = i
def _add_special_token(t):
if t not in self.vocab and not new_tokens:
return
if t not in self._vocab:
next_id = len(self._vocab)
self._vocab[t] = next_id
self._inv_vocab[next_id] = t
self._special_tokens[t] = self._vocab[t]
self._inv_special_tokens[self._vocab[t]] = t
_add_special_token('<CLS>')
self._cls_id = self._vocab.get('<CLS>')
_add_special_token('<SEP>')
self._sep_id = self._vocab.get('<SEP>')
_add_special_token('<EOD>')
self._eod_id = self._vocab.get('<EOD>')
_add_special_token('<MASK>')
self._mask_id = self._vocab.get('<MASK>')
pad_id = self._tokenizer.pad_id()
try:
pad_token = self._tokenizer.id_to_piece(pad_id)
except IndexError:
pad_token = '<PAD>'
_add_special_token(pad_token)
self._pad_id = self._vocab.get(pad_token)
bos_id = self._tokenizer.bos_id()
try:
bos_token = self._tokenizer.id_to_piece(bos_id)
except IndexError:
bos_token = '<BOS>'
_add_special_token(bos_token)
self._bos_id = self._vocab.get(bos_token)
eos_id = self._tokenizer.eos_id()
try:
eos_token = self._tokenizer.id_to_piece(eos_id)
except IndexError:
eos_token = '<EOS>'
_add_special_token(eos_token)
self._eos_id = self._vocab.get(eos_token)
for i in range(vocab_extra_ids):
t = "<extra_id_{}>".format(i)
_add_special_token(t)
self._t5_tokens += [t]
if vocab_extra_ids_list:
for t in vocab_extra_ids_list.split(","):
_add_special_token(t)
print("Special tokens: {}".format(self._special_tokens))
@property
def vocab_size(self):
return len(self._vocab)
@property
def vocab(self):
return self._vocab
@property
def inv_vocab(self):
return self._inv_vocab
# From:
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L89
def tokenize(self, text):
ids = []
idx = 0
while 1:
indices = {}
for token in self._special_tokens:
try:
indices[token] = text[idx:].index(token)
except ValueError:
continue
if len(indices) == 0:
break
next_token = min(indices, key=indices.get)
next_idx = idx + indices[next_token]
ids.extend(self._tokenizer.encode_as_ids(text[idx:next_idx]))
ids.append(self._special_tokens[next_token])
idx = next_idx + len(next_token)
ids.extend(self._tokenizer.encode_as_ids(text[idx:]))
return ids
# From:
# https://github.com/NVIDIA/NeMo/blob/c8fa217e811d60d11d014827c7f3845ff6c99ae7/nemo/collections/common/tokenizers/sentencepiece_tokenizer.py#L125
def detokenize(self, ids):
text = ""
last_i = 0
for i, id in enumerate(ids):
if id in self._inv_special_tokens:
text += self._tokenizer.decode_ids(ids[last_i:i]) + " "
text += self._inv_special_tokens[id] + " "
last_i = i + 1
text += self._tokenizer.decode_ids(ids[last_i:])
return text.strip()
@property
def cls(self):
return self._cls_id
@property
def sep(self):
return self._sep_id
@property
def pad(self):
return self._pad_id
@property
def bos_token_id(self):
return self._bos_id
@property
def bos(self):
return self._bos_id
@property
def eod(self):
if self._eod_id is not None:
return self._eod_id
return self._eos_id # in case noe eod we can patch this up with an eos
@property
def eos_token_id(self):
if self._eod_id is not None:
return self._eod_id
return self._eos_id
@property
def eos(self):
return self._eos_id
@property
def mask(self):
return self._mask_id
@property
def additional_special_tokens_ids(self):
return [self.vocab[k] for k in self._t5_tokens]
class _AutoTokenizer(AbstractTokenizer):
"""AutoTokenizer for Hf Pretrained model loading."""
def __init__(self, tokenizer_name_or_path, vocab_extra_ids):
from transformers import AutoTokenizer
name = tokenizer_name_or_path
super().__init__(name)
hf_tokenizer_kwargs = {}
if vocab_extra_ids > 0:
# TODO @thomasw21 we might need to concatenate to a pre-existing list?
hf_tokenizer_kwargs["additional_special_tokens"] = [f"<extra_id_{_id}>" for _id in range(vocab_extra_ids)]
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, **hf_tokenizer_kwargs)
self.encoder = self.tokenizer.get_vocab()
self.decoder = {v: k for k, v in self.encoder.items()}
@property
def vocab_size(self):
return len(self.tokenizer) # vocab_size doesn't contain additional tokens
@property
def vocab(self):
# TODO @thomasw21 make sure that special tokens don't collapse with vocab tokens.
return {
**{special_token: self.tokenizer.convert_tokens_to_ids(special_token) for special_token in self.tokenizer.additional_special_tokens},
**self.tokenizer.vocab,
}
@property
def inv_vocab(self):
return {v: k for k, v in self.vocab.items()}
def tokenize(self, text):
# HACK: this was hanging for very large inputs (>1M chars)
# chunking it into 100k chars max seems to make it much faster
# WARNING: this might be breaking tokenization every once in a while
CHUNK_MAX = 100000
if len(text) > CHUNK_MAX:
tokens = []
for i in range(0, len(text), CHUNK_MAX):
tokens += self.tokenizer.encode(text[i:i+CHUNK_MAX], add_special_tokens=False)
# add special tokens to beginning and end
if self.tokenizer.bos_token:
tokens = [self.tokenizer.bos_token_id] + tokens
if self.tokenizer.eos_token_id:
tokens = tokens + [self.tokenizer.eos_token_id]
return tokens
else:
return self.tokenizer.encode(text)
def detokenize(self, token_ids):
# extract string from HF
return self.tokenizer.decode(token_ids)
@property
def eod(self):
# TODO @thomasw21 might conflict with <eos>
return self.eos
@property
def cls(self):
candidate = self.tokenizer.cls_token_id
return self._check_token_candidate(candidate)
@property
def sep(self):
candidate = self.tokenizer.sep_token_id
return self._check_token_candidate(candidate)
@property
def pad(self):
candidate = self.tokenizer.pad_token_id
return self._check_token_candidate(candidate)
@property
def mask(self):
candidate = self.tokenizer.mask_token_id
return self._check_token_candidate(candidate)
@property
def bos(self):
raise NotImplementedError("Missing <bos>")
@property
def eos(self):
# TODO @thomasw21 might conflict with the notion of <eod>
candidate = self.tokenizer.eos_token_id
return self._check_token_candidate(candidate)
@property
def additional_special_tokens_ids(self):
""" All the additional special tokens you may want to use (list of strings)."""
return self.tokenizer.additional_special_tokens_ids
@staticmethod
def _check_token_candidate(candidate):
if candidate is None:
raise AttributeError("Token doesn't exist")
return candidate |