File size: 8,711 Bytes
ddda7f9 04b3eab ddda7f9 ac15f21 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 4037561 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 91a1694 ddda7f9 ac15f21 ddda7f9 ac15f21 ddda7f9 04b3eab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
---
language:
- bn
- en
- gu
- hi
- kn
- ta
- ur
license: cc-by-3.0
size_categories:
- 1M<n<10M
task_categories:
- text-generation
- fill-mask
task_ids:
- language-modeling
- masked-language-modeling
configs:
- config_name: 20231101.bn
data_files:
- split: train
path: ben_Beng/train-*
- config_name: 20231101.en
data_files:
- split: train
path: eng_Latn/train-*
- config_name: 20231101.gu
data_files:
- split: train
path: guj_Gujr/train-*
- config_name: 20231101.hi
data_files:
- split: train
path: hin_Deva/train-*
- config_name: 20231101.kn
data_files:
- split: train
path: kan_Knda/train-*
- config_name: 20231101.ta
data_files:
- split: train
path: tam_Taml/train-*
- config_name: 20231101.ur
data_files:
- split: train
path: urd_Arab/train-*
dataset_info:
- config_name: 20231101.bn
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 674539757
num_examples: 200820
download_size: 652782434
dataset_size: 652782434
- config_name: 20231101.en
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 703955598
num_examples: 200820
download_size: 426488108
dataset_size: 426488108
- config_name: 20231101.gu
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 668666407
num_examples: 200820
download_size: 658661502
dataset_size: 658661502
- config_name: 20231101.hi
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 678769726
num_examples: 200820
download_size: 640983312
dataset_size: 640983312
- config_name: 20231101.kn
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 708769566
num_examples: 200820
download_size: 689888426
dataset_size: 689888426
- config_name: 20231101.ta
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 781041863
num_examples: 200820
download_size: 721062888
dataset_size: 721062888
- config_name: 20231101.ur
features:
- name: id
dtype: string
- name: url
dtype: string
- name: title
dtype: string
- name: text
dtype: string
- name: sents
dtype: int32
- name: chars
dtype: int32
- name: words
dtype: int32
- name: tokens
dtype: int32
splits:
- name: train
num_bytes: 655510379
num_examples: 200820
download_size: 543259766
dataset_size: 543259766
---
# Bhasha Wiki Indic
<!-- Provide a quick summary of the dataset. -->
This dataset has Wikipedia articles pertaining to Indian context.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
The dataset is built from Wikipedia articles taken from [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).
We filtered, cleaned and translated English articles related to India and Indian context out of entire dataset.
Each example has contents of a full cleaned wikipedia article and it's translations in 6 Indian languages.
- **Curated by:** [Soket AI Labs](https://soket.ai/)
- **Language(s) (NLP):** [English, Hindi, Bengali, Gujarati, Tamil, Kannada, Urdu]
- **License:** [cc-by-sa-3.0]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
The dataset is focussed on Indian factual content for pre-training LLMs where Indian knowledge and contextual understanding is required.
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
Total number of rows: 200820
It has approximately **1.56** billion tokens for all languages. The ratio for number of tokens for each language is roughly same
when tokenized
with our Indic tokenizer we created which can be found in our model repository [Pragna-1b](https://huggingface.co/soketlabs/pragna-1b).
Here are token counts for each language:
- English: 197.7 millions
- Hindi: 227.5 millions
- Bengali: 289.1 millions
- Gujarati: 206.2 millions
- Tamil: 233.8 millions
- Kannada: 203.5 millions
- Urdu: 207 millions
Each row corresponds to a wikipedia article with the decription of article in source language(english) and translations in 6 indian languages.
The title is in english and descriptions in different languages is represented by column name of format "language_code"_"script".
Each description column in different languages is a list of sentences/multiple sentences and can be concatenated to get cleaned article decription.
Each row is of the format:
```yaml
{'id': '1',
'url': 'https://simple.wikipedia.org/sample_article',
'title': 'Sample article',
'eng_Latn': ['This is a sample...', 'and more information'],
'hin_Deva': ['यह एक नमूना है'..., 'और अधिक जानकारी'],
'kan_Knda': ['ಇದು ಒಂದು ಮಾದರಿ...', 'ಮತ್ತು ಹೆಚ್ಚಿನ ಮಾಹಿತಿ'],
'ben_Beng': ['এটি একটি নমুনা...', 'এবং আরও তথ্য'],
'guj_Gujr': ['આ એક નમૂનો છે...', 'અને વધુ માહિતી'],
'tam_Taml': ['இது ஒரு மாதிரி...', 'மேலும் தகவல்'],
'urd_Arab': ['...یہ ایک نمونہ ہے۔', 'اور مزید معلومات']
}
```
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
We needed to induce knowledge regarding India and Indian context while training our LLM, for which we gathered available Indic
content data and also filtered factual data from Wikipedia.
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
Wikpedia english articles from [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia)
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
We filtered out Indian context data from [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset's English
articles by select keywords.
Further we trained a few shot classification model to classify for Indian content vs Not Indian content to narrow down filtered English
articles.
We cleaned the articles and removed unwanted paragraphs for References etc.
We then translated these artices to 6 Indian languages (Hindi, Bengali, Gujarati, Tamil, Kannada, Urdu) using AI4Bharat's [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B). The dataset has been cleaned and can be used for pre-training multilingual LLMs.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Though we tried to filter as much Indic context articles as possible with high Recall, there might be some non indic articles mixed in them as well.
### Citation Information
```
@ONLINE{bhasha-wiki-indic,
author = "Soket Labs Technology and Research Private Limited",
title = "Bhasha-Wiki-Indic",
url = "https://soket.ai"
}
``` |