sidpanda commited on
Commit
91f4486
1 Parent(s): 5848b6f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -5
README.md CHANGED
@@ -24,9 +24,10 @@ This dataset has Wikipedia articles pertaining to Indian context.
24
  ### Dataset Description
25
 
26
  <!-- Provide a longer summary of what this dataset is. -->
27
- We filtered out Indian context data from [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset's English articles by keywords.
28
- Further we trained a model to classify for Indian content vs Not Indian content to narrow down filtered English articles.
29
- We then translated these artices to 6 Indian languages (Hindi, Bengali, Gujarati, Tamil, Kannada, Urdu) using AI4Bharat's [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B). The dataset has been cleaned and can be used for pre-training multilingual LLMs.
 
30
 
31
 
32
  - **Curated by:** [Soket AI Labs](https://soket.ai/)
@@ -41,17 +42,46 @@ The dataset is focussed on Indian factual content for pre-training LLMs where In
41
  ## Dataset Structure
42
 
43
  <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  Each row corresponds to a wikipedia article with the decription of article in source language(english) and translations in 6 indian languages.
45
  The title is in english and descriptions in different languages is represented by column name of format "language_code"_"script".
46
  Each description column in different languages is a list of sentences/multiple sentences and can be concatenated to get cleaned article decription.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## Dataset Creation
49
 
50
  ### Curation Rationale
51
 
52
  <!-- Motivation for the creation of this dataset. -->
 
 
53
 
54
- [More Information Needed]
55
 
56
  ### Source Data
57
 
@@ -61,8 +91,13 @@ Wikpedia english articles from [wikimedia/wikipedia](https://huggingface.co/data
61
  #### Data Collection and Processing
62
 
63
  <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
 
 
 
 
 
 
64
 
65
- [More Information Needed]
66
 
67
 
68
 
 
24
  ### Dataset Description
25
 
26
  <!-- Provide a longer summary of what this dataset is. -->
27
+ The dataset is built from Wikipedia articles taken from [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia).
28
+ We filtered, cleaned and translated English articles related to India and Indian context out of entire dataset.
29
+
30
+ \Each example has contents of a full cleaned wikipedia article and it's translations in 6 Indian languages.
31
 
32
 
33
  - **Curated by:** [Soket AI Labs](https://soket.ai/)
 
42
  ## Dataset Structure
43
 
44
  <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
45
+ Total number of rows: 200820 \
46
+ It has approximately **1.54** billion tokens for all languages with almost similar number of tokens for each language when tokenized
47
+ with our Indic tokenizer we created which can be found in our model repository [Pragna-1b](https://huggingface.co/soketlabs/pragna-1b).
48
+ Here are token counts for each language:
49
+ - English: 196.2 millions
50
+ - Hindi: 225 millions
51
+ - Bengali: 286.2 millions
52
+ - Gujarati: 204 millions
53
+ - Tamil: 231.3 millions
54
+ - Kannada: 201.3 millions
55
+ - Urdu: 204.9 millions
56
+
57
+ \These numbers were extrapolated from calculations on 10% of randomly sampled dataset.\
58
+
59
  Each row corresponds to a wikipedia article with the decription of article in source language(english) and translations in 6 indian languages.
60
  The title is in english and descriptions in different languages is represented by column name of format "language_code"_"script".
61
  Each description column in different languages is a list of sentences/multiple sentences and can be concatenated to get cleaned article decription.
62
+ \\Each row is of the format:
63
+
64
+ {'id': '1',
65
+ 'url': 'https://simple.wikipedia.org/sample_article',
66
+ 'title': 'Sample article',
67
+ 'eng_Latn': ['This is a sample...', 'and more information'],
68
+ 'hin_Deva': ['यह एक नमूना है'..., 'और अधिक जानकारी'],
69
+ 'kan_Knda': ['ಇದು ಒಂದು ಮಾದರಿ...', 'ಮತ್ತು ಹೆಚ್ಚಿನ ಮಾಹಿತಿ'],
70
+ 'ben_Beng': ['এটি একটি নমুনা...', 'এবং আরও তথ্য'],
71
+ 'guj_Gujr': ['આ એક નમૂનો છે...', 'અને વધુ માહિતી'],
72
+ 'tam_Taml': ['இது ஒரு மாதிரி...', 'மேலும் தகவல்'],
73
+ 'urd_Arab': ['...یہ ایک نمونہ ہے۔', 'اور مزید معلومات']
74
+ }
75
+
76
 
77
  ## Dataset Creation
78
 
79
  ### Curation Rationale
80
 
81
  <!-- Motivation for the creation of this dataset. -->
82
+ We needed to induce knowledge regarding India and Indian context while training our LLM, for which we gathered available Indic
83
+ content data and also filtered factual data from Wikipedia.
84
 
 
85
 
86
  ### Source Data
87
 
 
91
  #### Data Collection and Processing
92
 
93
  <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
94
+ We filtered out Indian context data from [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset's English
95
+ articles by select keywords.
96
+ Further we trained a few shot classification model to classify for Indian content vs Not Indian content to narrow down filtered English
97
+ articles.
98
+ We cleaned the articles and removed unwanted paragraphs for References etc.
99
+ We then translated these artices to 6 Indian languages (Hindi, Bengali, Gujarati, Tamil, Kannada, Urdu) using AI4Bharat's [IndicTrans2](https://huggingface.co/ai4bharat/indictrans2-en-indic-1B). The dataset has been cleaned and can be used for pre-training multilingual LLMs.
100
 
 
101
 
102
 
103