File size: 3,749 Bytes
c4b0eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*
  >>~~ UVa Online Judge ACM Problem Solution ~~<<

  ID: 10044
  Name: Erdos Numbers
  Problem: https://onlinejudge.org/external/100/10044.pdf
  Language: C++

  Author: Arash Shakery
  Email: [email protected]
*/

#include <stdio.h>
#include <cstring>
#include <iostream>
#include <string>
#include <vector>
#include <map>
using namespace std;

#define INF 536870912
#define MAXN 5001
#define MAXL 20000


int graph[MAXN][MAXN], adj[MAXN][MAXN], deg[MAXN];
int d[MAXN], q[MAXN], inq[MAXN], qs;

#define CLR( x, v ) memset( x, v, sizeof( x ) )
#define BUBL { \
    t = q[i]; q[i] = q[j]; q[j] = t; \
    t = inq[q[i]]; inq[q[i]] = inq[q[j]]; inq[q[j]] = t; }

int dijkstra( int n, int s, int t ) {
    CLR( d, 9 ); CLR( inq, -1 );
    d[s] = qs = 0;
    inq[q[qs++] = s] = 0;

    while( qs ) {
        // get the minimum from the q
        int u = q[0]; inq[u] = -1;

        // bubble down
        q[0] = q[--qs];
        if( qs ) inq[q[0]] = 0;
        for( int i = 0, j = 2*i + 1, t; j < qs; i = j, j = 2*i + 1 ) {
            if( j + 1 < qs && d[q[j + 1]] < d[q[j]] ) j++;
            if( d[q[j]] >= d[q[i]] ) break;
            BUBL;
        }

        // relax neighbours
        for( int k = 0, v = adj[u][k]; k < deg[u]; v = adj[u][++k] ) {
            int newd = d[u] + graph[u][v];
            if( newd < d[v] ) {
                d[v] = newd;
                if( inq[v] < 0 ) { inq[q[qs] = v] = qs; qs++; }

                // bubble up
                for( int i = inq[v], j = ( i - 1 )/2, t;
                     d[q[i]] < d[q[j]]; i = j, j = ( i - 1 )/2 )
                     BUBL;
            }
        }
    }

    return d[t];
}














char line[MAXL];
int ex[MAXN*MAXN],
    ey[MAXN*MAXN];

int main(){
    int T, p, n;
    cin>>T;
    for(int cse=1; cse<=T; cse++) {
        int cnt = 0, ec = 0;
        map<string, int> ids;
        ids["Erdos, P."] = cnt++;


        cin>>p>>n;
        while(getchar()!='\n');

        for (int i=0; i<p; i++) {
            cin.getline(line, MAXL);

            char *e = strchr(line, ':');
            e[0] = 0;

            vector<int> cur;

            string name;
            bool ff = false;
            for (char* s=strtok(line, " ,"); s; s=strtok(NULL, " ,")) {
                if (ff) {
                    ff = false;
                    name = name + ", " + s;

                    int id = 0;
                    if (name != "Erdos, P.") {
                        id = ids[name];
                        if (id == 0)
                            id = ids[name] = cnt++;
                    }

                    for (int j=cur.size()-1; j>=0; j--) {
                        int k = cur[j];
                        if (k!=id) {
                            ex[ec] = k;
                            ey[ec++] = id;
                        }
                    }

                    cur.push_back(id);
                }

                else {
                    ff = true;
                    name = s;
                }
            }
        }


        for (int i=0; i<cnt; i++) {
            deg[i] = 0;
            for (int j=i+1; j<cnt; j++)
                graph[i][j] = graph[j][i] = INF;
        }

        for (int k=0; k<ec; k++) {
            int i = ex[k], j = ey[k];
            graph[i][j] = graph[j][i] = 1;
            adj[i][deg[i]++] = j;
            adj[j][deg[j]++] = i;
        }


        printf("Scenario %d\n", cse);
        for (int i=0; i<n; i++) {
            cin.getline(line, MAXL);
            auto it = ids.find(line);
            int res = (it == ids.end()) ? INF : dijkstra(cnt, 0, it->second);
            cout << line << " ";
            if (res >= cnt) cout << "infinity\n";
            else cout << res << endl;
        }
    }
}