File size: 3,793 Bytes
c4b0eef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
// #pragma GCC optimize("Ofast,unroll-loops")
// #pragma GCC target("avx,avx2,fma")
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define dd double
#define ld long double
#define sl(n) scanf("%lld", &n)
#define si(n) scanf("%d", &n)
#define sd(n) scanf("%lf", &n)
#define pll pair <ll, ll>
#define pii pair <int, int>
#define mp make_pair
#define pb push_back
#define all(v) v.begin(), v.end()
#define inf (1LL << 62)
#define loop(i, start, stop, inc) for(ll i = start; i <= stop; i += inc)
#define for1(i, stop) for(ll i = 1; i <= stop; ++i)
#define for0(i, stop) for(ll i = 0; i < stop; ++i)
#define rep1(i, start) for(ll i = start; i >= 1; --i)
#define rep0(i, start) for(ll i = (start-1); i >= 0; --i)
#define ms(n, i) memset(n, i, sizeof(n))
#define casep(n) printf("Case %lld:", ++n)
#define pn printf("\n")
#define pf printf
#define EL '\n'
#define fastio std::ios_base::sync_with_stdio(false);cin.tie(NULL);cout.tie(NULL);
/***
* Multiply (7x^2 + 8x^1 + 9x^0) with (6x^1 + 5x^0)
* ans = 42x^3 + 83x^2 + 94x^1 + 45x^0
* A = {9, 8, 7}
* B = {5, 6}
* V = multiply(A,B)
* V = {45, 94, 83, 42}
***/
/*** Tricks
* Use vector < bool > if you need to check only the status of the sum
* Use bigmod if the power is over same polynomial && power is big
* Use long double if you need more precision
* Use long long for overflow
***/
typedef vector <int> vi;
const double PI = 2.0 * acos(0.0);
using cd = complex<double>;
void fft(vector<cd> & a, bool invert = 0)
{
int n = a.size();
for (int i = 1, j = 0; i < n; i++) {
int bit = n >> 1;
for (; j & bit; bit >>= 1)
j ^= bit;
j ^= bit;
if (i < j)
swap(a[i], a[j]);
}
for (int len = 2; len <= n; len <<= 1) {
double ang = 2 * PI / len * (invert ? -1 : 1);
cd wlen(cos(ang), sin(ang));
for (int i = 0; i < n; i += len) {
cd w(1);
for (int j = 0; j < len / 2; j++) {
cd u = a[i+j], v = a[i+j+len/2] * w;
a[i+j] = u + v;
a[i+j+len/2] = u - v;
w *= wlen;
}
}
}
if (invert) {
for (cd & x : a)
x /= n;
}
}
void ifft(vector <cd> & p)
{
fft(p, 1);
}
vi multiply(vi const& a, vi const& b)
{
vector<cd> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1;
while (n < a.size() + b.size())
n <<= 1;
fa.resize(n);
fb.resize(n);
fft(fa);
fft(fb);
for (int i = 0; i < n; i++)
fa[i] *= fb[i];
ifft(fa);
vi result(n);
for (int i = 0; i < n; i++)
result[i] = round(fa[i].real());
return result;
}
const ll sz = 5e5 + 10, offset = 5e5;
char s[sz], r[sz];
vi num1[4], num2[4], res[4];
int main()
{
scanf("%s %s", s, r);
ll len1 = strlen(s), len2 = strlen(r);
for0(i, 4)
num1[i].resize(len1+1,0), num2[i].resize(len2+1+offset,0);
for(ll i = 0; s[i] != '\0'; i++) {
if(s[i] == 'A')
num1[0][i]++;
else if(s[i] == 'C')
num1[1][i]++;
else if(s[i] == 'T')
num1[2][i]++;
else
num1[3][i]++;
}
for(ll i = 0; r[i] != '\0'; i++) {
if(r[i] == 'A')
num2[0][-i + offset]++;
else if(r[i] == 'C')
num2[1][-i + offset]++;
else if(r[i] == 'T')
num2[2][-i + offset]++;
else
num2[3][-i + offset]++;
}
for0(i, 4) res[i] = multiply(num1[i], num2[i]);
ll ans = inf;
for(ll i = 0; i <= len1 - len2; i++) {
ll match = 0;
for0(j, 4) match += res[j][i+offset];
ans = min(ans, len2-match);
}
cout << ans << EL;
return 0;
}
|