Datasets:
update script
Browse files
lccc.py
CHANGED
@@ -47,10 +47,6 @@ grammatically incorrect sentences, and incoherent conversations are filtered.
|
|
47 |
|
48 |
_HOMEPAGE = "https://github.com/thu-coai/CDial-GPT"
|
49 |
_LICENSE = "MIT"
|
50 |
-
|
51 |
-
# TODO: Add link to the official dataset URLs here
|
52 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
53 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
54 |
_URLS = {
|
55 |
"large": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz",
|
56 |
"base": {
|
@@ -61,32 +57,17 @@ _URLS = {
|
|
61 |
}
|
62 |
|
63 |
|
64 |
-
|
65 |
-
class NewDataset(datasets.GeneratorBasedBuilder):
|
66 |
"""Large-scale Cleaned Chinese Conversation corpus."""
|
67 |
|
68 |
VERSION = datasets.Version("1.0.0")
|
69 |
|
70 |
-
# This is an example of a dataset with multiple configurations.
|
71 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
72 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
73 |
-
|
74 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
75 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
76 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
77 |
-
|
78 |
-
# You will be able to load one or the other configurations in the following list with
|
79 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
80 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
81 |
BUILDER_CONFIGS = [
|
82 |
datasets.BuilderConfig(name="large", version=VERSION, description="The large version of LCCC"),
|
83 |
datasets.BuilderConfig(name="base", version=VERSION, description="The base version of LCCC"),
|
84 |
]
|
85 |
|
86 |
-
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
87 |
-
|
88 |
def _info(self):
|
89 |
-
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
90 |
features = datasets.Features(
|
91 |
{
|
92 |
"dialog": datasets.Value("string"),
|
@@ -109,56 +90,33 @@ class NewDataset(datasets.GeneratorBasedBuilder):
|
|
109 |
)
|
110 |
|
111 |
def _split_generators(self, dl_manager):
|
112 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
113 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
114 |
-
|
115 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
116 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
117 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
118 |
urls = _URLS[self.config.name]
|
119 |
downloaded_data = dl_manager.download_and_extract(urls)
|
120 |
if self.config.name == "large":
|
121 |
return [
|
122 |
datasets.SplitGenerator(
|
123 |
name=datasets.Split.TRAIN,
|
124 |
-
gen_kwargs={
|
125 |
-
"filepath": os.path.join(downloaded_data),
|
126 |
-
"split": "train",
|
127 |
-
}
|
128 |
)
|
129 |
]
|
130 |
if self.config.name == "base":
|
131 |
return [
|
132 |
datasets.SplitGenerator(
|
133 |
name=datasets.Split.TRAIN,
|
134 |
-
|
135 |
-
gen_kwargs={
|
136 |
-
"filepath": os.path.join(downloaded_data["train"]),
|
137 |
-
"split": "train",
|
138 |
-
},
|
139 |
),
|
140 |
datasets.SplitGenerator(
|
141 |
name=datasets.Split.TEST,
|
142 |
-
|
143 |
-
gen_kwargs={
|
144 |
-
"filepath": os.path.join(downloaded_data["train"]),
|
145 |
-
"split": "test"
|
146 |
-
},
|
147 |
),
|
148 |
datasets.SplitGenerator(
|
149 |
name=datasets.Split.VALIDATION,
|
150 |
-
|
151 |
-
gen_kwargs={
|
152 |
-
"filepath": os.path.join(downloaded_data["valid"]),
|
153 |
-
"split": "dev",
|
154 |
-
},
|
155 |
),
|
156 |
]
|
157 |
|
158 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
159 |
def _generate_examples(self, filepath, split):
|
160 |
-
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
161 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
162 |
with open(filepath, encoding="utf-8") as f:
|
163 |
for key, row in enumerate(f):
|
164 |
row = row.strip()
|
|
|
47 |
|
48 |
_HOMEPAGE = "https://github.com/thu-coai/CDial-GPT"
|
49 |
_LICENSE = "MIT"
|
|
|
|
|
|
|
|
|
50 |
_URLS = {
|
51 |
"large": "https://huggingface.co/datasets/silver/lccc/resolve/main/lccc_large.jsonl.gz",
|
52 |
"base": {
|
|
|
57 |
}
|
58 |
|
59 |
|
60 |
+
class LCCC(datasets.GeneratorBasedBuilder):
|
|
|
61 |
"""Large-scale Cleaned Chinese Conversation corpus."""
|
62 |
|
63 |
VERSION = datasets.Version("1.0.0")
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
BUILDER_CONFIGS = [
|
66 |
datasets.BuilderConfig(name="large", version=VERSION, description="The large version of LCCC"),
|
67 |
datasets.BuilderConfig(name="base", version=VERSION, description="The base version of LCCC"),
|
68 |
]
|
69 |
|
|
|
|
|
70 |
def _info(self):
|
|
|
71 |
features = datasets.Features(
|
72 |
{
|
73 |
"dialog": datasets.Value("string"),
|
|
|
90 |
)
|
91 |
|
92 |
def _split_generators(self, dl_manager):
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
urls = _URLS[self.config.name]
|
94 |
downloaded_data = dl_manager.download_and_extract(urls)
|
95 |
if self.config.name == "large":
|
96 |
return [
|
97 |
datasets.SplitGenerator(
|
98 |
name=datasets.Split.TRAIN,
|
99 |
+
gen_kwargs={ "filepath": os.path.join(downloaded_data), "split": "train", }
|
|
|
|
|
|
|
100 |
)
|
101 |
]
|
102 |
if self.config.name == "base":
|
103 |
return [
|
104 |
datasets.SplitGenerator(
|
105 |
name=datasets.Split.TRAIN,
|
106 |
+
gen_kwargs={ "filepath": os.path.join(downloaded_data["train"]), "split": "train", },
|
|
|
|
|
|
|
|
|
107 |
),
|
108 |
datasets.SplitGenerator(
|
109 |
name=datasets.Split.TEST,
|
110 |
+
gen_kwargs={ "filepath": os.path.join(downloaded_data["test"]), "split": "test" },
|
|
|
|
|
|
|
|
|
111 |
),
|
112 |
datasets.SplitGenerator(
|
113 |
name=datasets.Split.VALIDATION,
|
114 |
+
gen_kwargs={ "filepath": os.path.join(downloaded_data["valid"]), "split": "dev", },
|
|
|
|
|
|
|
|
|
115 |
),
|
116 |
]
|
117 |
|
118 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
119 |
def _generate_examples(self, filepath, split):
|
|
|
|
|
120 |
with open(filepath, encoding="utf-8") as f:
|
121 |
for key, row in enumerate(f):
|
122 |
row = row.strip()
|