Datasets:
File size: 2,045 Bytes
640ee7f beca52c 640ee7f beca52c 640ee7f 2004ae6 640ee7f beca52c 640ee7f beca52c 640ee7f beca52c 640ee7f beca52c 640ee7f beca52c 640ee7f a754cba 640ee7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
# coding=utf-8
# Lint as: python3
"""mindgames datasets"""
from __future__ import absolute_import, division, print_function
import json
import os
import textwrap
import six
import datasets
CITATION = r"""
@article{sileo2023mindgames,
title={MindGames: Targeting Theory of Mind in Large Language Models with Dynamic Epistemic Modal Logic},
author={Sileo, Damien and Lernould, Antoine},
journal={arXiv preprint arXiv:2305.03353},
year={2023}
}
"""
DESCRIPTION = """\
mindgames json tasks
"""
CONFIGS=['forehead','forehead_mirror','explicit','internal','all']
_URLs = {(x,y):f'https://huggingface.co/datasets/sileod/mindgames/resolve/main/data/{x}-{y}.jsonl' for x in ['train','validation','test'] for y in CONFIGS}
files = ['-'.join(x) for x in _URLs]
class mindgamesConfig(datasets.BuilderConfig):
citation=CITATION
class mindgames(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "all"
BUILDER_CONFIGS = [
mindgamesConfig(
name=n,
data_dir=n
) for n in CONFIGS
]
def _split_generators(self, dl_manager: datasets.DownloadManager):
data_file = dl_manager.download(_URLs)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_file['train',self.config.data_dir]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_file['validation',self.config.data_dir]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_file['test',self.config.data_dir]}),
]
def _info(self):
return datasets.DatasetInfo()
def _generate_examples(self, filepath):
print(filepath)
"""Yields examples."""
with open(filepath, "r", encoding="utf-8") as f:
for id_, line in enumerate(f):
line_dict = json.loads(line)
line_dict['label']=['not_entailment','entailment'][line_dict['label']]
yield id_, line_dict |