Datasets:
File size: 1,428 Bytes
1523ac4 dc5dd85 3121411 1523ac4 497783c 1523ac4 3121411 1523ac4 5105cd1 1523ac4 7ef529f 1523ac4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: gpl
task_categories:
- text-classification
language:
- en
task_ids:
- natural-language-inference
tags:
- theory of mind
- tom
- Logical-Reasoning
- Modal-Logic
- Reasoning
- Logics
- Logic
- nli
- natural language inference
dataset_info:
features:
- name: premise
dtype: string
- name: smcdel_problem
dtype: string
- name: n_announcements
dtype: int64
- name: pbcheck
dtype: string
- name: hypothesis
dtype: string
- name: setup
dtype: string
- name: hypothesis_depth
dtype: int64
- name: n_agents
dtype: int64
- name: label
dtype: int64
- name: names
sequence: string
- name: index
dtype: int64
- name: s-l
dtype: string
- name: deberta_pred
dtype: int64
- name: deberta_confidence
dtype: float64
- name: difficulty
dtype: float64
splits:
- name: train
num_bytes: 8619563.842139175
num_examples: 11174
- name: validation
num_bytes: 2873445.0789304124
num_examples: 3725
- name: test
num_bytes: 2873445.0789304124
num_examples: 3725
download_size: 2991434
dataset_size: 14366454.0
---
Mindgame dataset
https://arxiv.org/abs/2305.03353
```
@article{sileo2023mindgames,
title={MindGames: Targeting Theory of Mind in Large Language Models with Dynamic Epistemic Modal Logic},
author={Sileo, Damien and Lernould, Antoine},
journal={arXiv preprint arXiv:2305.03353},
year={2023}
}
``` |