Datasets:
File size: 4,917 Bytes
d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 c5a2e40 d5e00e4 b0498c9 d5e00e4 c5a2e40 d5e00e4 b0498c9 d5e00e4 c5a2e40 d5e00e4 b0498c9 d5e00e4 b0498c9 d5e00e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
"""Natural Language Inference (NLI) Chinese Corpus.(nli_zh)"""
import os
import datasets
_DESCRIPTION = """纯文本数据,格式:(sentence1, sentence2, label)。常见中文语义匹配数据集,包含ATEC、BQ、LCQMC、PAWSX、STS-B共5个任务。"""
ATEC_HOME = "https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC"
BQ_HOME = "http://icrc.hitsz.edu.cn/info/1037/1162.htm"
LCQMC_HOME = "http://icrc.hitsz.edu.cn/Article/show/171.html"
PAWSX_HOME = "https://arxiv.org/abs/1908.11828"
STSB_HOME = "https://github.com/pluto-junzeng/CNSD"
_CITATION = "https://github.com/shibing624/text2vec"
_DATA_URL = "https://github.com/shibing624/text2vec/releases/download/1.1.2/senteval_cn.zip"
class NliZhConfig(datasets.BuilderConfig):
"""BuilderConfig for NLI_zh"""
def __init__(self, features, data_url, citation, url, label_classes=(0, 1), **kwargs):
"""BuilderConfig for NLI_zh
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[int]`, sim is 1, else 0.
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class NliZh(datasets.GeneratorBasedBuilder):
"""The Natural Language Inference Chinese(NLI_zh) Corpus."""
BUILDER_CONFIGS = [
NliZhConfig(
name="ATEC",
description=_DESCRIPTION,
features=["sentence1", "sentence1"],
data_url=_DATA_URL,
citation=_CITATION,
url=ATEC_HOME,
),
NliZhConfig(
name="BQ",
description=_DESCRIPTION,
features=["sentence1", "sentence1"],
data_url=_DATA_URL,
citation=_CITATION,
url=BQ_HOME,
),
NliZhConfig(
name="LCQMC",
description=_DESCRIPTION,
features=["sentence1", "sentence1"],
data_url=_DATA_URL,
citation=_CITATION,
url=LCQMC_HOME,
),
NliZhConfig(
name="PAWSX",
description=_DESCRIPTION,
features=["sentence1", "sentence1"],
data_url=_DATA_URL,
citation=_CITATION,
url=PAWSX_HOME,
),
NliZhConfig(
name="STS-B",
description=_DESCRIPTION,
features=["sentence1", "sentence1"],
data_url=_DATA_URL,
citation=_CITATION,
url=STSB_HOME,
),
]
def _info(self):
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(
{
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"label": datasets.Value("int32"),
# "idx": datasets.Value("int32"),
}
),
homepage=self.config.url,
citation=self.config.citation,
)
def _split_generators(self, dl_manager):
dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
dl_dir = os.path.join(dl_dir, f"senteval_cn/{self.config.name}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(dl_dir, f"{self.config.name}.train.data"),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": os.path.join(dl_dir, f"{self.config.name}.valid.data"),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(dl_dir, f"{self.config.name}.test.data"),
},
),
]
def _generate_examples(self, filepath):
"""This function returns the examples in the raw (text) form."""
with open(filepath, 'r', encoding="utf-8") as f:
for idx, row in enumerate(f):
# print(row)
terms = row.split('\t')
yield idx, {
"sentence1": terms[0],
"sentence2": terms[1],
"label": int(terms[2]),
}
|