Datasets:
File size: 5,786 Bytes
fd5a00a c8897a2 fd5a00a 1019caf fd5a00a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
annotations_creators:
- shibing624
language_creators:
- shibing624
languages:
- zh
licenses:
- cc-by-4-0
multilinguality:
- monolingual
size_categories:
- 100K<n<20M
source_datasets:
- https://github.com/shibing624/text2vec
- https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC
- http://icrc.hitsz.edu.cn/info/1037/1162.htm
- http://icrc.hitsz.edu.cn/Article/show/171.html
- https://arxiv.org/abs/1908.11828
- https://github.com/pluto-junzeng/CNSD
task_categories:
- text-classification
- text-scoring
task_ids:
- natural-language-inference
- semantic-similarity-scoring
paperswithcode_id: snli
pretty_name: Stanford Natural Language Inference
---
# Dataset Card for NLI_zh
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
- **Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec) (located on the homepage)
- **Size of downloaded dataset files:** 16 MB
- **Total amount of disk used:** 42 MB
### Dataset Summary
常见中文语义匹配数据集,包含[ATEC](https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC)、[BQ](http://icrc.hitsz.edu.cn/info/1037/1162.htm)、[LCQMC](http://icrc.hitsz.edu.cn/Article/show/171.html)、[PAWSX](https://arxiv.org/abs/1908.11828)、[STS-B](https://github.com/pluto-junzeng/CNSD)共5个任务。
数据源:
- ATEC: https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC
- BQ: http://icrc.hitsz.edu.cn/info/1037/1162.htm
- LCQMC: http://icrc.hitsz.edu.cn/Article/show/171.html
- PAWSX: https://arxiv.org/abs/1908.11828
- STS-B: https://github.com/pluto-junzeng/CNSD
### Supported Tasks and Leaderboards
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec)
### Languages
数据集均是简体中文文本。
## Dataset Structure
### Data Instances
An example of 'train' looks as follows.
```
{
"sentence1": "刘诗诗杨幂谁漂亮",
"sentence2": "刘诗诗和杨幂谁漂亮",
"label": 1,
}
{
"sentence1": "汇理财怎么样",
"sentence2": "怎么样去理财",
"label": 0,
}
```
### Data Fields
The data fields are the same among all splits.
- `sentence1`: a `string` feature.
- `sentence2`: a `string` feature.
- `label`: a classification label, with possible values including `similarity` (1), `dissimilarity` (0).
### Data Splits
#### ATEC
```shell
$ wc -l ATEC/*
20000 ATEC/ATEC.test.data
62477 ATEC/ATEC.train.data
20000 ATEC/ATEC.valid.data
102477 total
```
#### BQ
```shell
$ wc -l BQ/*
10000 BQ/BQ.test.data
100000 BQ/BQ.train.data
10000 BQ/BQ.valid.data
120000 total
```
#### LCQMC
```shell
$ wc -l LCQMC/*
12500 LCQMC/LCQMC.test.data
238766 LCQMC/LCQMC.train.data
8802 LCQMC/LCQMC.valid.data
260068 total
```
#### PAWSX
```shell
$ wc -l PAWSX/*
2000 PAWSX/PAWSX.test.data
49401 PAWSX/PAWSX.train.data
2000 PAWSX/PAWSX.valid.data
53401 total
```
#### STS-B
```shell
$ wc -l STS-B/*
1361 STS-B/STS-B.test.data
5231 STS-B/STS-B.train.data
1458 STS-B/STS-B.valid.data
8050 total
```
## Dataset Creation
### Curation Rationale
作为中文NLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。
### Source Data
#### Initial Data Collection and Normalization
#### Who are the source language producers?
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
BQ: Jing Chen, Qingcai Chen, Xin Liu, Haijun Yang, Daohe Lu, Buzhou Tang, The BQ Corpus: A Large-scale Domain-specific Chinese Corpus For Sentence Semantic Equivalence Identification EMNLP2018.
### Annotations
#### Annotation process
#### Who are the annotators?
原作者。
### Personal and Sensitive Information
## Considerations for Using the Data
### Social Impact of Dataset
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
Systems that are successful at such a task may be more successful in modeling semantic representations.
### Discussion of Biases
### Other Known Limitations
## Additional Information
### Dataset Curators
- 苏剑林对文件名称有整理
- 我上传到huggingface的datasets
### Licensing Information
用于学术研究。
The BQ corpus is free to the public for academic research.
### Contributions
Thanks to [@shibing624](https://github.com/shibing624) add this dataset.
|