File size: 2,411 Bytes
e40774e
 
 
 
 
 
 
 
ebefd91
 
 
 
 
 
 
 
 
 
 
c4e0887
ebefd91
 
 
 
c4e0887
ebefd91
 
 
c4e0887
ebefd91
 
c4e0887
 
 
 
 
 
ebefd91
 
 
 
 
6fedd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebefd91
6fedd7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
task_categories:
- translation
language:
- it
- lld
size_categories:
- 1K<n<10K
---

# Dataset Card: Testset 3

## Overview

**Dataset Name**: Testset 3

**Source Paper**: ["Rule-Based, Neural and LLM Back-Translation: Comparative Insights from a Variant of Ladin"](https://arxiv.org/abs/2407.08819)

**Description**: 
Testset 3 consists of parallel sentences in Ladin and Italian. 

## Dataset Structure

- **Files**:
  - `pinocchio.parquet`: Contains the Italian - Ladin (Val Badia) translations.

## Format

- **File Type**: Parquet
- **Encoding**: UTF-8

## Usage

```python
from datasets import load_dataset
data = load_dataset("sfrontull/pinocchio-lld_valbadia-ita")
```
## Citation

If you use this dataset, please cite the following paper:

```bibtex
@inproceedings{frontull-moser-2024-rule,
    title = "Rule-Based, Neural and {LLM} Back-Translation: Comparative Insights from a Variant of {L}adin",
    author = "Frontull, Samuel  and
      Moser, Georg",
    editor = "Ojha, Atul Kr.  and
      Liu, Chao-hong  and
      Vylomova, Ekaterina  and
      Pirinen, Flammie  and
      Abbott, Jade  and
      Washington, Jonathan  and
      Oco, Nathaniel  and
      Malykh, Valentin  and
      Logacheva, Varvara  and
      Zhao, Xiaobing",
    booktitle = "Proceedings of the The Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)",
    month = aug,
    year = "2024",
    address = "Bangkok, Thailand",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2024.loresmt-1.13",
    pages = "128--138",
    abstract = "This paper explores the impact of different back-translation approaches on machine translation for Ladin, specifically the Val Badia variant. Given the limited amount of parallel data available for this language (only 18k Ladin-Italian sentence pairs), we investigate the performance of a multilingual neural machine translation model fine-tuned for Ladin-Italian. In addition to the available authentic data, we synthesise further translations by using three different models: a fine-tuned neural model, a rule-based system developed specifically for this language pair, and a large language model. Our experiments show that all approaches achieve comparable translation quality in this low-resource scenario, yet round-trip translations highlight differences in model performance.",
}
```