crypto_data / crypto_data.py
Sébastien De Greef
Add scripts to create indicators and sequences, and download crypto data
1e1b538
from datasets import DatasetBuilder, DownloadManager, DatasetInfo, BuilderConfig, SplitGenerator, Split, Features, Value
import pandas as pd
# Define custom configurations for the dataset
class CryptoDataConfig(BuilderConfig):
def __init__(self, features, **kwargs):
super().__init__(**kwargs)
self.features = features
class CryptoDataDataset(DatasetBuilder):
# Define different dataset configurations here
BUILDER_CONFIGS = [
CryptoDataConfig(
name="candles",
description="This configuration includes open, high, low, close, and volume.",
features=Features({
"date": Value("string"),
"open": Value("float"),
"high": Value("float"),
"low": Value("float"),
"close": Value("float"),
"volume": Value("float")
})
),
CryptoDataConfig(
name="indicators",
description="This configuration extends basic CryptoDatas with RSI, SMA, and EMA indicators.",
features=Features({
"date": Value("string"),
"open": Value("float"),
"high": Value("float"),
"low": Value("float"),
"close": Value("float"),
"volume": Value("float"),
"rsi": Value("float"),
"sma": Value("float"),
"ema": Value("float")
})
),
]
def _info(self):
return DatasetInfo(
description=f"CryptoData dataset for {self.config.name}",
features=self.config.features,
supervised_keys=None,
homepage="https://hub.huggingface.co/datasets/sebdg/crypto_data",
citation="No citation for this dataset."
)
def _split_generators(self, dl_manager: DownloadManager):
# Here, you can define how to split your dataset (e.g., into training, validation, test)
# This example assumes a single CSV file without predefined splits.
# You can modify this method if you have different needs.
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={"filepath": "indicators.csv"},
),
]
def _generate_examples(self, filepath):
# Here, we open the provided CSV file and yield each row as a single example.
with open(filepath, encoding="utf-8") as csv_file:
data = pd.read_csv(csv_file)
for id, row in data.iterrows():
# Select features based on the dataset configuration
features = {feature: row[feature] for feature in self.config.features if feature in row}
yield id, features