Datasets:

ArXiv:
Tags:
art
License:
humans / util /merge_images.py
schirrmacher's picture
Upload folder using huggingface_hub
9c206a9 verified
raw
history blame
7.59 kB
import os
import cv2
import argparse
import random
import string
import albumentations as A
def apply_scale_and_move(image):
transform = A.Compose(
[
A.HorizontalFlip(p=0.5),
A.ShiftScaleRotate(
shift_limit_x=(-0.3, 0.3),
shift_limit_y=(0.0, 0.2),
scale_limit=(1.0, 1.5),
border_mode=cv2.BORDER_CONSTANT,
rotate_limit=(-3, 3),
p=0.7,
),
]
)
return transform(image=image)["image"]
def apply_transform(image):
has_alpha = image.shape[2] == 4
if has_alpha:
alpha_channel = image[:, :, 3]
color_channels = image[:, :, :3]
else:
color_channels = image
# Define the transformation
transform = A.Compose(
[
A.RandomBrightnessContrast(
brightness_limit=(-0.1, 0.1), contrast_limit=(-0.4, 0), p=0.8
)
]
)
# Apply the transformation only to the color channels
transformed = transform(image=color_channels)
transformed_image = transformed["image"]
# Merge the alpha channel back if it was separated
if has_alpha:
final_image = cv2.merge(
(
transformed_image[:, :, 0],
transformed_image[:, :, 1],
transformed_image[:, :, 2],
alpha_channel,
)
)
else:
final_image = transformed_image
return final_image
def apply_noise(image):
transform = A.Compose(
[
A.MotionBlur(blur_limit=(5, 11), p=1.0),
A.GaussNoise(var_limit=(10, 150), p=1.0),
A.RandomBrightnessContrast(
brightness_limit=(-0.1, 0.1), contrast_limit=(-0.1, 0.1), p=0.5
),
A.RandomFog(
fog_coef_lower=0.05,
fog_coef_upper=0.2,
alpha_coef=0.08,
always_apply=False,
p=0.5,
),
A.RandomShadow(
shadow_roi=(0, 0.5, 1, 1),
num_shadows_limit=(1, 2),
num_shadows_lower=None,
num_shadows_upper=None,
shadow_dimension=5,
always_apply=False,
p=0.5,
),
A.RandomToneCurve(scale=0.1, always_apply=False, p=0.5),
]
)
return transform(image=image)["image"]
def remove_alpha(image, alpha_threshold=200):
mask = image[:, :, 3] < alpha_threshold
image[mask] = [0, 0, 0, 0]
return image
def merge_images(
background_path, overlay_path, output_path, groundtruth_path, width, height
):
letters = string.ascii_lowercase
random_string = "".join(random.choice(letters) for i in range(13))
file_name = random_string + "_" + os.path.basename(overlay_path)
# Read the background image and resize it to the specified dimensions
background = cv2.imread(background_path, cv2.IMREAD_COLOR)
height, width = background.shape[:2]
height = int(1.5 * height)
width = int(1.5 * width)
resized_background = cv2.resize(
background, (width, height), interpolation=cv2.INTER_AREA
)
# Read the overlay image with alpha channel
overlay = cv2.imread(overlay_path, cv2.IMREAD_UNCHANGED)
# Ensure overlay has an alpha channel
if overlay.shape[2] < 4:
raise Exception("Overlay image does not have an alpha channel.")
# Apply transformations to the overlay
overlay = expand_image_borders_rgba(overlay, width, height)
overlay = apply_scale_and_move(overlay)
# store ground truth
extract_alpha_channel_as_bw(overlay, os.path.join(groundtruth_path, file_name))
overlay = apply_transform(overlay)
# Overlay placement on the resized background
x_offset = (width - overlay.shape[1]) // 2
y_offset = (height - overlay.shape[0]) // 2
# Preventing overlay from exceeding the background dimensions
x_offset = max(0, x_offset)
y_offset = max(0, y_offset)
# Calculate the normalized alpha mask
alpha_overlay = overlay[..., 3] / 255.0
region_of_interest = resized_background[
y_offset : y_offset + overlay.shape[0],
x_offset : x_offset + overlay.shape[1],
:,
]
# Blend the images
for c in range(0, 3):
region_of_interest[..., c] = (
alpha_overlay * overlay[..., c]
+ (1 - alpha_overlay) * region_of_interest[..., c]
)
resized_background[
y_offset : y_offset + overlay.shape[0], x_offset : x_offset + overlay.shape[1]
] = region_of_interest
resized_background = apply_noise(resized_background)
cv2.imwrite(os.path.join(output_path, file_name), resized_background)
def expand_image_borders_rgba(
image, final_width, final_height, border_color=(0, 0, 0, 0)
):
# Check if image has an alpha channel
if image.shape[2] < 4:
raise ValueError(
"Loaded image does not contain an alpha channel. Make sure the input image is RGBA."
)
# Current dimensions
height, width = image.shape[:2]
# Calculate padding needed
top = bottom = (final_height - height) // 2
left = right = (final_width - width) // 2
# To handle cases where the new dimensions are odd and original dimensions are even (or vice versa)
if (final_height - height) % 2 != 0:
bottom += 1
if (final_width - width) % 2 != 0:
right += 1
# Apply make border with an RGBA color
new_image = cv2.copyMakeBorder(
image, top, bottom, left, right, cv2.BORDER_CONSTANT, value=border_color
)
return new_image
def extract_alpha_channel_as_bw(image, output_path):
# Check if the image has an alpha channel
if image.shape[2] < 4:
raise ValueError(
"Loaded image does not contain an alpha channel. Make sure the input image is in PNG format with an alpha channel."
)
# Extract the alpha channel
image = remove_alpha(image.copy())
alpha_channel = image[:, :, 3]
# Save or display the alpha channel as a black and white image
cv2.imwrite(output_path, alpha_channel)
def main():
parser = argparse.ArgumentParser(
description="Merge two images with one image having transparency."
)
parser.add_argument(
"-b", "--background", required=True, help="Path to the background image"
)
parser.add_argument(
"-o", "--overlay", required=True, help="Path to the overlay image"
)
parser.add_argument(
"-im",
"--image-path",
type=str,
default="im",
help="Path where the merged image will be saved",
)
parser.add_argument(
"--width",
type=int,
default=1920,
help="Width to which the background image will be resized",
)
parser.add_argument(
"--height",
type=int,
default=1080,
help="Height to which the background image will be resized",
)
parser.add_argument(
"-gt",
"--groundtruth-path",
type=str,
default="gt",
help="Ground truth folder",
)
args = parser.parse_args()
if not os.path.exists(args.image_path):
os.makedirs(args.image_path)
if not os.path.exists(args.groundtruth_path):
os.makedirs(args.groundtruth_path)
merge_images(
args.background,
args.overlay,
args.image_path,
args.groundtruth_path,
args.width,
args.height,
)
if __name__ == "__main__":
main()