Upload set-classification.py
Browse files- set-classification.py +64 -0
set-classification.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datasets
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import DownloadManager
|
4 |
+
|
5 |
+
class SetClassification(datasets.GeneratorBasedBuilder):
|
6 |
+
"""Set-Classification Images dataset"""
|
7 |
+
|
8 |
+
def __init__(self, data_path, *args, **kwargs):
|
9 |
+
super(SetClassification, self).__init__(*args, **kwargs)
|
10 |
+
self.data_path = data_path
|
11 |
+
self.labels = pd.read_csv(f'{self.data_path}/labels.csv')
|
12 |
+
self.train = self.labels[self.labels['split'] == 'train']
|
13 |
+
self.test = self.labels[self.labels['split'] == 'test']
|
14 |
+
self.dl_manager = DownloadManager()
|
15 |
+
|
16 |
+
def _info(self):
|
17 |
+
return datasets.DatasetInfo(
|
18 |
+
description='Set Classification Images dataset',
|
19 |
+
)
|
20 |
+
|
21 |
+
|
22 |
+
def _split_generators(self, dl_manager):
|
23 |
+
|
24 |
+
return [
|
25 |
+
datasets.SplitGenerator(
|
26 |
+
name=datasets.Split.TRAIN,
|
27 |
+
gen_kwargs={
|
28 |
+
'images': [f"{self.data_path}/images/{image.filename}" for image in self.train.itertuples()],
|
29 |
+
'labels': {
|
30 |
+
'no': [image.no for image in self.train.itertuples()],
|
31 |
+
'shape': [image.shape for image in self.train.itertuples()],
|
32 |
+
'color': [image.color for image in self.train.itertuples()],
|
33 |
+
'shading': [image.shading for image in self.train.itertuples()]
|
34 |
+
}
|
35 |
+
}
|
36 |
+
),
|
37 |
+
datasets.SplitGenerator(
|
38 |
+
name=datasets.Split.TEST,
|
39 |
+
gen_kwargs={
|
40 |
+
'images': [f"{self.data_path}/images/{image.filename}" for image in self.test.itertuples()],
|
41 |
+
'labels': {
|
42 |
+
'no': [image.no for image in self.test.itertuples()],
|
43 |
+
'shape': [image.shape for image in self.test.itertuples()],
|
44 |
+
'color': [image.color for image in self.test.itertuples()],
|
45 |
+
'shading': [image.shading for image in self.test.itertuples()]
|
46 |
+
}
|
47 |
+
}
|
48 |
+
)
|
49 |
+
]
|
50 |
+
|
51 |
+
def _generate_examples(self, images, labels):
|
52 |
+
for img, label in zip(images, zip(*labels.values())):
|
53 |
+
try:
|
54 |
+
with open(img, 'rb') as img_obj:
|
55 |
+
no, shape, color, shading = label
|
56 |
+
yield img, {
|
57 |
+
'image': {"path": img, "bytes": img_obj.read()},
|
58 |
+
'no': no,
|
59 |
+
'shape': shape,
|
60 |
+
'color': color,
|
61 |
+
'shading': shading
|
62 |
+
}
|
63 |
+
except Exception as e:
|
64 |
+
print(f"Error processing image {img}: {e}")
|