task_id
stringlengths 4
14
| prompt
stringlengths 112
1.41k
| canonical_solution
stringlengths 17
2.16k
| test
stringlengths 148
2.54k
| declaration
stringlengths 22
1.2k
| example_test
stringlengths 0
679
| buggy_solution
stringlengths 13
2.16k
| bug_type
stringclasses 6
values | failure_symptoms
stringclasses 3
values | entry_point
stringlengths 1
30
| signature
stringlengths 14
76
| docstring
stringlengths 23
1.21k
| instruction
stringlengths 103
1.32k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPP/100 | /*
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a vector, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
{3, 5, 7}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> make_a_pile(int n){
| vector<int> out={n};
for (int i=1;i<n;i++)
out.push_back(out[out.size()-1]+2);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(make_a_pile(3) , {3, 5, 7}));
assert (issame(make_a_pile(4) , {4,6,8,10}));
assert (issame(make_a_pile(5) , {5, 7, 9, 11, 13}));
assert (issame(make_a_pile(6) , {6, 8, 10, 12, 14, 16}));
assert (issame(make_a_pile(8) , {8, 10, 12, 14, 16, 18, 20, 22}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> make_a_pile(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(make_a_pile(3) , {3, 5, 7}));
}
| vector<int> out={n};
for (int i=1;i<n;i++)
out.push_back(out[out.size()-1]+2+i);
return out;
}
| excess logic | incorrect output | make_a_pile | vector<int> make_a_pile(int n) | Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a vector, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
{3, 5, 7} | Write a C++ function `vector<int> make_a_pile(int n)` to solve the following problem:
Given a positive integer n, you have to make a pile of n levels of stones.
The first level has n stones.
The number of stones in the next level is:
- the next odd number if n is odd.
- the next even number if n is even.
Return the number of stones in each level in a vector, where element at index
i represents the number of stones in the level (i+1).
Examples:
>>> make_a_pile(3)
{3, 5, 7} |
CPP/101 | /*
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return a vector of the words.
For example:
words_string("Hi, my name is John") == {"Hi", "my", "name", "is", "John"}
words_string("One, two, three, four, five, six") == {"One", 'two", 'three", "four", "five", 'six"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> words_string(string s){
| string current="";
vector<string> out={};
s=s+' ';
for (int i=0;i<s.length();i++)
if (s[i]==' ' or s[i]==',')
{
if (current.length()>0)
{
out.push_back(current);
current="";
}
}
else current=current+s[i];
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(words_string("Hi, my name is John") , {"Hi", "my", "name", "is", "John"}));
assert (issame(words_string("One, two, three, four, five, six") , {"One", "two", "three", "four", "five", "six"}));
assert (issame(words_string("Hi, my name") , {"Hi", "my", "name"}));
assert (issame(words_string("One,, two, three, four, five, six,") , {"One", "two", "three", "four", "five", "six"}));
assert (issame(words_string("") , {}));
assert (issame(words_string("ahmed , gamal") , {"ahmed", "gamal"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<string> words_string(string s){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(words_string("Hi, my name is John") , {"Hi", "my", "name", "is", "John"}));
assert (issame(words_string("One, two, three, four, five, six") , {"One", "two", "three", "four", "five", "six"}));
}
| string current=",";
vector<string> out={};
s=s+' ';
for (int i=0;i<s.length();i++)
if (s[i]==' ' or s[i]==',')
{
if (current.length()>0)
{
out.push_back(current);
current=",";
}
}
else current=current+s[i];
return out;
}
| value misuse | incorrect output | words_string | vector<string> words_string(string s) | You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return a vector of the words.
For example:
words_string("Hi, my name is John") == {"Hi", "my", "name", "is", "John"}
words_string("One, two, three, four, five, six") == {"One", 'two", 'three", "four", "five", 'six"} | Write a C++ function `vector<string> words_string(string s)` to solve the following problem:
You will be given a string of words separated by commas or spaces. Your task is
to split the string into words and return a vector of the words.
For example:
words_string("Hi, my name is John") == {"Hi", "my", "name", "is", "John"}
words_string("One, two, three, four, five, six") == {"One", 'two", 'three", "four", "five", 'six"} |
CPP/102 | /*
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1
*/
#include<stdio.h>
using namespace std;
int choose_num(int x,int y){
| if (y<x) return -1;
if (y==x and y%2==1) return -1;
if (y%2==1) return y-1;
return y;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (choose_num(12, 15) == 14);
assert (choose_num(13, 12) == -1);
assert (choose_num(33, 12354) == 12354);
assert (choose_num(5234, 5233) == -1);
assert (choose_num(6, 29) == 28);
assert (choose_num(27, 10) == -1);
assert (choose_num(7, 7) == -1);
assert (choose_num(546, 546) == 546);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int choose_num(int x,int y){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (choose_num(12, 15) == 14);
assert (choose_num(13, 12) == -1);
}
| if (y<x) return -1;
if (y==x and y%2==1) return -1;
if (y%2==1) return x-1;
return y;
}
| variable misuse | incorrect output | choose_num | int choose_num(int x,int y) | This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1 | Write a C++ function `int choose_num(int x,int y)` to solve the following problem:
This function takes two positive numbers x and y and returns the
biggest even integer number that is in the range [x, y] inclusive. If
there's no such number, then the function should return -1.
For example:
choose_num(12, 15) = 14
choose_num(13, 12) = -1 |
CPP/103 | /*
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer(smaller one) and convert that to binary.
If n is greater than m, return "-1".
Example:
rounded_avg(1, 5) => "11"
rounded_avg(7, 5) => "-1"
rounded_avg(10, 20) => "1111"
rounded_avg(20, 33) => "11010"
*/
#include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
string rounded_avg(int n,int m){
| if (n>m) return "-1";
int num=(m+n)/2;
string out="";
while (num>0)
{
out=to_string(num%2)+out;
num=num/2;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (rounded_avg(1, 5) == "11");
assert (rounded_avg(7, 13) == "1010");
assert (rounded_avg(964,977) == "1111001010");
assert (rounded_avg(996,997) == "1111100100");
assert (rounded_avg(560,851) == "1011000001");
assert (rounded_avg(185,546) == "101101101");
assert (rounded_avg(362,496) == "110101101");
assert (rounded_avg(350,902) == "1001110010");
assert (rounded_avg(197,233) == "11010111");
assert (rounded_avg(7, 5) == "-1");
assert (rounded_avg(5, 1) == "-1");
assert (rounded_avg(5, 5) == "101");
}
| #include<stdio.h>
#include<math.h>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string rounded_avg(int n,int m){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (rounded_avg(1, 5) == "11");
assert (rounded_avg(7, 5) == "-1");
assert (rounded_avg(10,20) == "1111");
assert (rounded_avg(20,33) == "11010");
}
| if (n>m) return "-1";
int num=(m+n+1)/2;
string out="";
while (num>0)
{
out=to_string(num%2)+out;
num=num/2;
}
return out;
}
| value misuse | incorrect output | rounded_avg | string rounded_avg(int n,int m) | You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer(smaller one) and convert that to binary.
If n is greater than m, return "-1".
Example:
rounded_avg(1, 5) => "11"
rounded_avg(7, 5) => "-1"
rounded_avg(10, 20) => "1111"
rounded_avg(20, 33) => "11010" | Write a C++ function `string rounded_avg(int n,int m)` to solve the following problem:
You are given two positive integers n and m, and your task is to compute the
average of the integers from n through m (including n and m).
Round the answer to the nearest integer(smaller one) and convert that to binary.
If n is greater than m, return "-1".
Example:
rounded_avg(1, 5) => "11"
rounded_avg(7, 5) => "-1"
rounded_avg(10, 20) => "1111"
rounded_avg(20, 33) => "11010" |
CPP/104 | /*
Given a vector of positive integers x. return a sorted vector of all
elements that hasn't any even digit.
Note: Returned vector should be sorted in increasing order.
For example:
>>> unique_digits({15, 33, 1422, 1})
{1, 15, 33}
>>> unique_digits({152, 323, 1422, 10})
{}
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> unique_digits(vector<int> x){
| vector<int> out={};
for (int i=0;i<x.size();i++)
{
int num=x[i];
bool u=true;
if (num==0) u=false;
while (num>0 and u)
{
if (num%2==0) u=false;
num=num/10;
}
if (u) out.push_back(x[i]);
}
sort(out.begin(),out.end());
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(unique_digits({15, 33, 1422, 1}) , {1, 15, 33}));
assert (issame(unique_digits({152, 323, 1422, 10}) , {}));
assert (issame(unique_digits({12345, 2033, 111, 151}) , {111, 151}));
assert (issame(unique_digits({135, 103, 31}) , {31, 135}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> unique_digits(vector<int> x){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(unique_digits({15, 33, 1422, 1}) , {1, 15, 33}));
assert (issame(unique_digits({152, 323, 1422, 10}) , {}));
}
| vector<int> out={};
for (int i=0;i<x.size();i++)
{
int num=x[i];
bool u=true;
if (num==0) u=false;
while (num>0 and u)
{
if (num%2==0) u=false;
num=num/10;
}
if (u) out.push_back(x[i]);
if (u) out.push_back(num);
}
sort(out.begin(),out.end());
return out;
}
| excess logic | incorrect output | unique_digits | vector<int> unique_digits(vector<int> x) | Given a vector of positive integers x. return a sorted vector of all
elements that hasn't any even digit.
Note: Returned vector should be sorted in increasing order.
For example:
>>> unique_digits({15, 33, 1422, 1})
{1, 15, 33}
>>> unique_digits({152, 323, 1422, 10})
{} | Write a C++ function `vector<int> unique_digits(vector<int> x)` to solve the following problem:
Given a vector of positive integers x. return a sorted vector of all
elements that hasn't any even digit.
Note: Returned vector should be sorted in increasing order.
For example:
>>> unique_digits({15, 33, 1422, 1})
{1, 15, 33}
>>> unique_digits({152, 323, 1422, 10})
{} |
CPP/105 | /*
Given a vector of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting vector, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = {2, 1, 1, 4, 5, 8, 2, 3}
-> sort arr -> {1, 1, 2, 2, 3, 4, 5, 8}
-> reverse arr -> {8, 5, 4, 3, 2, 2, 1, 1}
return {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"}
If the vector is empty, return an empty vector:
arr = {}
return {}
If the vector has any strange number ignore it:
arr = {1, -1 , 55}
-> sort arr -> {-1, 1, 55}
-> reverse arr -> {55, 1, -1}
return = {"One"}
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<map>
#include<algorithm>
using namespace std;
vector<string> by_length(vector<int> arr){
| map<int,string> numto={{0,"Zero"},{1,"One"},{2,"Two"},{3,"Three"},{4,"Four"},{5,"Five"},{6,"Six"},{7,"Seven"},{8,"Eight"},{9,"Nine"}};
sort(arr.begin(),arr.end());
vector<string> out={};
for (int i=arr.size()-1;i>=0;i-=1)
if (arr[i]>=1 and arr[i]<=9)
out.push_back(numto[arr[i]]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(by_length({2, 1, 1, 4, 5, 8, 2, 3}) , {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"}));
assert (issame(by_length({}) , {}));
assert (issame(by_length({1, -1 , 55}) , {"One"}));
assert (issame(by_length({1, -1, 3, 2}) , {"Three", "Two", "One"}));
assert (issame(by_length({9, 4, 8}) , {"Nine", "Eight", "Four"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<map>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<string> by_length(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(by_length({2, 1, 1, 4, 5, 8, 2, 3}) , {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"}));
assert (issame(by_length({}) , {}));
assert (issame(by_length({1, -1 , 55}) , {"One"}));
}
| map<int,string> numto={{0,"Zero"},{1,"One"},{2,"Two"},{3,"Three"},{4,"Four"},{5,"Five"},{6,"Six"},{7,"Seven"},{8,"Eight"},{9,"Nine"}};
vector<string> out={};
for (int i=arr.size()-1;i>=0;i-=1)
if (arr[i]>=1 and arr[i]<=9)
out.push_back(numto[arr[i]]);
return out;
}
| missing logic | incorrect output | by_length | vector<string> by_length(vector<int> arr) | Given a vector of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting vector, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = {2, 1, 1, 4, 5, 8, 2, 3}
-> sort arr -> {1, 1, 2, 2, 3, 4, 5, 8}
-> reverse arr -> {8, 5, 4, 3, 2, 2, 1, 1}
return {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"}
If the vector is empty, return an empty vector:
arr = {}
return {}
If the vector has any strange number ignore it:
arr = {1, -1 , 55}
-> sort arr -> {-1, 1, 55}
-> reverse arr -> {55, 1, -1}
return = {"One"} | Write a C++ function `vector<string> by_length(vector<int> arr)` to solve the following problem:
Given a vector of integers, sort the integers that are between 1 and 9 inclusive,
reverse the resulting vector, and then replace each digit by its corresponding name from
"One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine".
For example:
arr = {2, 1, 1, 4, 5, 8, 2, 3}
-> sort arr -> {1, 1, 2, 2, 3, 4, 5, 8}
-> reverse arr -> {8, 5, 4, 3, 2, 2, 1, 1}
return {"Eight", "Five", "Four", "Three", "Two", "Two", "One", "One"}
If the vector is empty, return an empty vector:
arr = {}
return {}
If the vector has any strange number ignore it:
arr = {1, -1 , 55}
-> sort arr -> {-1, 1, 55}
-> reverse arr -> {55, 1, -1}
return = {"One"} |
CPP/106 | /*
Implement the function f that takes n as a parameter,
and returns a vector of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == {1, 2, 6, 24, 15}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> f(int n){
| int sum=0,prod=1;
vector<int> out={};
for (int i=1;i<=n;i++)
{
sum+=i;
prod*=i;
if (i%2==0) out.push_back(prod);
else out.push_back(sum);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(f(5) , {1, 2, 6, 24, 15}));
assert (issame(f(7) , {1, 2, 6, 24, 15, 720, 28}));
assert (issame(f(1) , {1}));
assert (issame(f(3) , {1, 2, 6}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> f(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(f(5) , {1, 2, 6, 24, 15}));
}
| int sum=0,prod=1;
vector<int> out={};
for (int i=1;i<=n;i++)
{
sum+=i;
prod*=i;
if (prod%2==0) out.push_back(prod);
else out.push_back(sum);
}
return out;
}
| variable misuse | incorrect output | f | vector<int> f(int n) | Implement the function f that takes n as a parameter,
and returns a vector of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == {1, 2, 6, 24, 15} | Write a C++ function `vector<int> f(int n)` to solve the following problem:
Implement the function f that takes n as a parameter,
and returns a vector of size n, such that the value of the element at index i is the factorial of i if i is even
or the sum of numbers from 1 to i otherwise.
i starts from 1.
the factorial of i is the multiplication of the numbers from 1 to i (1 * 2 * ... * i).
Example:
f(5) == {1, 2, 6, 24, 15} |
CPP/107 | /*
Given a positive integer n, return a vector that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned vector has the number of even and odd integer palindromes respectively.
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<int> even_odd_palindrome(int n){
| int num1=0,num2=0;
for (int i=1;i<=n;i++)
{
string w=to_string(i);
string p(w.rbegin(),w.rend());
if (w==p and i%2==1) num1+=1;
if (w==p and i%2==0) num2+=1;
}
return {num2,num1};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(even_odd_palindrome(123) , {8, 13}));
assert (issame(even_odd_palindrome(12) , {4, 6}));
assert (issame(even_odd_palindrome(3) , {1, 2}));
assert (issame(even_odd_palindrome(63) , {6, 8}));
assert (issame(even_odd_palindrome(25) , {5, 6}));
assert (issame(even_odd_palindrome(19) , {4, 6}));
assert (issame(even_odd_palindrome(9) , {4, 5}));
assert (issame(even_odd_palindrome(1) , {0, 1}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> even_odd_palindrome(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(even_odd_palindrome(12) , {4, 6}));
assert (issame(even_odd_palindrome(3) , {1, 2}));
}
| int num1=0,num2=0;
for (int i=1;i<=n;i++)
{
string w=to_string(i);
string p(w.rbegin(),w.rend());
if (w==p and i%2==1) num1+=1;
if (w==p and i%2==0) num2+=2;
}
return {num2,num1};
}
| value misuse | incorrect output | even_odd_palindrome | vector<int> even_odd_palindrome(int n) | Given a positive integer n, return a vector that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned vector has the number of even and odd integer palindromes respectively. | Write a C++ function `vector<int> even_odd_palindrome(int n)` to solve the following problem:
Given a positive integer n, return a vector that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned vector has the number of even and odd integer palindromes respectively. |
CPP/108 | /*
Write a function count_nums which takes a vector of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums({}) == 0
>>> count_nums({-1, 11, -11}) == 1
>>> count_nums({1, 1, 2}) == 3
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
int count_nums(vector<int> n){
| int num=0;
for (int i=0;i<n.size();i++)
if (n[i]>0) num+=1;
else
{
int sum=0;
int w;
w=abs(n[i]);
while (w>=10)
{
sum+=w%10;
w=w/10;
}
sum-=w;
if (sum>0) num+=1;
}
return num;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (count_nums({}) == 0);
assert (count_nums({-1, -2, 0}) == 0);
assert (count_nums({1, 1, 2, -2, 3, 4, 5}) == 6);
assert (count_nums({1, 6, 9, -6, 0, 1, 5}) == 5);
assert (count_nums({1, 100, 98, -7, 1, -1}) == 4);
assert (count_nums({12, 23, 34, -45, -56, 0}) == 5);
assert (count_nums({-0, 1}) == 1);
assert (count_nums({1}) == 1);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int count_nums(vector<int> n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (count_nums({}) == 0);
assert (count_nums({-1, 11, -11}) == 1);
assert (count_nums({1, 1, 2}) == 3);
}
| int num=0;
for (int i=0;i<n.size();i++)
if (n[i]>0) num+=1;
else
{
int sum=0;
int w;
w=abs(n[i]);
while (w>=10)
{
sum+=w%10;
w=w/10;
}
sum-=w*-1;
if (sum>0) num+=1;
}
return num;
}
| excess logic | incorrect output | count_nums | int count_nums(vector<int> n) | Write a function count_nums which takes a vector of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums({}) == 0
>>> count_nums({-1, 11, -11}) == 1
>>> count_nums({1, 1, 2}) == 3 | Write a C++ function `int count_nums(vector<int> n)` to solve the following problem:
Write a function count_nums which takes a vector of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> count_nums({}) == 0
>>> count_nums({-1, 11, -11}) == 1
>>> count_nums({1, 1, 2}) == 3 |
CPP/109 | /*
We have a vector "arr" of N integers arr[1], arr[2], ..., arr[N].The
numbers in the vector will be randomly ordered. Your task is to determine if
it is possible to get a vector sorted in non-decreasing order by performing
the following operation on the given vector:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the vector by one
position in the right direction. The last element of the vector will be moved to
the starting position in the vector i.e. 0th index.
If it is possible to obtain the sorted vector by performing the above operation
then return true else return false.
If the given vector is empty then return true.
Note: The given vector is guaranteed to have unique elements.
For Example:
move_one_ball({3, 4, 5, 1, 2})==>true
Explanation: By performing 2 right shift operations, non-decreasing order can
be achieved for the given vector.
move_one_ball({3, 5, 4, 1, 2})==>false
Explanation:It is not possible to get non-decreasing order for the given
vector by performing any number of right shift operations.
*/
#include<stdio.h>
#include<vector>
using namespace std;
bool move_one_ball(vector<int> arr){
| int num=0;
if (arr.size()==0) return true;
for (int i=1;i<arr.size();i++)
if (arr[i]<arr[i-1]) num+=1;
if (arr[arr.size()-1]>arr[0]) num+=1;
if (num<2) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (move_one_ball({3, 4, 5, 1, 2})==true);
assert (move_one_ball({3, 5, 10, 1, 2})==true);
assert (move_one_ball({4, 3, 1, 2})==false);
assert (move_one_ball({3, 5, 4, 1, 2})==false);
assert (move_one_ball({})==true);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool move_one_ball(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (move_one_ball({3, 4, 5, 1, 2})==true);
assert (move_one_ball({3, 5, 4, 1, 2})==false);
}
| int num=0;
if (arr.size()==0) return true;
for (int i=1;i<arr.size();i++)
if (arr[i]<arr[arr.size()-1]) num+=1;
if (arr[arr.size()-1]>arr[0]) num+=1;
if (num<2) return true;
return false;
}
| variable misuse | incorrect output | move_one_ball | bool move_one_ball(vector<int> arr) | We have a vector "arr" of N integers arr[1], arr[2], ..., arr[N].The
numbers in the vector will be randomly ordered. Your task is to determine if
it is possible to get a vector sorted in non-decreasing order by performing
the following operation on the given vector:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the vector by one
position in the right direction. The last element of the vector will be moved to
the starting position in the vector i.e. 0th index.
If it is possible to obtain the sorted vector by performing the above operation
then return true else return false.
If the given vector is empty then return true.
Note: The given vector is guaranteed to have unique elements.
For Example:
move_one_ball({3, 4, 5, 1, 2})==>true
Explanation: By performing 2 right shift operations, non-decreasing order can
be achieved for the given vector.
move_one_ball({3, 5, 4, 1, 2})==>false
Explanation:It is not possible to get non-decreasing order for the given
vector by performing any number of right shift operations. | Write a C++ function `bool move_one_ball(vector<int> arr)` to solve the following problem:
We have a vector "arr" of N integers arr[1], arr[2], ..., arr[N].The
numbers in the vector will be randomly ordered. Your task is to determine if
it is possible to get a vector sorted in non-decreasing order by performing
the following operation on the given vector:
You are allowed to perform right shift operation any number of times.
One right shift operation means shifting all elements of the vector by one
position in the right direction. The last element of the vector will be moved to
the starting position in the vector i.e. 0th index.
If it is possible to obtain the sorted vector by performing the above operation
then return true else return false.
If the given vector is empty then return true.
Note: The given vector is guaranteed to have unique elements.
For Example:
move_one_ball({3, 4, 5, 1, 2})==>true
Explanation: By performing 2 right shift operations, non-decreasing order can
be achieved for the given vector.
move_one_ball({3, 5, 4, 1, 2})==>false
Explanation:It is not possible to get non-decreasing order for the given
vector by performing any number of right shift operations. |
CPP/110 | /*
In this problem, you will implement a function that takes two vectors of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a vector of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange({1, 2, 3, 4}, {1, 2, 3, 4}) => "YES"
exchange({1, 2, 3, 4}, {1, 5, 3, 4}) => "NO"
It is assumed that the input vectors will be non-empty.
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string exchange(vector<int> lst1,vector<int> lst2){
| int num=0;
for (int i=0;i<lst1.size();i++)
if (lst1[i]%2==0) num+=1;
for (int i=0;i<lst2.size();i++)
if (lst2[i]%2==0) num+=1;
if (num>=lst1.size()) return "YES";
return "NO";
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (exchange({1, 2, 3, 4}, {1, 2, 3, 4}) == "YES");
assert (exchange({1, 2, 3, 4}, {1, 5, 3, 4}) == "NO");
assert (exchange({1, 2, 3, 4}, {2, 1, 4, 3}) == "YES" );
assert (exchange({5, 7, 3}, {2, 6, 4}) == "YES");
assert (exchange({5, 7, 3}, {2, 6, 3}) == "NO" );
assert (exchange({3, 2, 6, 1, 8, 9}, {3, 5, 5, 1, 1, 1}) == "NO");
assert (exchange({100, 200}, {200, 200}) == "YES");
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string exchange(vector<int> lst1,vector<int> lst2){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (exchange({1, 2, 3, 4}, {1, 2, 3, 4}) == "YES");
assert (exchange({1, 2, 3, 4}, {1, 5, 3, 4}) == "NO");
}
| int num=0;
for (int i=0;i<lst1.size();i++)
if (lst1[i]%2==0) num+=1;
for (int i=0;i<lst2.size();i++)
if (lst2[i]%2==0) num+=1;
if (num<lst1.size()) return "YES";
return "NO";
}
| variable misuse | incorrect output | exchange | string exchange(vector<int> lst1,vector<int> lst2) | In this problem, you will implement a function that takes two vectors of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a vector of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange({1, 2, 3, 4}, {1, 2, 3, 4}) => "YES"
exchange({1, 2, 3, 4}, {1, 5, 3, 4}) => "NO"
It is assumed that the input vectors will be non-empty. | Write a C++ function `string exchange(vector<int> lst1,vector<int> lst2)` to solve the following problem:
In this problem, you will implement a function that takes two vectors of numbers,
and determines whether it is possible to perform an exchange of elements
between them to make lst1 a vector of only even numbers.
There is no limit on the number of exchanged elements between lst1 and lst2.
If it is possible to exchange elements between the lst1 and lst2 to make
all the elements of lst1 to be even, return "YES".
Otherwise, return "NO".
For example:
exchange({1, 2, 3, 4}, {1, 2, 3, 4}) => "YES"
exchange({1, 2, 3, 4}, {1, 5, 3, 4}) => "NO"
It is assumed that the input vectors will be non-empty. |
CPP/111 | /*
Given a string representing a space separated lowercase letters, return a map
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram("a b c") == {{"a", 1}, {"b", 1}, {"c", 1}}
histogram("a b b a") == {{"a", 2}, {"b", 2}}
histogram("a b c a b") == {{"a", 2}, {"b", 2}}
histogram("b b b b a") == {{"b", 4}}
histogram("") == {}
*/
#include<stdio.h>
#include<string>
#include<map>
using namespace std;
map<char,int> histogram(string test){
| map<char,int> count={},out={};
map <char,int>::iterator it;
int max=0;
for (int i=0;i<test.length();i++)
if (test[i]!=' ')
{
count[test[i]]+=1;
if (count[test[i]]>max) max=count[test[i]];
}
for (it=count.begin();it!=count.end();it++)
{
char w1=it->first;
int w2=it->second;
if (w2==max) out[w1]=w2;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(map<char,int> a,map<char,int> b){
if (a.size()!=b.size()) return false;
map <char,int>::iterator it;
for (it=a.begin();it!=a.end();it++)
{
char w1=it->first;
int w2=it->second;
if (b.find(w1)==b.end()) return false;
if (b[w1]!=w2) return false;
}
return true;
}
int main(){
assert (issame(histogram("a b b a") , {{'a',2},{'b', 2}}));
assert (issame(histogram("a b c a b") , {{'a', 2},{'b', 2}}));
assert (issame(histogram("a b c d g") , {{'a', 1}, {'b', 1}, {'c', 1}, {'d', 1}, {'g', 1}}));
assert (issame(histogram("r t g") , {{'r', 1},{'t', 1},{'g', 1}}));
assert (issame(histogram("b b b b a") , {{'b', 4}}));
assert (issame(histogram("r t g") , {{'r', 1},{'t', 1},{'g', 1}}));
assert (issame(histogram("") , {}));
assert (issame(histogram("a") , {{'a', 1}}));
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<map>
using namespace std;
#include<algorithm>
#include<stdlib.h>
map<char,int> histogram(string test){
| #undef NDEBUG
#include<assert.h>
bool issame(map<char,int> a,map<char,int> b){
if (a.size()!=b.size()) return false;
map <char,int>::iterator it;
for (it=a.begin();it!=a.end();it++)
{
char w1=it->first;
int w2=it->second;
if (b.find(w1)==b.end()) return false;
if (b[w1]!=w2) return false;
}
return true;
}
int main(){
assert (issame(histogram("a b b a") , {{'a',2},{'b', 2}}));
assert (issame(histogram("a b c a b") , {{'a', 2},{'b', 2}}));
assert (issame(histogram("a b c") , {{'a', 1},{'b', 1},{'c', 1}}));
assert (issame(histogram("b b b b a") , {{'b', 4}}));
assert (issame(histogram("") , {}));
}
| map<char,int> count={},out={};
map <char,int>::iterator it;
int max=0;
for (int i=1;i<test.length();i++)
if (test[i]!=' ')
{
count[test[i]]+=1;
if (count[test[i]]>max) max=count[test[i]];
}
for (it=count.begin();it!=count.end();it++)
{
char w1=it->first;
int w2=it->second;
if (w2==max) out[w1]=w2;
}
return out;
}
| value misuse | incorrect output | histogram | map<char,int> histogram(string test) | Given a string representing a space separated lowercase letters, return a map
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram("a b c") == {{"a", 1}, {"b", 1}, {"c", 1}}
histogram("a b b a") == {{"a", 2}, {"b", 2}}
histogram("a b c a b") == {{"a", 2}, {"b", 2}}
histogram("b b b b a") == {{"b", 4}}
histogram("") == {} | Write a C++ function `map<char,int> histogram(string test)` to solve the following problem:
Given a string representing a space separated lowercase letters, return a map
of the letter with the most repetition and containing the corresponding count.
If several letters have the same occurrence, return all of them.
Example:
histogram("a b c") == {{"a", 1}, {"b", 1}, {"c", 1}}
histogram("a b b a") == {{"a", 2}, {"b", 2}}
histogram("a b c a b") == {{"a", 2}, {"b", 2}}
histogram("b b b b a") == {{"b", 4}}
histogram("") == {} |
CPP/112 | /*
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a vector containing the result string and "True"/"False" for the check.
Example
For s = "abcde", c = "ae", the result should be ("bcd","False")
For s = "abcdef", c = "b" the result should be ("acdef","False")
For s = "abcdedcba", c = "ab", the result should be ("cdedc","True")
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
vector<string> reverse_delete(string s,string c){
| string n="";
for (int i=0;i<s.length();i++)
if (find(c.begin(),c.end(),s[i])==c.end())
n=n+s[i];
if (n.length()==0) return {n,"True"};
string w(n.rbegin(),n.rend());
if (w==n) return {n,"True"};
return {n,"False"};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(reverse_delete("abcde","ae") , {"bcd","False"}));
assert (issame(reverse_delete("abcdef", "b") , {"acdef","False"}));
assert (issame(reverse_delete("abcdedcba","ab") , {"cdedc","True"}));
assert (issame(reverse_delete("dwik","w") , {"dik","False"}));
assert (issame(reverse_delete("a","a") , {"","True"}));
assert (issame(reverse_delete("abcdedcba","") , {"abcdedcba","True"}));
assert (issame(reverse_delete("abcdedcba","v") , {"abcdedcba","True"}));
assert (issame(reverse_delete("vabba","v") , {"abba","True"}));
assert (issame(reverse_delete("mamma", "mia") , {"", "True"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<string> reverse_delete(string s,string c){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(reverse_delete("abcde","ae") , {"bcd","False"}));
assert (issame(reverse_delete("abcdef", "b") , {"acdef","False"}));
assert (issame(reverse_delete("abcdedcba","ab") , {"cdedc","True"}));
}
| string n="";
for (int i=0;i<s.length();i++)
if (find(c.begin(),c.end(),s[i])==c.end())
n=n+s[i];
if (n.length()==0) return {n,"True"};
string w(n.rbegin(),n.rend());
if (w==n) return {n,"False"};
return {n,"True"};
}
| operator misuse | incorrect output | reverse_delete | vector<string> reverse_delete(string s,string c) | Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a vector containing the result string and "True"/"False" for the check.
Example
For s = "abcde", c = "ae", the result should be ("bcd","False")
For s = "abcdef", c = "b" the result should be ("acdef","False")
For s = "abcdedcba", c = "ab", the result should be ("cdedc","True") | Write a C++ function `vector<string> reverse_delete(string s,string c)` to solve the following problem:
Task
We are given two strings s and c, you have to deleted all the characters in s that are equal to any character in c
then check if the result string is palindrome.
A string is called palindrome if it reads the same backward as forward.
You should return a vector containing the result string and "True"/"False" for the check.
Example
For s = "abcde", c = "ae", the result should be ("bcd","False")
For s = "abcdef", c = "b" the result should be ("acdef","False")
For s = "abcdedcba", c = "ab", the result should be ("cdedc","True") |
CPP/113 | /*
Given a vector of strings, where each string consists of only digits, return a vector.
Each element i of the output should be 'the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count({"1234567"})
{'the number of odd elements 4n the str4ng 4 of the 4nput."}
>>> odd_count({"3","11111111"})
{'the number of odd elements 1n the str1ng 1 of the 1nput.",
'the number of odd elements 8n the str8ng 8 of the 8nput."}
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<map>
using namespace std;
vector<string> odd_count(vector<string> lst){
| vector<string> out={};
for (int i=0;i<lst.size();i++)
{
int sum=0;
for (int j=0;j<lst[i].length();j++)
if (lst[i][j]>=48 and lst[i][j]<=57 and lst[i][j]%2==1)
sum+=1;
string s="the number of odd elements in the string i of the input.";
string s2="";
for (int j=0;j<s.length();j++)
if (s[j]=='i') s2=s2+to_string(sum);
else s2=s2+s[j];
out.push_back(s2);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(odd_count({"1234567"}) , {"the number of odd elements 4n the str4ng 4 of the 4nput."}));
assert (issame(odd_count({"3","11111111"}) , {"the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."}));
assert (issame(odd_count({"271", "137", "314"}) , {
"the number of odd elements 2n the str2ng 2 of the 2nput.",
"the number of odd elements 3n the str3ng 3 of the 3nput.",
"the number of odd elements 2n the str2ng 2 of the 2nput."
}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<map>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<string> odd_count(vector<string> lst){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(odd_count({"1234567"}) , {"the number of odd elements 4n the str4ng 4 of the 4nput."}));
assert (issame(odd_count({"3","11111111"}) , {"the number of odd elements 1n the str1ng 1 of the 1nput.", "the number of odd elements 8n the str8ng 8 of the 8nput."}));
}
| vector<string> out={};
for (int i=0;i<lst.size();i++)
{
int sum=0;
for (int j=0;j<lst[i].length();j++)
if (lst[i][j]>=48 and lst[i][j]<=57 and lst[i][j]%2==1)
sum+=1;
string s="the number of odd elements in the string i of i the input.";
string s2="";
for (int j=0;j<s.length();j++)
if (s[j]=='i') s2=s2+to_string(sum);
else s2=s2+s[j];
out.push_back(s2);
}
return out;
}
| excess logic | incorrect output | odd_count | vector<string> odd_count(vector<string> lst) | Given a vector of strings, where each string consists of only digits, return a vector.
Each element i of the output should be 'the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count({"1234567"})
{'the number of odd elements 4n the str4ng 4 of the 4nput."}
>>> odd_count({"3","11111111"})
{'the number of odd elements 1n the str1ng 1 of the 1nput.",
'the number of odd elements 8n the str8ng 8 of the 8nput."} | Write a C++ function `vector<string> odd_count(vector<string> lst)` to solve the following problem:
Given a vector of strings, where each string consists of only digits, return a vector.
Each element i of the output should be 'the number of odd elements in the
string i of the input." where all the i's should be replaced by the number
of odd digits in the i'th string of the input.
>>> odd_count({"1234567"})
{'the number of odd elements 4n the str4ng 4 of the 4nput."}
>>> odd_count({"3","11111111"})
{'the number of odd elements 1n the str1ng 1 of the 1nput.",
'the number of odd elements 8n the str8ng 8 of the 8nput."} |
CPP/114 | /*
Given a vector of integers nums, find the minimum sum of any non-empty sub-vector
of nums.
Example
minSubArraySum({2, 3, 4, 1, 2, 4}) == 1
minSubArraySum({-1, -2, -3}) == -6
*/
#include<stdio.h>
#include<vector>
using namespace std;
long long minSubArraySum(vector<long long> nums){
| long long current,min;
current=nums[0];
min=nums[0];
for (int i=1;i<nums.size();i++)
{
if (current<0) current=current+nums[i];
else current=nums[i];
if (current<min) min=current;
}
return min;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (minSubArraySum({2, 3, 4, 1, 2, 4}) == 1);
assert (minSubArraySum({-1, -2, -3}) == -6);
assert (minSubArraySum({-1, -2, -3, 2, -10}) == -14);
assert (minSubArraySum({-9999999999999999}) == -9999999999999999);
assert (minSubArraySum({0, 10, 20, 1000000}) == 0);
assert (minSubArraySum({-1, -2, -3, 10, -5}) == -6);
assert (minSubArraySum({100, -1, -2, -3, 10, -5}) == -6);
assert (minSubArraySum({10, 11, 13, 8, 3, 4}) == 3);
assert (minSubArraySum({100, -33, 32, -1, 0, -2}) == -33);
assert (minSubArraySum({-10}) == -10);
assert (minSubArraySum({7}) == 7);
assert (minSubArraySum({1, -1}) == -1);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
long long minSubArraySum(vector<long long> nums){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (minSubArraySum({2, 3, 4, 1, 2, 4}) == 1);
assert (minSubArraySum({-1, -2, -3}) == -6);
}
| long long current,min;
current=nums[0];
min=nums[0];
for (int i=1;i<nums.size();i++)
{
if (current<0) current=current+nums.size();
else current=nums[i];
if (current<min) min=current;
}
return min;
}
| function misuse | incorrect output | minSubArraySum | long long minSubArraySum(vector<long long> nums) | Given a vector of integers nums, find the minimum sum of any non-empty sub-vector
of nums.
Example
minSubArraySum({2, 3, 4, 1, 2, 4}) == 1
minSubArraySum({-1, -2, -3}) == -6 | Write a C++ function `long long minSubArraySum(vector<long long> nums)` to solve the following problem:
Given a vector of integers nums, find the minimum sum of any non-empty sub-vector
of nums.
Example
minSubArraySum({2, 3, 4, 1, 2, 4}) == 1
minSubArraySum({-1, -2, -3}) == -6 |
CPP/115 | /*
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : {{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : {{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : {{0,0,0}, {0,0,0}}
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid{:,1}.length <= 10^2
* grid{i}{j} -> 0 | 1
* 1 <= capacity <= 10
*/
#include<stdio.h>
#include<vector>
using namespace std;
int max_fill(vector<vector<int>> grid,int capacity){
| int out=0;
for (int i=0;i<grid.size();i++)
{
int sum=0;
for (int j=0;j<grid[i].size();j++)
sum+=grid[i][j];
if (sum>0) out+=(sum-1)/capacity+1;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (max_fill({{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}, 1) == 6);
assert (max_fill({{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}, 2) == 5);
assert (max_fill({{0,0,0}, {0,0,0}}, 5) == 0);
assert (max_fill({{1,1,1,1}, {1,1,1,1}}, 2) == 4);
assert (max_fill({{1,1,1,1}, {1,1,1,1}}, 9) == 2);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int max_fill(vector<vector<int>> grid,int capacity){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (max_fill({{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}, 1) == 6);
assert (max_fill({{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}, 2) == 5);
assert (max_fill({{0,0,0}, {0,0,0}}, 5) == 0);
}
| int out=0;
for (int i=0;i<grid.size();i++)
{
int sum=0;
for (int j=0;j<grid[i].size();j++)
sum+=grid[i][j];
if (sum>0) out+=sum/capacity+1;
}
return out;
}
| function misuse | incorrect output | max_fill | int max_fill(vector<vector<int>> grid,int capacity) | You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : {{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : {{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : {{0,0,0}, {0,0,0}}
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid{:,1}.length <= 10^2
* grid{i}{j} -> 0 | 1
* 1 <= capacity <= 10 | Write a C++ function `int max_fill(vector<vector<int>> grid,int capacity)` to solve the following problem:
You are given a rectangular grid of wells. Each row represents a single well,
and each 1 in a row represents a single unit of water.
Each well has a corresponding bucket that can be used to extract water from it,
and all buckets have the same capacity.
Your task is to use the buckets to empty the wells.
Output the number of times you need to lower the buckets.
Example 1:
Input:
grid : {{0,0,1,0}, {0,1,0,0}, {1,1,1,1}}
bucket_capacity : 1
Output: 6
Example 2:
Input:
grid : {{0,0,1,1}, {0,0,0,0}, {1,1,1,1}, {0,1,1,1}}
bucket_capacity : 2
Output: 5
Example 3:
Input:
grid : {{0,0,0}, {0,0,0}}
bucket_capacity : 5
Output: 0
Constraints:
* all wells have the same length
* 1 <= grid.length <= 10^2
* 1 <= grid{:,1}.length <= 10^2
* grid{i}{j} -> 0 | 1
* 1 <= capacity <= 10 |
CPP/116 | /*
In this Kata, you have to sort a vector of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_vector({1, 5, 2, 3, 4}) == {1, 2, 3, 4, 5}
>>> sort_vector({-2, -3, -4, -5, -6}) == {-6, -5, -4, -3, -2}
>>> sort_vector({1, 0, 2, 3, 4}) == {0, 1, 2, 3, 4}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> sort_array(vector<int> arr){
| vector<int> bin={};
int m;
for (int i=0;i<arr.size();i++)
{
int b=0,n=abs(arr[i]);
while (n>0)
{
b+=n%2;n=n/2;
}
bin.push_back(b);
}
for (int i=0;i<arr.size();i++)
for (int j=1;j<arr.size();j++)
if (bin[j]<bin[j-1] or (bin[j]==bin[j-1] and arr[j]<arr[j-1]))
{
m=arr[j];arr[j]=arr[j-1];arr[j-1]=m;
m=bin[j];bin[j]=bin[j-1];bin[j-1]=m;
}
return arr;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sort_array({1,5,2,3,4}) , {1, 2, 4, 3, 5}));
assert (issame(sort_array({-2,-3,-4,-5,-6}) , {-4, -2, -6, -5, -3}));
assert (issame(sort_array({1,0,2,3,4}) , {0, 1, 2, 4, 3}));
assert (issame(sort_array({}) , {}));
assert (issame(sort_array({2,5,77,4,5,3,5,7,2,3,4}) , {2, 2, 4, 4, 3, 3, 5, 5, 5, 7, 77}));
assert (issame(sort_array({3,6,44,12,32,5}) , {32, 3, 5, 6, 12, 44}));
assert (issame(sort_array({2,4,8,16,32}) , {2, 4, 8, 16, 32}));
assert (issame(sort_array({2,4,8,16,32}) , {2, 4, 8, 16, 32}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> sort_array(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sort_array({1,5,2,3,4}) , {1, 2, 4, 3, 5}));
assert (issame(sort_array({-2,-3,-4,-5,-6}) , {-4, -2, -6, -5, -3}));
assert (issame(sort_array({1,0,2,3,4}) , {0, 1, 2, 4, 3}));
}
| vector<int> bin={};
int m;
for (int i=0;i<arr.size();i++)
{
int b=0,n=abs(arr[i]);
while (n>0)
{
b+=n%2;n=n/2;
}
bin.push_back(b);
}
for (int i=0;i<arr.size();i++)
for (int j=1;j<arr.size();j++)
if (bin[j]<bin[j-1] or (bin[j]==bin[j-1] and arr[j]<arr[j-1]))
{
m=arr[j];arr[j]=arr[j-1];arr[j-1]=m;
m=bin[j];bin[j]=bin[j-1];bin[j-1]=m;
}
return bin;
}
| variable misuse | incorrect output | sort_array | vector<int> sort_array(vector<int> arr) | In this Kata, you have to sort a vector of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_vector({1, 5, 2, 3, 4}) == {1, 2, 3, 4, 5}
>>> sort_vector({-2, -3, -4, -5, -6}) == {-6, -5, -4, -3, -2}
>>> sort_vector({1, 0, 2, 3, 4}) == {0, 1, 2, 3, 4} | Write a C++ function `vector<int> sort_array(vector<int> arr)` to solve the following problem:
In this Kata, you have to sort a vector of non-negative integers according to
number of ones in their binary representation in ascending order.
For similar number of ones, sort based on decimal value.
It must be implemented like this:
>>> sort_vector({1, 5, 2, 3, 4}) == {1, 2, 3, 4, 5}
>>> sort_vector({-2, -3, -4, -5, -6}) == {-6, -5, -4, -3, -2}
>>> sort_vector({1, 0, 2, 3, 4}) == {0, 1, 2, 3, 4} |
CPP/117 | /*
Given a string s and a natural number n, you have been tasked to implement
a function that returns a vector of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty vector.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> {"little"}
select_words("Mary had a little lamb", 3) ==> {"Mary", "lamb"}
select_words('simple white space", 2) ==> {}
select_words("Hello world", 4) ==> {"world"}
select_words("Uncle sam", 3) ==> {"Uncle"}
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
vector<string> select_words(string s,int n){
| string vowels="aeiouAEIOU";
string current="";
vector<string> out={};
int numc=0;
s=s+' ';
for (int i=0;i<s.length();i++)
if (s[i]==' ')
{
if (numc==n) out.push_back(current);
current="";
numc=0;
}
else
{
current=current+s[i];
if ((s[i]>=65 and s[i]<=90) or (s[i]>=97 and s[i]<=122))
if (find(vowels.begin(),vowels.end(),s[i])==vowels.end())
numc+=1;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(select_words("Mary had a little lamb", 4) , {"little"} ));
assert (issame(select_words("Mary had a little lamb", 3) , {"Mary", "lamb"} ));
assert (issame(select_words("simple white space", 2) , {} ));
assert (issame(select_words("Hello world", 4) , {"world"} ));
assert (issame(select_words("Uncle sam", 3) , {"Uncle"}));
assert (issame(select_words("", 4) , {}));
assert (issame(select_words("a b c d e f", 1) , {"b", "c", "d", "f"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<string> select_words(string s,int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(select_words("Mary had a little lamb", 4) , {"little"} ));
assert (issame(select_words("Mary had a little lamb", 3) , {"Mary", "lamb"} ));
assert (issame(select_words("simple white space", 2) , {} ));
assert (issame(select_words("Hello world", 4) , {"world"} ));
assert (issame(select_words("Uncle sam", 3) , {"Uncle"}));
}
| string vowels="aeiouAEIOU";
string current="";
vector<string> out={};
int numc=0;
s=s+' ';
for (int i=0;i<s.length();i++)
if (s[i]==' ')
{
if (numc==n) out.push_back(current);
current="";
numc=0;
}
else
{
current=current+s[i];
if ((s[i]>=65 and s[i]<=90) or (s[i]>=97 and s[i]<=122))
if (find(vowels.begin(),vowels.end(),s[i])!=vowels.end())
numc+=1;
}
return out;
}
| operator misuse | incorrect output | select_words | vector<string> select_words(string s,int n) | Given a string s and a natural number n, you have been tasked to implement
a function that returns a vector of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty vector.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> {"little"}
select_words("Mary had a little lamb", 3) ==> {"Mary", "lamb"}
select_words('simple white space", 2) ==> {}
select_words("Hello world", 4) ==> {"world"}
select_words("Uncle sam", 3) ==> {"Uncle"} | Write a C++ function `vector<string> select_words(string s,int n)` to solve the following problem:
Given a string s and a natural number n, you have been tasked to implement
a function that returns a vector of all words from string s that contain exactly
n consonants, in order these words appear in the string s.
If the string s is empty then the function should return an empty vector.
Note: you may assume the input string contains only letters and spaces.
Examples:
select_words("Mary had a little lamb", 4) ==> {"little"}
select_words("Mary had a little lamb", 3) ==> {"Mary", "lamb"}
select_words('simple white space", 2) ==> {}
select_words("Hello world", 4) ==> {"world"}
select_words("Uncle sam", 3) ==> {"Uncle"} |
CPP/118 | /*
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> ""
*/
#include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
string get_closest_vowel(string word){
| string out="";
string vowels="AEIOUaeiou";
for (int i=word.length()-2;i>=1;i-=1)
if (find(vowels.begin(),vowels.end(),word[i])!=vowels.end())
if (find(vowels.begin(),vowels.end(),word[i+1])==vowels.end())
if (find(vowels.begin(),vowels.end(),word[i-1])==vowels.end())
return out+word[i];
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (get_closest_vowel("yogurt") == "u");
assert (get_closest_vowel("full") == "u");
assert (get_closest_vowel("easy") == "");
assert (get_closest_vowel("eAsy") == "");
assert (get_closest_vowel("ali") == "");
assert (get_closest_vowel("bad") == "a");
assert (get_closest_vowel("most") =="o");
assert (get_closest_vowel("ab") == "");
assert (get_closest_vowel("ba") == "");
assert (get_closest_vowel("quick") == "");
assert (get_closest_vowel("anime") == "i");
assert (get_closest_vowel("Asia") == "");
assert (get_closest_vowel("Above") == "o");
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
string get_closest_vowel(string word){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (get_closest_vowel("yogurt") == "u");
assert (get_closest_vowel("FULL") == "U");
assert (get_closest_vowel("ab") == "");
assert (get_closest_vowel("quick") == "");
}
| string out=" ";
string vowels="AEIOUaeiou";
for (int i=word.length()-2;i>=1;i-=1)
if (find(vowels.begin(),vowels.end(),word[i])!=vowels.end())
if (find(vowels.begin(),vowels.end(),word[i+1])==vowels.end())
if (find(vowels.begin(),vowels.end(),word[i-1])==vowels.end())
return out+word[i];
return out;
}
| excess logic | incorrect output | get_closest_vowel | string get_closest_vowel(string word) | You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> "" | Write a C++ function `string get_closest_vowel(string word)` to solve the following problem:
You are given a word. Your task is to find the closest vowel that stands between
two consonants from the right side of the word (case sensitive).
Vowels in the beginning and ending doesn't count. Return empty string if you didn't
find any vowel met the above condition.
You may assume that the given string contains English letter only.
Example:
get_closest_vowel("yogurt") ==> "u"
get_closest_vowel("FULL") ==> "U"
get_closest_vowel("quick") ==> ""
get_closest_vowel("ab") ==> "" |
CPP/119 | /*
You are given a vector of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string "(())()" is good, while the string
"())" is not.
Return "Yes" if there's a way to make a good string, and return "No" otherwise.
Examples:
match_parens({"()(", ")"}) == "Yes"
match_parens({")", ")"}) == "No"
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string match_parens(vector<string> lst){
| string l1=lst[0]+lst[1];
int i,count=0;
bool can=true;
for (i=0;i<l1.length();i++)
{
if (l1[i]=='(') count+=1;
if (l1[i]==')') count-=1;
if (count<0) can=false;
}
if (count!=0) return "No";
if (can==true) return "Yes";
l1=lst[1]+lst[0];
can=true;
for (i=0;i<l1.length();i++)
{
if (l1[i]=='(') count+=1;
if (l1[i]==')') count-=1;
if (count<0) can=false;
}
if (can==true) return "Yes";
return "No";
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (match_parens({"()(", ")"}) == "Yes");
assert (match_parens({")", ")"}) == "No");
assert (match_parens({"(()(())", "())())"}) == "No");
assert (match_parens({")())", "(()()("}) == "Yes");
assert (match_parens({"(())))", "(()())(("}) == "Yes");
assert (match_parens({"()", "())"}) == "No");
assert (match_parens({"(()(", "()))()"}) == "Yes");
assert (match_parens({"((((", "((())"}) == "No");
assert (match_parens({")(()", "(()("}) == "No");
assert (match_parens({")(", ")("}) == "No");
assert (match_parens({"(", ")"}) == "Yes");
assert (match_parens({")", "("}) == "Yes" );
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
string match_parens(vector<string> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (match_parens({"()(", ")"}) == "Yes");
assert (match_parens({")", ")"}) == "No");
}
| string l1=lst[0]+lst[1];
int i,count=0;
bool can=true;
for (i=0;i<l1.length();i++)
{
if (l1[i]=='(') count+=1;
if (l1[i]==')') count-=1;
if (count<0) can=false;
}
if (count!=0) return "No";
if (can==true) return "Yes";
l1=lst[1]+lst[0];
can=true;
for (i=0;i<l1.length();i++)
{
if (l1[i]=='(') count+=1;
if (l1[i]==')') count-=1;
if (count<0) can=false;
}
if (can==true) return "yes";
return "no";
}
| value misuse | incorrect output | match_parens | string match_parens(vector<string> lst) | You are given a vector of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string "(())()" is good, while the string
"())" is not.
Return "Yes" if there's a way to make a good string, and return "No" otherwise.
Examples:
match_parens({"()(", ")"}) == "Yes"
match_parens({")", ")"}) == "No" | Write a C++ function `string match_parens(vector<string> lst)` to solve the following problem:
You are given a vector of two strings, both strings consist of open
parentheses '(' or close parentheses ')' only.
Your job is to check if it is possible to concatenate the two strings in
some order, that the resulting string will be good.
A string S is considered to be good if and only if all parentheses in S
are balanced. For example: the string "(())()" is good, while the string
"())" is not.
Return "Yes" if there's a way to make a good string, and return "No" otherwise.
Examples:
match_parens({"()(", ")"}) == "Yes"
match_parens({")", ")"}) == "No" |
CPP/120 | /*
Given a vector arr of integers and a positive integer k, return a sorted vector
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = {-3, -4, 5}, k = 3
Output: {-4, -3, 5}
Example 2:
Input: arr = {4, -4, 4}, k = 2
Output: {4, 4}
Example 3:
Input: arr = {-3, 2, 1, 2, -1, -2, 1}, k = 1
Output: {2}
Note:
1. The length of the vector will be in the range of {1, 1000}.
2. The elements in the vector will be in the range of {-1000, 1000}.
3. 0 <= k <= len(arr)
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> maximum(vector<int> arr,int k){
| sort(arr.begin(),arr.end());
vector<int> out(arr.end()-k,arr.end());
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(maximum({-3, -4, 5}, 3) , {-4, -3, 5}));
assert (issame(maximum({4, -4, 4}, 2) , {4, 4}));
assert (issame(maximum({-3, 2, 1, 2, -1, -2, 1}, 1) , {2}));
assert (issame(maximum({123, -123, 20, 0 , 1, 2, -3}, 3) , {2, 20, 123}));
assert (issame(maximum({-123, 20, 0 , 1, 2, -3}, 4) , {0, 1, 2, 20}));
assert (issame(maximum({5, 15, 0, 3, -13, -8, 0}, 7) , {-13, -8, 0, 0, 3, 5, 15}));
assert (issame(maximum({-1, 0, 2, 5, 3, -10}, 2) , {3, 5}));
assert (issame(maximum({1, 0, 5, -7}, 1) , {5}));
assert (issame(maximum({4, -4}, 2) , {-4, 4}));
assert (issame(maximum({-10, 10}, 2) , {-10, 10}));
assert (issame(maximum({1, 2, 3, -23, 243, -400, 0}, 0) , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> maximum(vector<int> arr,int k){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(maximum({-3, -4, 5}, 3) , {-4, -3, 5}));
assert (issame(maximum({4, -4, 4}, 2) , {4, 4}));
assert (issame(maximum({-3, 2, 1, 2, -1, -2, 1}, 1) , {2}));
}
| sort(arr.begin(),arr.end());
vector<int> out(arr.end()-k,arr.end());
sort(out.end(),out.begin());
return out;
}
| excess logic | incorrect output | maximum | vector<int> maximum(vector<int> arr,int k) | Given a vector arr of integers and a positive integer k, return a sorted vector
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = {-3, -4, 5}, k = 3
Output: {-4, -3, 5}
Example 2:
Input: arr = {4, -4, 4}, k = 2
Output: {4, 4}
Example 3:
Input: arr = {-3, 2, 1, 2, -1, -2, 1}, k = 1
Output: {2}
Note:
1. The length of the vector will be in the range of {1, 1000}.
2. The elements in the vector will be in the range of {-1000, 1000}.
3. 0 <= k <= len(arr) | Write a C++ function `vector<int> maximum(vector<int> arr,int k)` to solve the following problem:
Given a vector arr of integers and a positive integer k, return a sorted vector
of length k with the maximum k numbers in arr.
Example 1:
Input: arr = {-3, -4, 5}, k = 3
Output: {-4, -3, 5}
Example 2:
Input: arr = {4, -4, 4}, k = 2
Output: {4, 4}
Example 3:
Input: arr = {-3, 2, 1, 2, -1, -2, 1}, k = 1
Output: {2}
Note:
1. The length of the vector will be in the range of {1, 1000}.
2. The elements in the vector will be in the range of {-1000, 1000}.
3. 0 <= k <= len(arr) |
CPP/121 | /*
Given a non-empty vector of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution({5, 8, 7, 1}) ==> 12
solution({3, 3, 3, 3, 3}) ==> 9
solution({30, 13, 24, 321}) ==>0
*/
#include<stdio.h>
#include<vector>
using namespace std;
int solutions(vector<int> lst){
| int sum=0;
for (int i=0;i*2<lst.size();i++)
if (lst[i*2]%2==1) sum+=lst[i*2];
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (solutions({5, 8, 7, 1}) == 12);
assert (solutions({3, 3, 3, 3, 3}) == 9);
assert (solutions({30, 13, 24, 321}) == 0);
assert (solutions({5, 9}) == 5);
assert (solutions({2, 4, 8}) == 0);
assert (solutions({30, 13, 23, 32}) == 23);
assert (solutions({3, 13, 2, 9}) == 3);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int solutions(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (solutions({5, 8, 7, 1}) == 12);
assert (solutions({3, 3, 3, 3, 3}) == 9);
assert (solutions({30, 13, 24, 321}) == 0);
}
| int sum=1;
for (int i=0;i*2<lst.size();i++)
if (lst[i*2]%2==1) sum+=lst[i*2];
return sum;
}
| value misuse | incorrect output | solution | int solutions(vector<int> lst) | Given a non-empty vector of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution({5, 8, 7, 1}) ==> 12
solution({3, 3, 3, 3, 3}) ==> 9
solution({30, 13, 24, 321}) ==>0 | Write a C++ function `int solutions(vector<int> lst)` to solve the following problem:
Given a non-empty vector of integers, return the sum of all of the odd elements that are in even positions.
Examples
solution({5, 8, 7, 1}) ==> 12
solution({3, 3, 3, 3, 3}) ==> 9
solution({30, 13, 24, 321}) ==>0 |
CPP/122 | /*
Given a non-empty vector of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = {111,21,3,4000,5,6,7,8,9}, k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr)
*/
#include<stdio.h>
#include<vector>
using namespace std;
int add_elements(vector<int> arr,int k){
| int sum=0;
for (int i=0;i<k;i++)
if( arr[i]>=-99 and arr[i]<=99)
sum+=arr[i];
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (add_elements({1,-2,-3,41,57,76,87,88,99}, 3) == -4);
assert (add_elements({111,121,3,4000,5,6}, 2) == 0);
assert (add_elements({11,21,3,90,5,6,7,8,9}, 4) == 125);
assert (add_elements({111,21,3,4000,5,6,7,8,9}, 4) == 24);
assert (add_elements({1}, 1) == 1);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int add_elements(vector<int> arr,int k){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (add_elements({111,21,3,4000,5,6,7,8,9}, 4) == 24);
}
| int sum=0;
for (int i=0;i<arr.size();i++)
if( arr[i]>=-99 and arr[i]<=99)
sum+=arr[i];
return sum;
}
| missing logic | incorrect output | add_elements | int add_elements(vector<int> arr,int k) | Given a non-empty vector of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = {111,21,3,4000,5,6,7,8,9}, k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr) | Write a C++ function `int add_elements(vector<int> arr,int k)` to solve the following problem:
Given a non-empty vector of integers arr and an integer k, return
the sum of the elements with at most two digits from the first k elements of arr.
Example:
Input: arr = {111,21,3,4000,5,6,7,8,9}, k = 4
Output: 24 # sum of 21 + 3
Constraints:
1. 1 <= len(arr) <= 100
2. 1 <= k <= len(arr) |
CPP/123 | /*
Given a positive integer n, return a sorted vector that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is {1}.
2. returned vector sorted in increasing order.
For example:
get_odd_collatz(5) returns {1, 5} // The collatz sequence for 5 is {5, 16, 8, 4, 2, 1}, so the odd numbers are only 1, and 5.
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
vector<int> get_odd_collatz(int n){
| vector<int> out={1};
while (n!=1)
{
if (n%2==1) {out.push_back(n); n=n*3+1;}
else n=n/2;
}
sort(out.begin(),out.end());
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(get_odd_collatz(14) , {1, 5, 7, 11, 13, 17}));
assert (issame(get_odd_collatz(5) , {1, 5}));
assert (issame(get_odd_collatz(12) , {1, 3, 5}));
assert (issame(get_odd_collatz(1) , {1}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> get_odd_collatz(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(get_odd_collatz(5) , {1, 5}));
}
| vector<int> out={1};
while (n!=1)
{
if (n%2==1) {out.push_back(n); n=n*2+1;}
else n=n/2;
}
sort(out.begin(),out.end());
return out;
}
| value misuse | incorrect output | get_odd_collatz | vector<int> get_odd_collatz(int n) | Given a positive integer n, return a sorted vector that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is {1}.
2. returned vector sorted in increasing order.
For example:
get_odd_collatz(5) returns {1, 5} // The collatz sequence for 5 is {5, 16, 8, 4, 2, 1}, so the odd numbers are only 1, and 5. | Write a C++ function `vector<int> get_odd_collatz(int n)` to solve the following problem:
Given a positive integer n, return a sorted vector that has the odd numbers in collatz sequence.
The Collatz conjecture is a conjecture in mathematics that concerns a sequence defined
as follows: start with any positive integer n. Then each term is obtained from the
previous term as follows: if the previous term is even, the next term is one half of
the previous term. If the previous term is odd, the next term is 3 times the previous
term plus 1. The conjecture is that no matter what value of n, the sequence will always reach 1.
Note:
1. Collatz(1) is {1}.
2. returned vector sorted in increasing order.
For example:
get_odd_collatz(5) returns {1, 5} // The collatz sequence for 5 is {5, 16, 8, 4, 2, 1}, so the odd numbers are only 1, and 5. |
CPP/124 | /*
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date("03-11-2000") => true
valid_date("15-01-2012") => false
valid_date("04-0-2040") => false
valid_date("06-04-2020") => true
valid_date("06/04/2020") => false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool valid_date(string date){
| int mm,dd,yy,i;
if (date.length()!=10) return false;
for (int i=0;i<10;i++)
if (i==2 or i==5)
{
if (date[i]!='-') return false;
}
else
if (date[i]<48 or date[i]>57) return false;
mm=atoi(date.substr(0,2).c_str());
dd=atoi(date.substr(3,2).c_str());
yy=atoi(date.substr(6,4).c_str());
if (mm<1 or mm>12) return false;
if (dd<1 or dd>31) return false;
if (dd==31 and (mm==4 or mm==6 or mm==9 or mm==11 or mm==2)) return false;
if (dd==30 and mm==2) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (valid_date("03-11-2000") == true);
assert (valid_date("15-01-2012") == false);
assert (valid_date("04-0-2040") == false);
assert (valid_date("06-04-2020") == true);
assert (valid_date("01-01-2007") == true);
assert (valid_date("03-32-2011") == false);
assert (valid_date("") == false);
assert (valid_date("04-31-3000") == false);
assert (valid_date("06-06-2005") == true);
assert (valid_date("21-31-2000") == false);
assert (valid_date("04-12-2003") == true);
assert (valid_date("04122003") == false);
assert (valid_date("20030412") == false);
assert (valid_date("2003-04") == false);
assert (valid_date("2003-04-12") == false);
assert (valid_date("04-2003") == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool valid_date(string date){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (valid_date("03-11-2000") == true);
assert (valid_date("15-01-2012") == false);
assert (valid_date("04-0-2040") == false);
assert (valid_date("06-04-2020") == true);
assert (valid_date("06/04/2020") == false);
}
| int dd,mm,yy,i;
if (date.length()!=10) return false;
for (int i=0;i<10;i++)
if (i==2 or i==5)
{
if (date[i]!='-') return false;
}
else
if (date[i]<48 or date[i]>57) return false;
dd=atoi(date.substr(0,2).c_str());
mm=atoi(date.substr(3,2).c_str());
yy=atoi(date.substr(6,4).c_str());
if (mm<1 or mm>12) return false;
if (dd<1 or dd>31) return false;
if (dd==31 and (mm==4 or mm==6 or mm==9 or mm==11 or mm==2)) return false;
if (dd==30 and mm==2) return false;
return true;
}
| variable misuse | incorrect output | valid_date | bool valid_date(string date) | You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date("03-11-2000") => true
valid_date("15-01-2012") => false
valid_date("04-0-2040") => false
valid_date("06-04-2020") => true
valid_date("06/04/2020") => false | Write a C++ function `bool valid_date(string date)` to solve the following problem:
You have to write a function which validates a given date string and
returns true if the date is valid otherwise false.
The date is valid if all of the following rules are satisfied:
1. The date string is not empty.
2. The number of days is not less than 1 or higher than 31 days for months 1,3,5,7,8,10,12. And the number of days is not less than 1 or higher than 30 days for months 4,6,9,11. And, the number of days is not less than 1 or higher than 29 for the month 2.
3. The months should not be less than 1 or higher than 12.
4. The date should be in the format: mm-dd-yyyy
for example:
valid_date("03-11-2000") => true
valid_date("15-01-2012") => false
valid_date("04-0-2040") => false
valid_date("06-04-2020") => true
valid_date("06/04/2020") => false |
CPP/125 | /*
Given a string of words, return a vector of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return a vector with one element, the number of lower-case letters with odd order in the
alphabet, ord("a") = 0, ord("b") = 1, ... ord("z") = 25
Examples
split_words("Hello world!") ➞ {"Hello", "world!"}
split_words("Hello,world!") ➞ {"Hello", "world!"}
split_words("abcdef") == {"3"}
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
vector<string> split_words(string txt){
| int i;
string current="";
vector<string> out={};
if (find(txt.begin(),txt.end(),' ')!=txt.end())
{
txt=txt+' ';
for (i=0;i<txt.length();i++)
if (txt[i]==' ')
{
if (current.length()>0)out.push_back(current);
current="";
}
else current=current+txt[i];
return out;
}
if (find(txt.begin(),txt.end(),',')!=txt.end())
{
txt=txt+',';
for (i=0;i<txt.length();i++)
if (txt[i]==',')
{
if (current.length()>0)out.push_back(current);
current="";
}
else current=current+txt[i];
return out;
}
int num=0;
for (i=0;i<txt.length();i++)
if (txt[i]>=97 and txt[i]<=122 and txt[i]%2==0)
num+=1;
return {to_string(num)};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(split_words("Hello world!") , {"Hello","world!"}));
assert (issame(split_words("Hello,world!") , {"Hello","world!"}));
assert (issame(split_words("Hello world,!") , {"Hello","world,!"}));
assert (issame(split_words("Hello,Hello,world !") , {"Hello,Hello,world","!"}));
assert (issame(split_words("abcdef") , {"3"}));
assert (issame(split_words("aaabb") , {"2"}));
assert (issame(split_words("aaaBb") , {"1"}));
assert (issame(split_words("") ,{"0"}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<string> split_words(string txt){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(split_words("Hello world!") , {"Hello","world!"}));
assert (issame(split_words("Hello,world!") , {"Hello","world!"}));
assert (issame(split_words("abcdef") , {"3"}));
}
| int i;
string current="";
vector<string> out={};
if (find(txt.begin(),txt.end(),' ')!=txt.end())
{
txt=txt+',';
for (i=0;i<txt.length();i++)
if (txt[i]==' ')
{
if (current.length()>0)out.push_back(current);
current="";
}
else current=current+txt[i];
return out;
}
if (find(txt.begin(),txt.end(),',')!=txt.end())
{
txt=txt+',';
for (i=0;i<txt.length();i++)
if (txt[i]==',')
{
if (current.length()>0)out.push_back(current);
current="";
}
else current=current+txt[i];
return out;
}
int num=0;
for (i=0;i<txt.length();i++)
if (txt[i]>=97 and txt[i]<=122 and txt[i]%2==0)
num+=1;
return {to_string(num)};
}
| value misuse | incorrect output | split_words | vector<string> split_words(string txt) | Given a string of words, return a vector of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return a vector with one element, the number of lower-case letters with odd order in the
alphabet, ord("a") = 0, ord("b") = 1, ... ord("z") = 25
Examples
split_words("Hello world!") ➞ {"Hello", "world!"}
split_words("Hello,world!") ➞ {"Hello", "world!"}
split_words("abcdef") == {"3"} | Write a C++ function `vector<string> split_words(string txt)` to solve the following problem:
Given a string of words, return a vector of words split on whitespace, if no whitespaces exists in the text you
should split on commas ',' if no commas exists you should return a vector with one element, the number of lower-case letters with odd order in the
alphabet, ord("a") = 0, ord("b") = 1, ... ord("z") = 25
Examples
split_words("Hello world!") ➞ {"Hello", "world!"}
split_words("Hello,world!") ➞ {"Hello", "world!"}
split_words("abcdef") == {"3"} |
CPP/126 | /*
Given a vector of numbers, return whether or not they are sorted
in ascending order. If vector has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
is_sorted({5}) ➞ true
is_sorted({1, 2, 3, 4, 5}) ➞ true
is_sorted({1, 3, 2, 4, 5}) ➞ false
is_sorted({1, 2, 3, 4, 5, 6}) ➞ true
is_sorted({1, 2, 3, 4, 5, 6, 7}) ➞ true
is_sorted({1, 3, 2, 4, 5, 6, 7}) ➞ false
is_sorted({1, 2, 2, 3, 3, 4}) ➞ true
is_sorted({1, 2, 2, 2, 3, 4}) ➞ false
*/
#include<stdio.h>
#include<vector>
#include<algorithm>
using namespace std;
bool is_sorted(vector<int> lst){
| for (int i=1;i<lst.size();i++)
{
if (lst[i]<lst[i-1]) return false;
if (i>=2 and lst[i]==lst[i-1] and lst[i]==lst[i-2]) return false;
}
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_sorted({5}) == true);
assert (is_sorted({1, 2, 3, 4, 5}) == true);
assert (is_sorted({1, 3, 2, 4, 5}) == false);
assert (is_sorted({1, 2, 3, 4, 5, 6}) == true);
assert (is_sorted({1, 2, 3, 4, 5, 6, 7}) == true);
assert (is_sorted({1, 3, 2, 4, 5, 6, 7}) == false);
assert (is_sorted({}) == true);
assert (is_sorted({1}) == true);
assert (is_sorted({3, 2, 1}) == false);
assert (is_sorted({1, 2, 2, 2, 3, 4}) == false);
assert (is_sorted({1, 2, 3, 3, 3, 4}) == false);
assert (is_sorted({1, 2, 2, 3, 3, 4}) == true);
assert (is_sorted({1, 2, 3, 4}) == true);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool is_sorted(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_sorted({5}) == true);
assert (is_sorted({1, 2, 3, 4, 5}) == true);
assert (is_sorted({1, 3, 2, 4, 5}) == false);
assert (is_sorted({1, 2, 3, 4, 5, 6}) == true);
assert (is_sorted({1, 2, 3, 4, 5, 6, 7}) == true);
assert (is_sorted({1, 3, 2, 4, 5, 6, 7}) == false);
assert (is_sorted({1, 2, 2, 2, 3, 4}) == false);
assert (is_sorted({1, 2, 2, 3, 3, 4}) == true);
}
| for (int i=1;i<lst.size();i++)
{
if (lst[i]<lst[i-1]) return false;
if (i>=2 and lst[i]==lst[i-1]) return false;
}
return true;
}
| missing logic | incorrect output | is_sorted | bool is_sorted(vector<int> lst) | Given a vector of numbers, return whether or not they are sorted
in ascending order. If vector has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
is_sorted({5}) ➞ true
is_sorted({1, 2, 3, 4, 5}) ➞ true
is_sorted({1, 3, 2, 4, 5}) ➞ false
is_sorted({1, 2, 3, 4, 5, 6}) ➞ true
is_sorted({1, 2, 3, 4, 5, 6, 7}) ➞ true
is_sorted({1, 3, 2, 4, 5, 6, 7}) ➞ false
is_sorted({1, 2, 2, 3, 3, 4}) ➞ true
is_sorted({1, 2, 2, 2, 3, 4}) ➞ false | Write a C++ function `bool is_sorted(vector<int> lst)` to solve the following problem:
Given a vector of numbers, return whether or not they are sorted
in ascending order. If vector has more than 1 duplicate of the same
number, return false. Assume no negative numbers and only integers.
Examples
is_sorted({5}) ➞ true
is_sorted({1, 2, 3, 4, 5}) ➞ true
is_sorted({1, 3, 2, 4, 5}) ➞ false
is_sorted({1, 2, 3, 4, 5, 6}) ➞ true
is_sorted({1, 2, 3, 4, 5, 6, 7}) ➞ true
is_sorted({1, 3, 2, 4, 5, 6, 7}) ➞ false
is_sorted({1, 2, 2, 3, 3, 4}) ➞ true
is_sorted({1, 2, 2, 2, 3, 4}) ➞ false |
CPP/127 | /*
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
{input/output} samples:
intersection({1, 2}, {2, 3}) ==> "NO"
intersection({-1, 1}, {0, 4}) ==> "NO"
intersection({-3, -1}, {-5, 5}) ==> "YES"
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string intersection( vector<int> interval1,vector<int> interval2){
| int inter1,inter2,l,i;
inter1=max(interval1[0],interval2[0]);
inter2=min(interval1[1],interval2[1]);
l=inter2-inter1;
if (l<2) return "NO";
for (i=2;i*i<=l;i++)
if (l%i==0) return "NO";
return "YES";
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (intersection({1, 2}, {2, 3}) == "NO");
assert (intersection({-1, 1}, {0, 4}) == "NO");
assert (intersection({-3, -1}, {-5, 5}) == "YES");
assert (intersection({-2, 2}, {-4, 0}) == "YES");
assert (intersection({-11, 2}, {-1, -1}) == "NO");
assert (intersection({1, 2}, {3, 5}) == "NO");
assert (intersection({1, 2}, {1, 2}) == "NO");
assert (intersection({-2, -2}, {-3, -2}) == "NO");
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
string intersection( vector<int> interval1,vector<int> interval2){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (intersection({1, 2}, {2, 3}) == "NO");
assert (intersection({-1, 1}, {0, 4}) == "NO");
assert (intersection({-3, -1}, {-5, 5}) == "YES");
}
| int inter1,inter2,l,i;
inter1=max(interval1[0],interval2[0]);
inter2=min(interval1[1],interval2[1]);
l=inter2;
if (l<2) return "NO";
return "YES";
}
| missing logic | incorrect output | intersection | string intersection( vector<int> interval1,vector<int> interval2) | You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
{input/output} samples:
intersection({1, 2}, {2, 3}) ==> "NO"
intersection({-1, 1}, {0, 4}) ==> "NO"
intersection({-3, -1}, {-5, 5}) ==> "YES" | Write a C++ function `string intersection( vector<int> interval1,vector<int> interval2)` to solve the following problem:
You are given two intervals,
where each interval is a pair of integers. For example, interval = (start, end) = (1, 2).
The given intervals are closed which means that the interval (start, end)
includes both start and end.
For each given interval, it is assumed that its start is less or equal its end.
Your task is to determine whether the length of intersection of these two
intervals is a prime number.
Example, the intersection of the intervals (1, 3), (2, 4) is (2, 3)
which its length is 1, which not a prime number.
If the length of the intersection is a prime number, return "YES",
otherwise, return "NO".
If the two intervals don't intersect, return "NO".
{input/output} samples:
intersection({1, 2}, {2, 3}) ==> "NO"
intersection({-1, 1}, {0, 4}) ==> "NO"
intersection({-3, -1}, {-5, 5}) ==> "YES" |
CPP/128 | /*
You are given a vector arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the vector, represented by 1, -1 or 0.
Note: return -32768 for empty arr.
Example:
>>> prod_signs({1, 2, 2, -4}) == -9
>>> prod_signs({0, 1}) == 0
>>> prod_signs({}) == -32768
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
int prod_signs(vector<int> arr){
| if (arr.size()==0) return -32768;
int i,sum=0,prods=1;
for (i=0;i<arr.size();i++)
{
sum+=abs(arr[i]);
if (arr[i]==0) prods=0;
if (arr[i]<0) prods=-prods;
}
return sum*prods;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (prod_signs({1, 2, 2, -4}) == -9);
assert (prod_signs({0, 1}) == 0);
assert (prod_signs({1, 1, 1, 2, 3, -1, 1}) == -10);
assert (prod_signs({}) == -32768);
assert (prod_signs({2, 4,1, 2, -1, -1, 9}) == 20);
assert (prod_signs({-1, 1, -1, 1}) == 4);
assert (prod_signs({-1, 1, 1, 1}) == -4);
assert (prod_signs({-1, 1, 1, 0}) == 0);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int prod_signs(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (prod_signs({1, 2, 2, -4}) == -9);
assert (prod_signs({0, 1}) == 0);
assert (prod_signs({}) == -32768);
}
| if (arr.size()==0) return -32768;
int i,sum=0,prods=1;
for (i=0;i<arr.size();i++)
{
sum+=abs(arr[i])*2;
if (arr[i]==0) prods=0;
if (arr[i]<0) prods=-prods;
}
return sum*prods;
}
| excess logic | incorrect output | prod_signs | int prod_signs(vector<int> arr) | You are given a vector arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the vector, represented by 1, -1 or 0.
Note: return -32768 for empty arr.
Example:
>>> prod_signs({1, 2, 2, -4}) == -9
>>> prod_signs({0, 1}) == 0
>>> prod_signs({}) == -32768 | Write a C++ function `int prod_signs(vector<int> arr)` to solve the following problem:
You are given a vector arr of integers and you need to return
sum of magnitudes of integers multiplied by product of all signs
of each number in the vector, represented by 1, -1 or 0.
Note: return -32768 for empty arr.
Example:
>>> prod_signs({1, 2, 2, -4}) == -9
>>> prod_signs({0, 1}) == 0
>>> prod_signs({}) == -32768 |
CPP/129 | /*
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range {1, N * N}
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered vectors of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered vector of the values on the cells that the minimum path go through.
Examples:
Input: grid = { {1,2,3}, {4,5,6}, {7,8,9}}, k = 3
Output: {1, 2, 1}
Input: grid = { {5,9,3}, {4,1,6}, {7,8,2}}, k = 1
Output: {1}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> minPath(vector<vector<int>> grid, int k){
| int i,j,x,y,min;
for (i=0;i<grid.size();i++)
for (j=0;j<grid[i].size();j++)
if (grid[i][j]==1) {
x=i;y=j;
}
min=grid.size()*grid.size();
if (x>0 and grid[x-1][y]<min) min=grid[x-1][y];
if (x<grid.size()-1 and grid[x+1][y]<min) min=grid[x+1][y];
if (y>0 and grid[x][y-1]<min) min=grid[x][y-1];
if (y<grid.size()-1 and grid[x][y+1]<min) min=grid[x][y+1];
vector<int> out={};
for (i=0;i<k;i++)
if (i%2==0) out.push_back(1);
else out.push_back(min);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(minPath({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 3) , {1, 2, 1}));
assert (issame(minPath({{5, 9, 3}, {4, 1, 6}, {7, 8, 2}}, 1) , {1}));
assert (issame(minPath({{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}, 4) , {1, 2, 1, 2}));
assert (issame(minPath({{6, 4, 13, 10}, {5, 7, 12, 1}, {3, 16, 11, 15}, {8, 14, 9, 2}}, 7) , {1, 10, 1, 10, 1, 10, 1}));
assert (issame(minPath({{8, 14, 9, 2}, {6, 4, 13, 15}, {5, 7, 1, 12}, {3, 10, 11, 16}}, 5) , {1, 7, 1, 7, 1}));
assert (issame(minPath({{11, 8, 7, 2}, {5, 16, 14, 4}, {9, 3, 15, 6}, {12, 13, 10, 1}}, 9) , {1, 6, 1, 6, 1, 6, 1, 6, 1}));
assert (issame(minPath({{12, 13, 10, 1}, {9, 3, 15, 6}, {5, 16, 14, 4}, {11, 8, 7, 2}}, 12) , {1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6}));
assert (issame(minPath({{2, 7, 4}, {3, 1, 5}, {6, 8, 9}}, 8) , {1, 3, 1, 3, 1, 3, 1, 3}));
assert (issame(minPath({{6, 1, 5}, {3, 8, 9}, {2, 7, 4}}, 8) , {1, 5, 1, 5, 1, 5, 1, 5}));
assert (issame(minPath({{1, 2}, {3, 4}}, 10) , {1, 2, 1, 2, 1, 2, 1, 2, 1, 2}));
assert (issame(minPath({{1, 3}, {3, 2}}, 10) , {1, 3, 1, 3, 1, 3, 1, 3, 1, 3}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> minPath(vector<vector<int>> grid, int k){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(minPath({{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, 3) , {1, 2, 1}));
assert (issame(minPath({{5, 9, 3}, {4, 1, 6}, {7, 8, 2}}, 1) , {1}));
}
| int i,j,x,y,min;
for (i=0;i<grid.size();i++)
for (j=0;j<grid[i].size();j++)
if (grid[i][j]==1) {
x=i;y=j;
}
min=grid.size()*grid.size();
if (x>0 and grid[x-1][y]<min) min=grid[x-1][y];
if (x<grid.size()-1 and grid[x+1][y]<min) min=grid[x][y];
if (y>0 and grid[x][y-1]<min) min=grid[x][y];
if (y<grid.size()-1 and grid[x][y+1]<min) min=grid[x][y];
vector<int> out={};
for (i=0;i<k;i++)
if (i%2==0) out.push_back(1);
else out.push_back(min);
return out;
}
| value misuse | incorrect output | minPath | vector<int> minPath(vector<vector<int>> grid, int k) | Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range {1, N * N}
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered vectors of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered vector of the values on the cells that the minimum path go through.
Examples:
Input: grid = { {1,2,3}, {4,5,6}, {7,8,9}}, k = 3
Output: {1, 2, 1}
Input: grid = { {5,9,3}, {4,1,6}, {7,8,2}}, k = 1
Output: {1} | Write a C++ function `vector<int> minPath(vector<vector<int>> grid, int k)` to solve the following problem:
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range {1, N * N}
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered vectors of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered vector of the values on the cells that the minimum path go through.
Examples:
Input: grid = { {1,2,3}, {4,5,6}, {7,8,9}}, k = 3
Output: {1, 2, 1}
Input: grid = { {5,9,3}, {4,1,6}, {7,8,2}}, k = 1
Output: {1} |
CPP/130 | /*
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a vector of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = {1, 3, 2, 8}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> tri(int n){
| vector<int> out={1,3};
if (n==0) return {1};
for (int i=2;i<=n;i++)
{
if (i%2==0) out.push_back(1+i/2);
else out.push_back(out[i-1]+out[i-2]+1+(i+1)/2);
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(tri(3) , {1, 3, 2, 8}));
assert (issame(tri(4) , {1, 3, 2, 8, 3}));
assert (issame(tri(5) , {1, 3, 2, 8, 3, 15}));
assert (issame(tri(6) , {1, 3, 2, 8, 3, 15, 4}));
assert (issame(tri(7) , {1, 3, 2, 8, 3, 15, 4, 24}));
assert (issame(tri(8) , {1, 3, 2, 8, 3, 15, 4, 24, 5}));
assert (issame(tri(9) , {1, 3, 2, 8, 3, 15, 4, 24, 5, 35}));
assert (issame(tri(20) , {1, 3, 2, 8, 3, 15, 4, 24, 5, 35, 6, 48, 7, 63, 8, 80, 9, 99, 10, 120, 11}));
assert (issame(tri(0) , {1}));
assert (issame(tri(1) , {1, 3}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> tri(int n){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(tri(3) , {1, 3, 2, 8}));
}
| vector<int> out={1,3};
if (n==0) return {1};
for (int i=2;i<=n;i++)
{
if (i%2==0) out.push_back(1+i/2);
else out.push_back(out[i-1]+out[i-2]+1+i+(i+1)/2);
}
return out;
}
| excess logic | incorrect output | tri | vector<int> tri(int n) | Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a vector of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = {1, 3, 2, 8} | Write a C++ function `vector<int> tri(int n)` to solve the following problem:
Everyone knows Fibonacci sequence, it was studied deeply by mathematicians in
the last couple centuries. However, what people don't know is Tribonacci sequence.
Tribonacci sequence is defined by the recurrence:
tri(1) = 3
tri(n) = 1 + n / 2, if n is even.
tri(n) = tri(n - 1) + tri(n - 2) + tri(n + 1), if n is odd.
For example:
tri(2) = 1 + (2 / 2) = 2
tri(4) = 3
tri(3) = tri(2) + tri(1) + tri(4)
= 2 + 3 + 3 = 8
You are given a non-negative integer number n, you have to a return a vector of the
first n + 1 numbers of the Tribonacci sequence.
Examples:
tri(3) = {1, 3, 2, 8} |
CPP/131 | /*
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15
*/
#include<stdio.h>
#include<string>
using namespace std;
int digits(int n){
| int prod=1,has=0;
string s=to_string(n);
for (int i=0;i<s.length();i++)
if (s[i]%2==1)
{
has=1;
prod=prod*(s[i]-48);
}
if (has==0) return 0;
return prod;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (digits(5) == 5);
assert (digits(54) == 5);
assert (digits(120) ==1);
assert (digits(5014) == 5);
assert (digits(98765) == 315);
assert (digits(5576543) == 2625);
assert (digits(2468) == 0);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int digits(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (digits(1) == 1);
assert (digits(4) == 0);
assert (digits(235) ==15);
}
| int prod=1,has=0;
string s=to_string(n);
for (int i=0;i<s.length();i++)
if (s[i]%2==1)
{
has=1;
prod=48*prod*(s[i]-48);
}
if (has==0) return 0;
return prod;
}
| excess logic | incorrect output | digits | int digits(int n) | Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15 | Write a C++ function `int digits(int n)` to solve the following problem:
Given a positive integer n, return the product of the odd digits.
Return 0 if all digits are even.
For example:
digits(1) == 1
digits(4) == 0
digits(235) == 15 |
CPP/132 | /*
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested("[[]]") ➞ true
is_nested("[]]]]]]][[[[[]") ➞ false
is_nested("[][]") ➞ false
is_nested("[]") ➞ false
is_nested("[[][]]") ➞ true
is_nested("[[]][[") ➞ true
*/
#include<stdio.h>
#include<string>
using namespace std;
bool is_nested(string str){
| int count=0,maxcount=0;
for (int i=0;i<str.length();i++)
{
if (str[i]=='[') count+=1;
if (str[i]==']') count-=1;
if (count<0) count=0;
if (count>maxcount) maxcount=count;
if (count<=maxcount-2) return true;
}
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_nested("[[]]") == true);
assert (is_nested("[]]]]]]][[[[[]") == false);
assert (is_nested("[][]") == false);
assert (is_nested(("[]")) == false);
assert (is_nested("[[[[]]]]") == true);
assert (is_nested("[]]]]]]]]]]") == false);
assert (is_nested("[][][[]]") == true);
assert (is_nested("[[]") == false);
assert (is_nested("[]]") == false);
assert (is_nested("[[]][[") == true);
assert (is_nested("[[][]]") == true);
assert (is_nested("") == false);
assert (is_nested("[[[[[[[[") == false);
assert (is_nested("]]]]]]]]") == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool is_nested(string str){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_nested("[[]]") == true);
assert (is_nested("[]]]]]]][[[[[]") == false);
assert (is_nested("[][]") == false);
assert (is_nested("[]") == false);
assert (is_nested("[[]][[") == true);
assert (is_nested("[[][]]") == true);
}
| int count=0,maxcount=0;
for (int i=0;i<str.length();i++)
{
if (str[i]=='(') count+=1;
if (str[i]==')') count-=1;
if (count<0) count=0;
if (count>maxcount) maxcount=count;
if (count<=maxcount-2) return true;
}
return false;
}
| value misuse | incorrect output | is_nested | bool is_nested(string str) | Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested("[[]]") ➞ true
is_nested("[]]]]]]][[[[[]") ➞ false
is_nested("[][]") ➞ false
is_nested("[]") ➞ false
is_nested("[[][]]") ➞ true
is_nested("[[]][[") ➞ true | Write a C++ function `bool is_nested(string str)` to solve the following problem:
Create a function that takes a string as input which contains only square brackets.
The function should return true if and only if there is a valid subsequence of brackets
where at least one bracket in the subsequence is nested.
is_nested("[[]]") ➞ true
is_nested("[]]]]]]][[[[[]") ➞ false
is_nested("[][]") ➞ false
is_nested("[]") ➞ false
is_nested("[[][]]") ➞ true
is_nested("[[]][[") ➞ true |
CPP/133 | /*
You are given a vector of numbers.
You need to return the sum of squared numbers in the given vector,
round each element in the vector to the upper int(Ceiling) first.
Examples:
For lst = {1,2,3} the output should be 14
For lst = {1,4,9} the output should be 98
For lst = {1,3,5,7} the output should be 84
For lst = {1.4,4.2,0} the output should be 29
For lst = {-2.4,1,1} the output should be 6
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
int sum_squares(vector<float> lst){
| int sum=0;
for (int i=0;i<lst.size();i++)
sum+=ceil(lst[i])*ceil(lst[i]);
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sum_squares({1,2,3})==14);
assert (sum_squares({1.0,2,3})==14);
assert (sum_squares({1,3,5,7})==84);
assert (sum_squares({1.4,4.2,0})==29);
assert (sum_squares({-2.4,1,1})==6);
assert (sum_squares({100,1,15,2})==10230);
assert (sum_squares({10000,10000})==200000000);
assert (sum_squares({-1.4,4.6,6.3})==75);
assert (sum_squares({-1.4,17.9,18.9,19.9})==1086);
assert (sum_squares({0})==0);
assert (sum_squares({-1})==1);
assert (sum_squares({-1,1,0})==2);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int sum_squares(vector<float> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sum_squares({1,2,3})==14);
assert (sum_squares({1,4,9})==98);
assert (sum_squares({1,3,5,7})==84);
assert (sum_squares({1.4,4.2,0})==29);
assert (sum_squares({-2.4,1,1})==6);
}
| int sum=0;
for (int i=0;i<lst.size();i++)
sum+=ceil(lst[i])*2;
return sum;
}
| operator misuse | incorrect output | sum_squares | int sum_squares(vector<float> lst) | You are given a vector of numbers.
You need to return the sum of squared numbers in the given vector,
round each element in the vector to the upper int(Ceiling) first.
Examples:
For lst = {1,2,3} the output should be 14
For lst = {1,4,9} the output should be 98
For lst = {1,3,5,7} the output should be 84
For lst = {1.4,4.2,0} the output should be 29
For lst = {-2.4,1,1} the output should be 6 | Write a C++ function `int sum_squares(vector<float> lst)` to solve the following problem:
You are given a vector of numbers.
You need to return the sum of squared numbers in the given vector,
round each element in the vector to the upper int(Ceiling) first.
Examples:
For lst = {1,2,3} the output should be 14
For lst = {1,4,9} the output should be 98
For lst = {1,3,5,7} the output should be 84
For lst = {1.4,4.2,0} the output should be 29
For lst = {-2.4,1,1} the output should be 6 |
CPP/134 | /*
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter("apple pie") ➞ false
check_if_last_char_is_a_letter("apple pi e") ➞ true
check_if_last_char_is_a_letter("apple pi e ") ➞ false
check_if_last_char_is_a_letter("") ➞ false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool check_if_last_char_is_a_letter(string txt){
| if (txt.length()==0) return false;
char chr=txt[txt.length()-1];
if (chr<65 or (chr>90 and chr<97) or chr>122) return false;
if (txt.length()==1) return true;
chr=txt[txt.length()-2];
if ((chr>=65 and chr<=90) or (chr>=97 and chr<=122)) return false;
return true;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (check_if_last_char_is_a_letter("apple") == false);
assert (check_if_last_char_is_a_letter("apple pi e") == true);
assert (check_if_last_char_is_a_letter("eeeee") == false);
assert (check_if_last_char_is_a_letter("A") == true);
assert (check_if_last_char_is_a_letter("Pumpkin pie ") == false);
assert (check_if_last_char_is_a_letter("Pumpkin pie 1") == false);
assert (check_if_last_char_is_a_letter("") == false);
assert (check_if_last_char_is_a_letter("eeeee e ") == false);
assert (check_if_last_char_is_a_letter("apple pie") == false);
assert (check_if_last_char_is_a_letter("apple pi e ") == false);
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool check_if_last_char_is_a_letter(string txt){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (check_if_last_char_is_a_letter("apple pi e") == true);
assert (check_if_last_char_is_a_letter("") == false);
assert (check_if_last_char_is_a_letter("apple pie") == false);
assert (check_if_last_char_is_a_letter("apple pi e ") == false);
}
| if (txt.length()==0) return false;
char chr=txt[txt.length()-1];
if (chr<10 or (chr>50 and chr<57) or chr>200) return false;
if (txt.length()==1) return true;
chr=txt[txt.length()-2];
if ((chr>=30 and chr<=37) or (chr>=21 and chr<=42)) return false;
return true;
}
| function misuse | incorrect output | check_if_last_char_is_a_letter | bool check_if_last_char_is_a_letter(string txt) | Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter("apple pie") ➞ false
check_if_last_char_is_a_letter("apple pi e") ➞ true
check_if_last_char_is_a_letter("apple pi e ") ➞ false
check_if_last_char_is_a_letter("") ➞ false | Write a C++ function `bool check_if_last_char_is_a_letter(string txt)` to solve the following problem:
Create a function that returns true if the last character
of a given string is an alphabetical character and is not
a part of a word, and false otherwise.
Note: "word" is a group of characters separated by space.
Examples:
check_if_last_char_is_a_letter("apple pie") ➞ false
check_if_last_char_is_a_letter("apple pi e") ➞ true
check_if_last_char_is_a_letter("apple pi e ") ➞ false
check_if_last_char_is_a_letter("") ➞ false |
CPP/135 | /*
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given vector will not contain
duplicate values.
Examples:
can_arrange({1,2,4,3,5}) = 3
can_arrange({1,2,3}) = -1
*/
#include<stdio.h>
#include<vector>
using namespace std;
int can_arrange(vector<int> arr){
| int max=-1;
for (int i=0;i<arr.size();i++)
if (arr[i]<=i) max=i;
return max;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (can_arrange({1,2,4,3,5})==3);
assert (can_arrange({1,2,4,5})==-1);
assert (can_arrange({1,4,2,5,6,7,8,9,10})==2);
assert (can_arrange({4,8,5,7,3})==4);
assert (can_arrange({})==-1);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int can_arrange(vector<int> arr){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (can_arrange({1,2,4,3,5})==3);
assert (can_arrange({1,2,3})==-1);
}
| int max=-1;
for (int i=0;i<arr.size();i++)
if (arr[i]<=i) max=i+arr[i];
return max;
}
| excess logic | incorrect output | can_arrange | int can_arrange(vector<int> arr) | Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given vector will not contain
duplicate values.
Examples:
can_arrange({1,2,4,3,5}) = 3
can_arrange({1,2,3}) = -1 | Write a C++ function `int can_arrange(vector<int> arr)` to solve the following problem:
Create a function which returns the largest index of an element which
is not greater than or equal to the element immediately preceding it. If
no such element exists then return -1. The given vector will not contain
duplicate values.
Examples:
can_arrange({1,2,4,3,5}) = 3
can_arrange({1,2,3}) = -1 |
CPP/136 | /*
Create a function that returns a vector (a, b), where "a" is
the largest of negative integers, and "b" is the smallest
of positive integers in a vector.
If there is no negative or positive integers, return them as 0.
Examples:
largest_smallest_integers({2, 4, 1, 3, 5, 7}) == {0, 1}
largest_smallest_integers({}) == {0,0}
largest_smallest_integers({0}) == {0,0}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> largest_smallest_integers(vector<int> lst){
| int maxneg=0,minpos=0;
for (int i=0;i<lst.size();i++)
{
if (lst[i]<0 and (maxneg==0 or lst[i]>maxneg)) maxneg=lst[i];
if (lst[i]>0 and (minpos==0 or lst[i]<minpos)) minpos=lst[i];
}
return {maxneg,minpos};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(largest_smallest_integers({2, 4, 1, 3, 5, 7}) , {0, 1}));
assert (issame(largest_smallest_integers({2, 4, 1, 3, 5, 7, 0}) , {0, 1}));
assert (issame(largest_smallest_integers({1, 3, 2, 4, 5, 6, -2}) , {-2, 1}));
assert (issame(largest_smallest_integers({4, 5, 3, 6, 2, 7, -7}) , {-7, 2}));
assert (issame(largest_smallest_integers({7, 3, 8, 4, 9, 2, 5, -9}) , {-9, 2}));
assert (issame(largest_smallest_integers({}) , {0, 0}));
assert (issame(largest_smallest_integers({0}) , {0, 0}));
assert (issame(largest_smallest_integers({-1, -3, -5, -6}) , {-1, 0}));
assert (issame(largest_smallest_integers({-1, -3, -5, -6, 0}) , {-1, 0}));
assert (issame(largest_smallest_integers({-6, -4, -4, -3, 1}) , {-3, 1}));
assert (issame(largest_smallest_integers({-6, -4, -4, -3, -100, 1}) , {-3, 1}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> largest_smallest_integers(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(largest_smallest_integers({2, 4, 1, 3, 5, 7}) , {0, 1}));
assert (issame(largest_smallest_integers({}) , {0, 0}));
assert (issame(largest_smallest_integers({0}) , {0, 0}));
}
| int maxneg=0,minpos=0;
for (int i=0;i<lst.size();i++)
{
if (lst[i]<0 and (maxneg==0 or lst[i]>maxneg)) maxneg=lst[i];
if (lst[i]>0 and (minpos==0 or lst[i]<minpos)) minpos=lst[i];
}
for (int i=0;i<lst.size();i++)
{
if (lst[i]<0 and (minpos==0 or lst[i]>minpos)) maxneg=lst[i];
if (lst[i]>0 and (maxneg==0 or lst[i]<maxneg)) minpos=lst[i];
}
return {maxneg,minpos};
}
| excess logic | incorrect output | largest_smallest_integers | vector<int> largest_smallest_integers(vector<int> lst) | Create a function that returns a vector (a, b), where "a" is
the largest of negative integers, and "b" is the smallest
of positive integers in a vector.
If there is no negative or positive integers, return them as 0.
Examples:
largest_smallest_integers({2, 4, 1, 3, 5, 7}) == {0, 1}
largest_smallest_integers({}) == {0,0}
largest_smallest_integers({0}) == {0,0} | Write a C++ function `vector<int> largest_smallest_integers(vector<int> lst)` to solve the following problem:
Create a function that returns a vector (a, b), where "a" is
the largest of negative integers, and "b" is the smallest
of positive integers in a vector.
If there is no negative or positive integers, return them as 0.
Examples:
largest_smallest_integers({2, 4, 1, 3, 5, 7}) == {0, 1}
largest_smallest_integers({}) == {0,0}
largest_smallest_integers({0}) == {0,0} |
CPP/137 | /*
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return "None" if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) ➞ 2.5
compare_one(1, "2,3") ➞ "2,3"
compare_one("5,1", "6") ➞ "6"
compare_one("1", 1) ➞ "None"
*/
#include<stdio.h>
#include<string>
#include<algorithm>
#include<boost/any.hpp>
using namespace std;
boost::any compare_one(boost::any a,boost::any b){
| double numa,numb;
boost::any out;
if (a.type()==typeid(string))
{
string s;
s=boost::any_cast<string>(a);
if (find(s.begin(),s.end(),',')!=s.end())
for (int i=0;i<s.length();i++)
if (s[i]==',') s=s.substr(0,i)+'.'+s.substr(i+1);
numa=atof(s.c_str());
}
else
{
if (a.type()==typeid(int)) numa=boost::any_cast<int>(a);
if (a.type()==typeid(double)) numa=boost::any_cast<double>(a);
}
if (b.type()==typeid(string))
{
string s;
s=boost::any_cast<string>(b);
if (find(s.begin(),s.end(),',')!=s.end())
for (int i=0;i<s.length();i++)
if (s[i]==',') s=s.substr(0,i)+'.'+s.substr(i+1);
numb=atof(s.c_str());
}
else
{
if (b.type()==typeid(int)) numb=boost::any_cast<int>(b);
if (b.type()==typeid(double)) numb=boost::any_cast<double>(b);
}
if (numa==numb) return string("None");
if (numa<numb) return b;
if (numa>numb) return a;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (boost::any_cast<int>(compare_one(1, 2)) == 2);
assert (boost::any_cast<double>(compare_one(1, 2.5))== 2.5);
assert (boost::any_cast<int>(compare_one(2, 3)) == 3);
assert (boost::any_cast<int>(compare_one(5, 6)) == 6);
assert (boost::any_cast<string>(compare_one(1, string("2,3")))== "2,3");
assert (boost::any_cast<string>(compare_one(string("5,1"), string("6"))) == "6");
assert (boost::any_cast<string>(compare_one(string("1"), string("2"))) == "2");
assert (boost::any_cast<string>(compare_one(string("1"), 1)) == "None");
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<algorithm>
#include<boost/any.hpp>
using namespace std;
#include<stdlib.h>
boost::any compare_one(boost::any a,boost::any b){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (boost::any_cast<double>(compare_one(1, 2.5))== 2.5);
assert (boost::any_cast<string>(compare_one(1, string("2,3")))== "2,3");
assert (boost::any_cast<string>(compare_one(string("5,1"), string("6"))) == "6");
assert (boost::any_cast<string>(compare_one(string("1"), 1)) == "None");
}
| double numa,numb;
boost::any out;
if (a.type()==typeid(string))
{
string s;
s=boost::any_cast<string>(a);
if (find(s.begin(),s.end(),',')!=s.end())
for (int i=0;i<s.length();i++)
if (s[i]==',') s=s.substr(0,i)+'.'+s.substr(i+1);
numa=atof(s.c_str());
}
else
{
if (a.type()==typeid(int)) numa=boost::any_cast<int>(a);
if (a.type()==typeid(double)) numa=boost::any_cast<double>(a);
}
if (b.type()==typeid(string))
{
string s;
s=boost::any_cast<string>(b);
if (find(s.begin(),s.end(),',')!=s.end())
for (int i=0;i<s.length();i++)
if (s[i]==',') s=s.substr(0,i)+'.'+s.substr(i+1)+',';
numb=atof(s.c_str());
}
else
{
if (b.type()==typeid(int)) numb=boost::any_cast<int>(b);
if (b.type()==typeid(double)) numb=boost::any_cast<double>(b);
}
if (numa==numb) return string("None");
if (numa<numb) return b;
if (numa>numb) return a;
}
| excess logic | incorrect output | compare_one | boost::any compare_one(boost::any a,boost::any b) | Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return "None" if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) ➞ 2.5
compare_one(1, "2,3") ➞ "2,3"
compare_one("5,1", "6") ➞ "6"
compare_one("1", 1) ➞ "None" | Write a C++ function `boost::any compare_one(boost::any a,boost::any b)` to solve the following problem:
Create a function that takes integers, floats, or strings representing
real numbers, and returns the larger variable in its given variable type.
Return "None" if the values are equal.
Note: If a real number is represented as a string, the floating point might be . or ,
compare_one(1, 2.5) ➞ 2.5
compare_one(1, "2,3") ➞ "2,3"
compare_one("5,1", "6") ➞ "6"
compare_one("1", 1) ➞ "None" |
CPP/138 | /*
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == false
is_equal_to_sum_even(6) == false
is_equal_to_sum_even(8) == true
*/
#include<stdio.h>
using namespace std;
bool is_equal_to_sum_even(int n){
| if (n%2==0 and n>=8) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_equal_to_sum_even(4) == false);
assert (is_equal_to_sum_even(6) == false);
assert (is_equal_to_sum_even(8) == true);
assert (is_equal_to_sum_even(10) == true);
assert (is_equal_to_sum_even(11) == false);
assert (is_equal_to_sum_even(12) == true);
assert (is_equal_to_sum_even(13) == false);
assert (is_equal_to_sum_even(16) == true);
}
| #include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#include<stdlib.h>
bool is_equal_to_sum_even(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (is_equal_to_sum_even(4) == false);
assert (is_equal_to_sum_even(6) == false);
assert (is_equal_to_sum_even(8) == true);
}
| if (n%2==0 and n>=8 and n <=8) return true;
return false;
}
| excess logic | incorrect output | is_equal_to_sum_even | bool is_equal_to_sum_even(int n) | Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == false
is_equal_to_sum_even(6) == false
is_equal_to_sum_even(8) == true | Write a C++ function `bool is_equal_to_sum_even(int n)` to solve the following problem:
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
is_equal_to_sum_even(4) == false
is_equal_to_sum_even(6) == false
is_equal_to_sum_even(8) == true |
CPP/139 | /*
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
*/
#include<stdio.h>
using namespace std;
long long special_factorial(int n){
| long long fact=1,bfact=1;
for (int i=1;i<=n;i++)
{
fact=fact*i;
bfact=bfact*fact;
}
return bfact;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (special_factorial(4) == 288);
assert (special_factorial(5) == 34560);
assert (special_factorial(7) == 125411328000);
assert (special_factorial(1) == 1);
}
| #include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#include<stdlib.h>
long long special_factorial(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (special_factorial(4) == 288);
}
| long long fact=1,bfact=1;
for (int i=1;i<=n;i++)
{
i=i*n;
fact=fact*i;
bfact=bfact*fact;
}
return bfact;
}
| excess logic | incorrect output | special_factorial | long long special_factorial(int n) | The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer. | Write a C++ function `long long special_factorial(int n)` to solve the following problem:
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> special_factorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer. |
CPP/140 | /*
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3"
*/
#include<stdio.h>
#include<string>
using namespace std;
string fix_spaces(string text){
| string out="";
int spacelen=0;
for (int i=0;i<text.length();i++)
if (text[i]==' ') spacelen+=1;
else
{
if (spacelen==1) out=out+'_';
if (spacelen==2) out=out+"__";
if (spacelen>2) out=out+'-';
spacelen=0;
out=out+text[i];
}
if (spacelen==1) out=out+'_';
if (spacelen==2) out=out+"__";
if (spacelen>2) out=out+'-';
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fix_spaces("Example") == "Example");
assert (fix_spaces("Mudasir Hanif ") == "Mudasir_Hanif_");
assert (fix_spaces("Yellow Yellow Dirty Fellow") == "Yellow_Yellow__Dirty__Fellow");
assert (fix_spaces("Exa mple") == "Exa-mple");
assert (fix_spaces(" Exa 1 2 2 mple") == "-Exa_1_2_2_mple");
}
| #include<stdio.h>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string fix_spaces(string text){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (fix_spaces("Example") == "Example");
assert (fix_spaces("Example 1") == "Example_1");
assert (fix_spaces(" Example 2") == "_Example_2");
assert (fix_spaces(" Example 3") == "_Example-3");
}
| string out="";
int spacelen=0;
for (int i=0;i<text.length();i++)
if (text[i]==' ') spacelen+=1;
else
{
if (spacelen==2) out=out+'_';
if (spacelen==3) out=out+"_";
if (spacelen>3) out=out+'-';
spacelen=0;
out=out+text[i];
}
if (spacelen==1) out=out+'_';
if (spacelen==2) out=out+"_";
if (spacelen>2) out=out+'-';
return out;
}
| excess logic | incorrect output | fix_spaces | string fix_spaces(string text) | Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3" | Write a C++ function `string fix_spaces(string text)` to solve the following problem:
Given a string text, replace all spaces in it with underscores,
and if a string has more than 2 consecutive spaces,
then replace all consecutive spaces with -
fix_spaces("Example") == "Example"
fix_spaces("Example 1") == "Example_1"
fix_spaces(" Example 2") == "_Example_2"
fix_spaces(" Example 3") == "_Example-3" |
CPP/141 | /*
Create a function which takes a string representing a file's name, and returns
"Yes" if the the file's name is valid, and returns "No" otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot "."
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: {'txt", "exe", "dll"}
Examples:
file_name_check("example.txt") => "Yes"
file_name_check("1example.dll") => "No" // (the name should start with a latin alphapet letter)
*/
#include<stdio.h>
#include<string>
using namespace std;
string file_name_check(string file_name){
| int numdigit=0,numdot=0;
if (file_name.length()<5) return "No";
char w=file_name[0];
if (w<65 or (w>90 and w<97) or w>122) return "No";
string last=file_name.substr(file_name.length()-4,4);
if (last!=".txt" and last!=".exe" and last!=".dll") return "No";
for (int i=0;i<file_name.length();i++)
{
if (file_name[i]>=48 and file_name[i]<=57) numdigit+=1;
if (file_name[i]=='.') numdot+=1;
}
if (numdigit>3 or numdot!=1) return "No";
return "Yes";
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (file_name_check("example.txt") == "Yes");
assert (file_name_check("1example.dll") == "No");
assert (file_name_check("s1sdf3.asd") == "No");
assert (file_name_check("K.dll") == "Yes");
assert (file_name_check("MY16FILE3.exe") == "Yes");
assert (file_name_check("His12FILE94.exe") == "No");
assert (file_name_check("_Y.txt") == "No");
assert (file_name_check("?aREYA.exe") == "No");
assert (file_name_check("/this_is_valid.dll") == "No");
assert (file_name_check("this_is_valid.wow") == "No");
assert (file_name_check("this_is_valid.txt") == "Yes");
assert (file_name_check("this_is_valid.txtexe") == "No");
assert (file_name_check("#this2_i4s_5valid.ten") == "No");
assert (file_name_check("@this1_is6_valid.exe") == "No");
assert (file_name_check("this_is_12valid.6exe4.txt") == "No");
assert (file_name_check("all.exe.txt") == "No");
assert (file_name_check("I563_No.exe") == "Yes");
assert (file_name_check("Is3youfault.txt") == "Yes");
assert (file_name_check("no_one#knows.dll") == "Yes");
assert (file_name_check("1I563_Yes3.exe") == "No");
assert (file_name_check("I563_Yes3.txtt") == "No");
assert (file_name_check("final..txt") == "No");
assert (file_name_check("final132") == "No");
assert (file_name_check("_f4indsartal132.") == "No");
assert (file_name_check(".txt") == "No");
assert (file_name_check("s.") == "No");
}
| #include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
#include<math.h>
#include<stdlib.h>
string file_name_check(string file_name){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (file_name_check("example.txt") == "Yes");
assert (file_name_check("1example.dll") == "No");
}
| int numdigit=0,numdot=0;
if (file_name.length()<5) return "No";
char w=file_name[0];
if (w<65 or (w>90 and w<97) or w>122) return "No";
string last=file_name.substr(file_name.length()-4,4);
if (last!=".txt" and last!=".exe" and last!=".dll") return "No";
for (int i=0;i<file_name.length();i++)
{
if (file_name[i]>=48 and file_name[i]<=57) numdigit+=1;
}
if (numdigit>3 or numdot!=1) return "No";
return "Yes";
}
| missing logic | incorrect output | file_name_check | string file_name_check(string file_name) | Create a function which takes a string representing a file's name, and returns
"Yes" if the the file's name is valid, and returns "No" otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot "."
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: {'txt", "exe", "dll"}
Examples:
file_name_check("example.txt") => "Yes"
file_name_check("1example.dll") => "No" // (the name should start with a latin alphapet letter) | Write a C++ function `string file_name_check(string file_name)` to solve the following problem:
Create a function which takes a string representing a file's name, and returns
"Yes" if the the file's name is valid, and returns "No" otherwise.
A file's name is considered to be valid if and only if all the following conditions
are met:
- There should not be more than three digits ('0'-'9') in the file's name.
- The file's name contains exactly one dot "."
- The substring before the dot should not be empty, and it starts with a letter from
the latin alphapet ('a'-'z' and 'A'-'Z').
- The substring after the dot should be one of these: {'txt", "exe", "dll"}
Examples:
file_name_check("example.txt") => "Yes"
file_name_check("1example.dll") => "No" // (the name should start with a latin alphapet letter) |
CPP/142 | /*
"
This function will take a vector of integers. For all entries in the vector, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = {1,2,3} the output should be 6
For lst = {} the output should be 0
For lst = {-1,-5,2,-1,-5} the output should be -126
*/
#include<stdio.h>
#include<vector>
using namespace std;
int sum_squares(vector<int> lst){
| int sum=0;
for (int i=0;i<lst.size();i++)
if (i%3==0) sum+=lst[i]*lst[i];
else if (i%4==0) sum+=lst[i]*lst[i]*lst[i];
else sum+=lst[i];
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sum_squares({1,2,3}) == 6);
assert (sum_squares({1,4,9}) == 14);
assert (sum_squares({}) == 0);
assert (sum_squares({1,1,1,1,1,1,1,1,1}) == 9);
assert (sum_squares({-1,-1,-1,-1,-1,-1,-1,-1,-1}) == -3);
assert (sum_squares({0}) == 0);
assert (sum_squares({-1,-5,2,-1,-5}) == -126);
assert (sum_squares({-56,-99,1,0,-2}) == 3030);
assert (sum_squares({-1,0,0,0,0,0,0,0,-1}) == 0);
assert (sum_squares({-16, -9, -2, 36, 36, 26, -20, 25, -40, 20, -4, 12, -26, 35, 37}) == -14196);
assert (sum_squares({-1, -3, 17, -1, -15, 13, -1, 14, -14, -12, -5, 14, -14, 6, 13, 11, 16, 16, 4, 10}) == -1448);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int sum_squares(vector<int> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (sum_squares({1,2,3}) == 6);
assert (sum_squares({}) == 0);
assert (sum_squares({-1,-5,2,-1,-5}) == -126);
}
| int sum=0;
for (int i=0;i<lst.size();i++)
if (i%3==0) sum+=lst[i]*lst[i];
else sum+=lst[i];
return sum;
}
| missing logic | incorrect output | sum_squares | int sum_squares(vector<int> lst) | "
This function will take a vector of integers. For all entries in the vector, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = {1,2,3} the output should be 6
For lst = {} the output should be 0
For lst = {-1,-5,2,-1,-5} the output should be -126 | Write a C++ function `int sum_squares(vector<int> lst)` to solve the following problem:
"
This function will take a vector of integers. For all entries in the vector, the function shall square the integer entry if its index is a
multiple of 3 and will cube the integer entry if its index is a multiple of 4 and not a multiple of 3. The function will not
change the entries in the vector whose indexes are not a multiple of 3 or 4. The function shall then return the sum of all entries.
Examples:
For lst = {1,2,3} the output should be 6
For lst = {} the output should be 0
For lst = {-1,-5,2,-1,-5} the output should be -126 |
CPP/143 | /*
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
*/
#include<stdio.h>
#include<string>
using namespace std;
string words_in_sentence(string sentence){
| string out="";
string current="";
sentence=sentence+' ';
for (int i=0;i<sentence.size();i++)
if (sentence[i]!=' ') current=current+sentence[i];
else
{
bool isp=true;
int l=current.length();
if (l<2) isp=false;
for (int j=2;j*j<=l;j++)
if (l%j==0) isp=false;
if (isp) out=out+current+' ';
current="";
}
if (out.length()>0)
out.pop_back();
return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (words_in_sentence("This is a test") == "is");
assert (words_in_sentence("lets go for swimming") == "go for");
assert (words_in_sentence("there is no place available here") == "there is no place");
assert (words_in_sentence("Hi I am Hussein") == "Hi am Hussein");
assert (words_in_sentence("go for it") == "go for it");
assert (words_in_sentence("here") == "");
assert (words_in_sentence("here is") == "is");
}
| #include<stdio.h>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string words_in_sentence(string sentence){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (words_in_sentence("This is a test") == "is");
assert (words_in_sentence("lets go for swimming") == "go for");
}
| string out="";
string current="";
sentence=sentence+' ';
for (int i=0;i<sentence.size();i++)
if (sentence[i]!=' ') current=current+sentence[i];
else
{
bool isp=true;
int l=current.length();
if (l<2) isp=false;
for (int j=2;j*j<=l;j++)
if (l%j==0) isp=false;
if (isp) out=out+current+' ';
current="";
}
return out;
}
| missing logic | incorrect output | words_in_sentence | string words_in_sentence(string sentence) | You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters | Write a C++ function `string words_in_sentence(string sentence)` to solve the following problem:
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters |
CPP/144 | /*
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = true
simplify("1/6", "2/1") = false
simplify("7/10", "10/2") = false
*/
#include<stdio.h>
#include<string>
using namespace std;
bool simplify(string x,string n){
| int a,b,c,d,i;
for (i=0;i<x.size();i++)
if (x[i]=='/')
{
a=atoi(x.substr(0,i).c_str());
b=atoi(x.substr(i+1).c_str());
}
for (i=0;i<n.size();i++)
if (n[i]=='/')
{
c=atoi(n.substr(0,i).c_str());
d=atoi(n.substr(i+1).c_str());
}
if ((a*c)%(b*d)==0) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (simplify("1/5", "5/1") == true);
assert (simplify("1/6", "2/1") == false);
assert (simplify("5/1", "3/1") == true);
assert (simplify("7/10", "10/2") == false);
assert (simplify("2/10", "50/10") == true);
assert (simplify("7/2", "4/2") == true);
assert (simplify("11/6", "6/1") == true);
assert (simplify("2/3", "5/2") == false);
assert (simplify("5/2", "3/5") == false);
assert (simplify("2/4", "8/4") == true);
assert (simplify("2/4", "4/2") == true);
assert (simplify("1/5", "5/1") == true);
assert (simplify("1/5", "1/5") == false);
}
| #include<stdio.h>
#include<string>
#include<algorithm>
using namespace std;
#include<math.h>
#include<stdlib.h>
bool simplify(string x,string n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (simplify("1/5", "5/1") == true);
assert (simplify("1/6", "2/1") == false);
assert (simplify("7/10", "10/2") == false);
}
| int a,b,c,d,i;
for (i=0;i<x.size();i++)
if (x[i]=='/')
{
a=atoi(x.substr(0,i).c_str());
b=atoi(x.substr(i+1).c_str());
}
for (i=0;i<n.size();i++)
if (n[i]=='/')
{
c=atoi(n.substr(0,i).c_str());
d=atoi(n.substr(i+1).c_str());
a=atoi(n.substr(0,i).c_str());
b=atoi(n.substr(i+1).c_str());
}
if ((a*c)%(b*d)==0) return true;
return false;
}
| excess logic | incorrect output | simplify | bool simplify(string x,string n) | Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = true
simplify("1/6", "2/1") = false
simplify("7/10", "10/2") = false | Write a C++ function `bool simplify(string x,string n)` to solve the following problem:
Your task is to implement a function that will simplify the expression
x * n. The function returns true if x * n evaluates to a whole number and false
otherwise. Both x and n, are string representation of a fraction, and have the following format,
<numerator>/<denominator> where both numerator and denominator are positive whole numbers.
You can assume that x, and n are valid fractions, and do not have zero as denominator.
simplify("1/5", "5/1") = true
simplify("1/6", "2/1") = false
simplify("7/10", "10/2") = false |
CPP/145 | /*
Write a function which sorts the given vector of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original vector.
For example:
>>> order_by_points({1, 11, -1, -11, -12}) == {-1, -11, 1, -12, 11}
>>> order_by_points({}) == {}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
vector<int> order_by_points(vector<int> nums){
| vector<int> sumdigit={};
for (int i=0;i<nums.size();i++)
{
string w=to_string(abs(nums[i]));
int sum=0;
for (int j=1;j<w.length();j++)
sum+=w[j]-48;
if (nums[i]>0) sum+=w[0]-48;
else sum-=w[0]-48;
sumdigit.push_back(sum);
}
int m;
for (int i=0;i<nums.size();i++)
for (int j=1;j<nums.size();j++)
if (sumdigit[j-1]>sumdigit[j])
{
m=sumdigit[j];sumdigit[j]=sumdigit[j-1];sumdigit[j-1]=m;
m=nums[j];nums[j]=nums[j-1];nums[j-1]=m;
}
return nums;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(order_by_points({1, 11, -1, -11, -12}) , {-1, -11, 1, -12, 11}));
assert (issame(order_by_points({1234,423,463,145,2,423,423,53,6,37,3457,3,56,0,46}) , {0, 2, 3, 6, 53, 423, 423, 423, 1234, 145, 37, 46, 56, 463, 3457}));
assert (issame(order_by_points({}) , {}));
assert (issame(order_by_points({1, -11, -32, 43, 54, -98, 2, -3}) , {-3, -32, -98, -11, 1, 2, 43, 54}));
assert (issame(order_by_points({1,2,3,4,5,6,7,8,9,10,11}) , {1, 10, 2, 11, 3, 4, 5, 6, 7, 8, 9}));
assert (issame(order_by_points({0,6,6,-76,-21,23,4}) , {-76, -21, 0, 4, 23, 6, 6}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<int> order_by_points(vector<int> nums){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(order_by_points({1, 11, -1, -11, -12}) , {-1, -11, 1, -12, 11}));
assert (issame(order_by_points({}) , {}));
}
| vector<int> sumdigit={};
for (int i=0;i<nums.size();i++)
{
string w=to_string(abs(nums[i]));
int sum=0;
for (int j=1;j<w.length();j++)
sum+=w[j]-48;
if (nums[i]>0) sum+=w[0]-48;
else sum-=w[0]-48;
sumdigit.push_back(sum);
}
int m;
for (int i=0;i<nums.size();i++)
for (int j=1;j<nums.size();j++)
if (sumdigit[j-1]>sumdigit[j])
{
m=sumdigit[j];sumdigit[j]=sumdigit[j-1];sumdigit[j-1]=m;sumdigit[j]=m;
m=nums[j];nums[j]=nums[j-1];nums[j-1]=m;nums[j]=m;
}
return nums;
}
| excess logic | incorrect output | order_by_points | vector<int> order_by_points(vector<int> nums) | Write a function which sorts the given vector of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original vector.
For example:
>>> order_by_points({1, 11, -1, -11, -12}) == {-1, -11, 1, -12, 11}
>>> order_by_points({}) == {} | Write a C++ function `vector<int> order_by_points(vector<int> nums)` to solve the following problem:
Write a function which sorts the given vector of integers
in ascending order according to the sum of their digits.
Note: if there are several items with similar sum of their digits,
order them based on their index in original vector.
For example:
>>> order_by_points({1, 11, -1, -11, -12}) == {-1, -11, 1, -12, 11}
>>> order_by_points({}) == {} |
CPP/146 | /*
Write a function that takes a vector of numbers as input and returns
the number of elements in the vector that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter({15, -73, 14, -15}) => 1
specialFilter({33, -2, -3, 45, 21, 109}) => 2
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
int specialFilter(vector<int> nums){
| int num=0;
for (int i=0;i<nums.size();i++)
if (nums[i]>10)
{
string w=to_string(nums[i]);
if (w[0]%2==1 and w[w.length()-1]%2==1) num+=1;
}
return num;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (specialFilter({5, -2, 1, -5}) == 0 );
assert (specialFilter({15, -73, 14, -15}) == 1);
assert (specialFilter({33, -2, -3, 45, 21, 109}) == 2);
assert (specialFilter({43, -12, 93, 125, 121, 109}) == 4);
assert (specialFilter({71, -2, -33, 75, 21, 19}) == 3);
assert (specialFilter({1}) == 0 );
assert (specialFilter({}) == 0 );
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int specialFilter(vector<int> nums){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (specialFilter({15, -73, 14, -15}) == 1);
assert (specialFilter({33, -2, -3, 45, 21, 109}) == 2);
}
| int num=0;
for (int i=0;i<nums.size();i++)
if (nums[i]>10)
{
string w=to_string(nums[i]);
if (w[0]%2==1 and w[w.length()-1]%2==1 and w[w.length()-1]%2==0) num+=1;
}
return num;
}
| excess logic | incorrect output | specialFilter | int specialFilter(vector<int> nums) | Write a function that takes a vector of numbers as input and returns
the number of elements in the vector that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter({15, -73, 14, -15}) => 1
specialFilter({33, -2, -3, 45, 21, 109}) => 2 | Write a C++ function `int specialFilter(vector<int> nums)` to solve the following problem:
Write a function that takes a vector of numbers as input and returns
the number of elements in the vector that are greater than 10 and both
first and last digits of a number are odd (1, 3, 5, 7, 9).
For example:
specialFilter({15, -73, 14, -15}) => 1
specialFilter({33, -2, -3, 45, 21, 109}) => 2 |
CPP/147 | /*
You are given a positive integer n. You have to create an integer vector a of length n.
For each i (1 ≤ i ≤ n), the value of a{i} = i * i - i + 1.
Return the number of triples (a{i}, a{j}, a{k}) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = {1, 3, 7, 13, 21}
The only valid triple is (1, 7, 13).
*/
#include<stdio.h>
#include<vector>
using namespace std;
int get_matrix_triples(int n){
| vector<int> a;
vector<vector<int>> sum={{0,0,0}};
vector<vector<int>> sum2={{0,0,0}};
for (int i=1;i<=n;i++)
{
a.push_back((i*i-i+1)%3);
sum.push_back(sum[sum.size()-1]);
sum[i][a[i-1]]+=1;
}
for (int times=1;times<3;times++)
{
for (int i=1;i<=n;i++)
{
sum2.push_back(sum2[sum2.size()-1]);
if (i>=1)
for (int j=0;j<=2;j++)
sum2[i][(a[i-1]+j)%3]+=sum[i-1][j];
}
sum=sum2;
sum2={{0,0,0}};
}
return sum[n][0];
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (get_matrix_triples(5) == 1);
assert (get_matrix_triples(6) == 4);
assert (get_matrix_triples(10) == 36);
assert (get_matrix_triples(100) == 53361);
}
| #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
int get_matrix_triples(int n){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (get_matrix_triples(5) == 1);
}
| vector<int> a;
vector<vector<int>> sum={{0,0,0}};
vector<vector<int>> sum2={{0,0,0}};
for (int i=1;i<=n;i++)
{
a.push_back((i*i)%3);
sum.push_back(sum[sum.size()-1]);
sum[i][a[i-1]]+=1;
}
for (int times=1;times<3;times++)
{
for (int i=1;i<=n;i++)
{
sum2.push_back(sum2[sum2.size()-1]);
if (i>=1)
for (int j=0;j<=2;j++)
sum2[i][(a[i-1]+j)%3]+=sum[i-1][j];
}
sum=sum2;
sum2={{0,0,0}};
}
return sum[n][0];
}
| missing logic | incorrect output | get_matrix_triples | int get_matrix_triples(int n) | You are given a positive integer n. You have to create an integer vector a of length n.
For each i (1 ≤ i ≤ n), the value of a{i} = i * i - i + 1.
Return the number of triples (a{i}, a{j}, a{k}) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = {1, 3, 7, 13, 21}
The only valid triple is (1, 7, 13). | Write a C++ function `int get_matrix_triples(int n)` to solve the following problem:
You are given a positive integer n. You have to create an integer vector a of length n.
For each i (1 ≤ i ≤ n), the value of a{i} = i * i - i + 1.
Return the number of triples (a{i}, a{j}, a{k}) of a where i < j < k,
and a[i] + a[j] + a[k] is a multiple of 3.
Example :
Input: n = 5
Output: 1
Explanation:
a = {1, 3, 7, 13, 21}
The only valid triple is (1, 7, 13). |
CPP/148 | /*
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a vector containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty vector if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> {"Saturn", "Uranus"}
bf("Earth", "Mercury") ==> {"Venus"}
bf("Mercury", "Uranus") ==> {"Venus", "Earth", "Mars", "Jupiter", "Saturn"}
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
vector<string> bf(string planet1,string planet2){
| vector<string> planets={"Mercury","Venus","Earth","Mars","Jupiter","Saturn","Uranus","Neptune"};
int pos1=-1,pos2=-1,m;
for (m=0;m<planets.size();m++)
{
if (planets[m]==planet1) pos1=m;
if (planets[m]==planet2) pos2=m;
}
if (pos1==-1 or pos2==-1) return {};
if (pos1>pos2) {m=pos1;pos1=pos2;pos2=m;}
vector<string> out={};
for (m=pos1+1;m<pos2;m++)
out.push_back(planets[m]);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(bf("Jupiter", "Neptune") , {"Saturn", "Uranus"}));
assert (issame(bf("Earth", "Mercury") , {"Venus",}));
assert (issame(bf("Mercury", "Uranus") , {"Venus", "Earth", "Mars", "Jupiter", "Saturn"}));
assert (issame(bf("Neptune", "Venus") , {"Earth", "Mars", "Jupiter", "Saturn", "Uranus"}));
assert (issame(bf("Earth", "Earth") , {}));
assert (issame(bf("Mars", "Earth") , {}));
assert (issame(bf("Jupiter", "Makemake") , {}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
vector<string> bf(string planet1,string planet2){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(bf("Jupiter", "Neptune") , {"Saturn", "Uranus"}));
assert (issame(bf("Earth", "Mercury") , {"Venus",}));
assert (issame(bf("Mercury", "Uranus") , {"Venus", "Earth", "Mars", "Jupiter", "Saturn"}));
}
| vector<string> planets={"Mercury","Venus","Earth","Mars","Jupyter","Saturn","Uranus","Neptune"};
int pos1=-1,pos2=-1,m;
for (m=0;m<planets.size();m++)
{
if (planets[m]==planet1) pos1=m;
if (planets[m]==planet2) pos2=m;
}
if (pos1==-1 or pos2==-1) return {};
if (pos1>pos2) {m=pos1;pos1=pos2;pos2=m;}
vector<string> out={};
for (m=pos1+1;m<pos2;m++)
out.push_back(planets[m]);
return out;
}
| value misuse | incorrect output | bf | vector<string> bf(string planet1,string planet2) | There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a vector containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty vector if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> {"Saturn", "Uranus"}
bf("Earth", "Mercury") ==> {"Venus"}
bf("Mercury", "Uranus") ==> {"Venus", "Earth", "Mars", "Jupiter", "Saturn"} | Write a C++ function `vector<string> bf(string planet1,string planet2)` to solve the following problem:
There are eight planets in our solar system: the closerst to the Sun
is Mercury, the next one is Venus, then Earth, Mars, Jupiter, Saturn,
Uranus, Neptune.
Write a function that takes two planet names as strings planet1 and planet2.
The function should return a vector containing all planets whose orbits are
located between the orbit of planet1 and the orbit of planet2, sorted by
the proximity to the sun.
The function should return an empty vector if planet1 or planet2
are not correct planet names.
Examples
bf("Jupiter", "Neptune") ==> {"Saturn", "Uranus"}
bf("Earth", "Mercury") ==> {"Venus"}
bf("Mercury", "Uranus") ==> {"Venus", "Earth", "Mars", "Jupiter", "Saturn"} |
CPP/149 | /*
Write a function that accepts a vector of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted vector with a sorted order,
The vector is always a vector of strings and never a vector of numbers,
and it may contain duplicates.
The order of the vector should be ascending by length of each word, and you
should return the vector sorted by that rule.
If two words have the same length, sort the vector alphabetically.
The function should return a vector of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert vector_sort({"aa", "a", "aaa"}) => {"aa"}
assert vector_sort({"ab", "a", "aaa", "cd"}) => {"ab", "cd"}
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
vector<string> sorted_list_sum(vector<string> lst){
| vector<string> out={};
for (int i=0;i<lst.size();i++)
if (lst[i].length()%2==0) out.push_back(lst[i]);
string mid;
sort(out.begin(),out.end());
for (int i=0;i<out.size();i++)
for (int j=1;j<out.size();j++)
if (out[j].length()<out[j-1].length())
{
mid=out[j];out[j]=out[j-1];out[j-1]=mid;
}
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sorted_list_sum({"aa", "a", "aaa"}) , {"aa"}));
assert (issame(sorted_list_sum({"school", "AI", "asdf", "b"}) , {"AI", "asdf", "school"}));
assert (issame(sorted_list_sum({"d", "b", "c", "a"}) , {}));
assert (issame(sorted_list_sum({"d", "dcba", "abcd", "a"}) , {"abcd", "dcba"}));
assert (issame(sorted_list_sum({"AI", "ai", "au"}) , {"AI", "ai", "au"}));
assert (issame(sorted_list_sum({"a", "b", "b", "c", "c", "a"}) , {}));
assert (issame(sorted_list_sum({"aaaa", "bbbb", "dd", "cc"}) , {"cc", "dd", "aaaa", "bbbb"}));
}
| #include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<math.h>
#include<stdlib.h>
vector<string> sorted_list_sum(vector<string> lst){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<string> a,vector<string>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(sorted_list_sum({"aa", "a", "aaa"}) , {"aa"}));
assert (issame(sorted_list_sum({"ab", "a", "aaa", "cd"}) , {"ab", "cd"}));
}
| vector<string> out={};
for (int i=0;i<lst.size();i++)
if (lst[i].length()%2==0) out.push_back(lst[i]);
string mid;
for (int i=0;i<out.size();i++)
for (int j=1;j<out.size();j++)
if (out[j].length()<out[j-1].length())
{
mid=out[j];out[j]=out[j-1];out[j-1]=mid;
}
return out;
}
| missing logic | incorrect output | sorted_list_sum | vector<string> sorted_list_sum(vector<string> lst) | Write a function that accepts a vector of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted vector with a sorted order,
The vector is always a vector of strings and never a vector of numbers,
and it may contain duplicates.
The order of the vector should be ascending by length of each word, and you
should return the vector sorted by that rule.
If two words have the same length, sort the vector alphabetically.
The function should return a vector of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert vector_sort({"aa", "a", "aaa"}) => {"aa"}
assert vector_sort({"ab", "a", "aaa", "cd"}) => {"ab", "cd"} | Write a C++ function `vector<string> sorted_list_sum(vector<string> lst)` to solve the following problem:
Write a function that accepts a vector of strings as a parameter,
deletes the strings that have odd lengths from it,
and returns the resulted vector with a sorted order,
The vector is always a vector of strings and never a vector of numbers,
and it may contain duplicates.
The order of the vector should be ascending by length of each word, and you
should return the vector sorted by that rule.
If two words have the same length, sort the vector alphabetically.
The function should return a vector of strings in sorted order.
You may assume that all words will have the same length.
For example:
assert vector_sort({"aa", "a", "aaa"}) => {"aa"}
assert vector_sort({"ab", "a", "aaa", "cd"}) => {"ab", "cd"} |
CPP/150 | /*
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5
*/
#include<stdio.h>
using namespace std;
int x_or_y(int n,int x,int y){
| bool isp=true;
if (n<2) isp=false;
for (int i=2;i*i<=n;i++)
if (n%i==0) isp=false;
if (isp) return x;
return y;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (x_or_y(7, 34, 12) == 34);
assert (x_or_y(15, 8, 5) == 5);
assert (x_or_y(3, 33, 5212) == 33);
assert (x_or_y(1259, 3, 52) == 3);
assert (x_or_y(7919, -1, 12) == -1);
assert (x_or_y(3609, 1245, 583) == 583);
assert (x_or_y(91, 56, 129) == 129);
assert (x_or_y(6, 34, 1234) == 1234);
assert (x_or_y(1, 2, 0) == 0);
assert (x_or_y(2, 2, 0) == 2);
}
| #include<stdio.h>
#include<math.h>
#include<algorithm>
using namespace std;
#include<stdlib.h>
int x_or_y(int n,int x,int y){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (x_or_y(7, 34, 12) == 34);
assert (x_or_y(15, 8, 5) == 5);
}
| bool isp=true;
if (n<2) isp=false;
for (int i=2;i*i<=n;i++)
if (n%i-1==0) isp=false;
if (isp) return x;
return y;
}
| excess logic | incorrect output | x_or_y | int x_or_y(int n,int x,int y) | A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5 | Write a C++ function `int x_or_y(int n,int x,int y)` to solve the following problem:
A simple program which should return the value of x if n is
a prime number and should return the value of y otherwise.
Examples:
for x_or_y(7, 34, 12) == 34
for x_or_y(15, 8, 5) == 5 |
CPP/151 | /*
Given a vector of numbers, return the sum of squares of the numbers
in the vector that are odd. Ignore numbers that are negative or not integers.
double_the_difference({1, 3, 2, 0}) == 1 + 9 + 0 + 0 = 10
double_the_difference({-1, -2, 0}) == 0
double_the_difference({9, -2}) == 81
double_the_difference({0}) == 0
If the input vector is empty, return 0.
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
long long double_the_difference(vector<float> lst){
| long long sum=0;
for (int i=0;i<lst.size();i++)
if (lst[i]-round(lst[i])<1e-4)
if (lst[i]>0 and (int)(round(lst[i]))%2==1) sum+=(int)(round(lst[i]))*(int)(round(lst[i]));
return sum;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (double_the_difference({}) == 0);
assert (double_the_difference({5, 4}) == 25);
assert (double_the_difference({0.1, 0.2, 0.3}) == 0 );
assert (double_the_difference({-10, -20, -30}) == 0 );
assert (double_the_difference({-1, -2, 8}) == 0);
assert (double_the_difference({0.2, 3, 5}) == 34);
long long odd_sum=0;
vector<float> lst={};
for (int i=-99;i<100;i+=2)
{
lst.push_back(i+0.0);
if (i>0 and i%2==1) odd_sum+=i*i;
}
assert (double_the_difference(lst) == odd_sum );
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std;
#include<stdlib.h>
long long double_the_difference(vector<float> lst){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (double_the_difference({1, 3, 2, 0}) == 10);
assert (double_the_difference({-1, -2, 0}) == 0);
assert (double_the_difference({9, -2}) == 81 );
assert (double_the_difference({0}) == 0 );
}
| long long sum=0;
for (int i=0;i<lst.size();i++)
if (lst[i]<1e-4)
if (lst[i]>0 and (int)(round(lst[i]))%2==1) sum+=(int)(round(lst[i]))*(int)(round(lst[i]));
return sum;
}
| missing logic | incorrect output | double_the_difference | long long double_the_difference(vector<float> lst) | Given a vector of numbers, return the sum of squares of the numbers
in the vector that are odd. Ignore numbers that are negative or not integers.
double_the_difference({1, 3, 2, 0}) == 1 + 9 + 0 + 0 = 10
double_the_difference({-1, -2, 0}) == 0
double_the_difference({9, -2}) == 81
double_the_difference({0}) == 0
If the input vector is empty, return 0. | Write a C++ function `long long double_the_difference(vector<float> lst)` to solve the following problem:
Given a vector of numbers, return the sum of squares of the numbers
in the vector that are odd. Ignore numbers that are negative or not integers.
double_the_difference({1, 3, 2, 0}) == 1 + 9 + 0 + 0 = 10
double_the_difference({-1, -2, 0}) == 0
double_the_difference({9, -2}) == 81
double_the_difference({0}) == 0
If the input vector is empty, return 0. |
CPP/152 | /*
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two vectors of scores and guesses of equal length, where each index shows a match.
Return a vector of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare({1,2,3,4,5,1},{1,2,3,4,2,-2}) -> {0,0,0,0,3,3}
compare({0,5,0,0,0,4},{4,1,1,0,0,-2}) -> {4,4,1,0,0,6}
*/
#include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
vector<int> compare(vector<int> game,vector<int> guess){
| vector<int> out;
for (int i=0;i<game.size();i++)
out.push_back(abs(game[i]-guess[i]));
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(compare({1,2,3,4,5,1},{1,2,3,4,2,-2}),{0,0,0,0,3,3}));
assert (issame(compare({0,5,0,0,0,4},{4,1,1,0,0,-2}),{4,4,1,0,0,6}));
assert (issame(compare({1,2,3,4,5,1},{1,2,3,4,2,-2}),{0,0,0,0,3,3}));
assert (issame(compare({0,0,0,0,0,0},{0,0,0,0,0,0}),{0,0,0,0,0,0}));
assert (issame(compare({1,2,3},{-1,-2,-3}),{2,4,6}));
assert (issame(compare({1,2,3,5},{-1,2,3,4}),{2,0,0,1}));
}
| #include<stdio.h>
#include<math.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> compare(vector<int> game,vector<int> guess){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(compare({1,2,3,4,5,1},{1,2,3,4,2,-2}),{0,0,0,0,3,3}));
assert (issame(compare({0,5,0,0,0,4},{4,1,1,0,0,-2}),{4,4,1,0,0,6}));
}
| vector<int> out;
for (int i=0;i<game.size();i++)
out.push_back(abs(game[i]-guess[i])+abs(guess[i]-game[i]));
return out;
}
| excess logic | incorrect output | compare | vector<int> compare(vector<int> game,vector<int> guess) | I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two vectors of scores and guesses of equal length, where each index shows a match.
Return a vector of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare({1,2,3,4,5,1},{1,2,3,4,2,-2}) -> {0,0,0,0,3,3}
compare({0,5,0,0,0,4},{4,1,1,0,0,-2}) -> {4,4,1,0,0,6} | Write a C++ function `vector<int> compare(vector<int> game,vector<int> guess)` to solve the following problem:
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two vectors of scores and guesses of equal length, where each index shows a match.
Return a vector of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare({1,2,3,4,5,1},{1,2,3,4,2,-2}) -> {0,0,0,0,3,3}
compare({0,5,0,0,0,4},{4,1,1,0,0,-2}) -> {4,4,1,0,0,6} |
CPP/153 | /*
You will be given the name of a class (a string) and a vector of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the vector.
For example, if you are given "Slices" as the class and a vector of the
extensions: {"SErviNGSliCes", "Cheese", "StuFfed"} then you should
return "Slices.SErviNGSliCes" since "SErviNGSliCes" is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension("my_class", {"AA", "Be", "CC"}) == "my_class.AA"
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string Strongest_Extension(string class_name,vector<string> extensions){
| string strongest="";
int max=-1000;
for (int i=0;i<extensions.size();i++)
{
int strength=0;
for (int j=0;j<extensions[i].length();j++)
{
char chr=extensions[i][j];
if (chr>=65 and chr<=90) strength+=1;
if (chr>=97 and chr<=122) strength-=1;
}
if (strength>max)
{
max=strength;
strongest=extensions[i];
}
}
return class_name+'.'+strongest;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (Strongest_Extension("Watashi", {"tEN", "niNE", "eIGHt8OKe"}) == "Watashi.eIGHt8OKe");
assert (Strongest_Extension("Boku123", {"nani", "NazeDa", "YEs.WeCaNe", "32145tggg"}) == "Boku123.YEs.WeCaNe");
assert (Strongest_Extension("__YESIMHERE", {"t", "eMptY", "(nothing", "zeR00", "NuLl__", "123NoooneB321"}) == "__YESIMHERE.NuLl__");
assert (Strongest_Extension("K", {"Ta", "TAR", "t234An", "cosSo"}) == "K.TAR");
assert (Strongest_Extension("__HAHA", {"Tab", "123", "781345", "-_-"}) == "__HAHA.123");
assert (Strongest_Extension("YameRore", {"HhAas", "okIWILL123", "WorkOut", "Fails", "-_-"}) == "YameRore.okIWILL123");
assert (Strongest_Extension("finNNalLLly", {"Die", "NowW", "Wow", "WoW"}) == "finNNalLLly.WoW");
assert (Strongest_Extension("_", {"Bb", "91245"}) == "_.Bb");
assert (Strongest_Extension("Sp", {"671235", "Bb"}) == "Sp.671235");
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<stdlib.h>
string Strongest_Extension(string class_name,vector<string> extensions){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (Strongest_Extension("my_class", {"AA", "Be", "CC"}) == "my_class.AA");
}
| string strongest="";
int max=-1000;
for (int i=0;i<extensions.size();i++)
{
int strength=0;
for (int j=0;j<extensions[i].length();j++)
{
char chr=extensions[i][j];
if (chr>=65 and chr<=90) strength+=1;
if (chr>=97 and chr<=122) strength-=1;
}
if (strength>max)
{
max=strength;
strongest=extensions[i];
}
}
return class_name+strongest;
}
| missing logic | incorrect output | Strongest_Extension | string Strongest_Extension(string class_name,vector<string> extensions) | You will be given the name of a class (a string) and a vector of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the vector.
For example, if you are given "Slices" as the class and a vector of the
extensions: {"SErviNGSliCes", "Cheese", "StuFfed"} then you should
return "Slices.SErviNGSliCes" since "SErviNGSliCes" is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension("my_class", {"AA", "Be", "CC"}) == "my_class.AA" | Write a C++ function `string Strongest_Extension(string class_name,vector<string> extensions)` to solve the following problem:
You will be given the name of a class (a string) and a vector of extensions.
The extensions are to be used to load additional classes to the class. The
strength of the extension is as follows: Let CAP be the number of the uppercase
letters in the extension's name, and let SM be the number of lowercase letters
in the extension's name, the strength is given by the fraction CAP - SM.
You should find the strongest extension and return a string in this
format: ClassName.StrongestExtensionName.
If there are two or more extensions with the same strength, you should
choose the one that comes first in the vector.
For example, if you are given "Slices" as the class and a vector of the
extensions: {"SErviNGSliCes", "Cheese", "StuFfed"} then you should
return "Slices.SErviNGSliCes" since "SErviNGSliCes" is the strongest extension
(its strength is -1).
Example:
for Strongest_Extension("my_class", {"AA", "Be", "CC"}) == "my_class.AA" |
CPP/154 | /*
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpattern_check("abcd","abd") => false
cycpattern_check("hello","ell") => true
cycpattern_check("whassup","psus") => false
cycpattern_check("abab","baa") => true
cycpattern_check("efef","eeff") => false
cycpattern_check("himenss",'simen") => true
*/
#include<stdio.h>
#include<string>
using namespace std;
bool cycpattern_check(string a,string b){
| for (int i=0;i<b.size();i++)
{
string rotate=b.substr(i)+b.substr(0,i);
if (a.find(rotate)!=string::npos) return true;
}
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (cycpattern_check("xyzw","xyw") == false );
assert (cycpattern_check("yello","ell") == true );
assert (cycpattern_check("whattup","ptut") == false );
assert (cycpattern_check("efef","fee") == true );
assert (cycpattern_check("abab","aabb") == false );
assert (cycpattern_check("winemtt","tinem") == true );
}
| #include<stdio.h>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
bool cycpattern_check(string a,string b){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (cycpattern_check("abcd","abd") == false );
assert (cycpattern_check("hello","ell") == true );
assert (cycpattern_check("whassup","psus") == false );
assert (cycpattern_check("abab","baa") == true );
assert (cycpattern_check("efef","eeff") == false );
assert (cycpattern_check("himenss","simen") == true );
}
| for (int i=0;i<b.size();i++)
{
string rotate=b.substr(i)+b.substr(0);
if (a.find(rotate)!=string::npos) return true;
}
return false;
}
| value misuse | incorrect output | cycpattern_check | bool cycpattern_check(string a,string b) | You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpattern_check("abcd","abd") => false
cycpattern_check("hello","ell") => true
cycpattern_check("whassup","psus") => false
cycpattern_check("abab","baa") => true
cycpattern_check("efef","eeff") => false
cycpattern_check("himenss",'simen") => true | Write a C++ function `bool cycpattern_check(string a,string b)` to solve the following problem:
You are given 2 words. You need to return true if the second word or any of its rotations is a substring in the first word
cycpattern_check("abcd","abd") => false
cycpattern_check("hello","ell") => true
cycpattern_check("whassup","psus") => false
cycpattern_check("abab","baa") => true
cycpattern_check("efef","eeff") => false
cycpattern_check("himenss",'simen") => true |
CPP/155 | /*
Given an integer. return a vector that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> {1, 1}
even_odd_count(123) ==> {1, 2}
*/
#include<stdio.h>
#include<math.h>
#include<string>
#include<vector>
using namespace std;
vector<int> even_odd_count(int num){
| string w=to_string(abs(num));
int n1=0,n2=0;
for (int i=0;i<w.length();i++)
if (w[i]%2==1) n1+=1;
else n2+=1;
return {n2,n1};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(even_odd_count(7) , {0, 1}));
assert (issame(even_odd_count(-78) , {1, 1}));
assert (issame(even_odd_count(3452) , {2, 2}));
assert (issame(even_odd_count(346211) , {3, 3}));
assert (issame(even_odd_count(-345821) , {3, 3}));
assert (issame(even_odd_count(-2) , {1, 0}));
assert (issame(even_odd_count(-45347) , {2, 3}));
assert (issame(even_odd_count(0) , {1, 0}));
}
| #include<stdio.h>
#include<math.h>
#include<string>
#include<vector>
using namespace std;
#include<algorithm>
#include<stdlib.h>
vector<int> even_odd_count(int num){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(even_odd_count(-12) , {1, 1}));
assert (issame(even_odd_count(123) , {1, 2}));
}
| string w=to_string(abs(num));
int n1=0,n2=0;
for (int i=0;i<w.length();i++)
if (w[i]%2==1) n1+=1;
return {n2,n1};
}
| missing logic | incorrect output | even_odd_count | vector<int> even_odd_count(int num) | Given an integer. return a vector that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> {1, 1}
even_odd_count(123) ==> {1, 2} | Write a C++ function `vector<int> even_odd_count(int num)` to solve the following problem:
Given an integer. return a vector that has the number of even and odd digits respectively.
Example:
even_odd_count(-12) ==> {1, 1}
even_odd_count(123) ==> {1, 2} |
CPP/156 | /*
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == "xix"
>>> int_to_mini_roman(152) == "clii"
>>> int_to_mini_roman(426) == "cdxxvi"
*/
#include<stdio.h>
#include<vector>
#include<string>
using namespace std;
string int_to_mini_romank(int number){
| string current="";
vector<string> rep={"m","cm","d","cd","c","xc","l","xl","x","ix","v","iv","i"};
vector<int> num={1000,900,500,400,100,90,50,40,10,9,5,4,1};
int pos=0;
while(number>0)
{
while (number>=num[pos])
{
current=current+rep[pos];
number-=num[pos];
}
if (number>0) pos+=1;
}
return current;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (int_to_mini_romank(19) == "xix");
assert (int_to_mini_romank(152) == "clii");
assert (int_to_mini_romank(251) == "ccli");
assert (int_to_mini_romank(426) == "cdxxvi");
assert (int_to_mini_romank(500) == "d");
assert (int_to_mini_romank(1) == "i");
assert (int_to_mini_romank(4) == "iv");
assert (int_to_mini_romank(43) == "xliii");
assert (int_to_mini_romank(90) == "xc");
assert (int_to_mini_romank(94) == "xciv");
assert (int_to_mini_romank(532) == "dxxxii");
assert (int_to_mini_romank(900) == "cm");
assert (int_to_mini_romank(994) == "cmxciv");
assert (int_to_mini_romank(1000) == "m");
}
| #include<stdio.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string int_to_mini_romank(int number){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (int_to_mini_romank(19) == "xix");
assert (int_to_mini_romank(152) == "clii");
assert (int_to_mini_romank(426) == "cdxxvi");
}
| string current="";
vector<string> rep={"m","cm","d","cd","c","xc","l","xl","x","ix","v","iv","i"};
vector<int> num={1000,900,500,400,100,90,50,40,10,9,5,4,1};
int pos=0;
while(number>0)
{
while (number>=num[pos])
{
current=current+rep[pos];
}
if (number>0) pos+=1;
}
return current;
}
| missing logic | infinite loop | int_to_mini_roman | string int_to_mini_romank(int number) | Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == "xix"
>>> int_to_mini_roman(152) == "clii"
>>> int_to_mini_roman(426) == "cdxxvi" | Write a C++ function `string int_to_mini_romank(int number)` to solve the following problem:
Given a positive integer, obtain its roman numeral equivalent as a string,
and return it in lowercase.
Restrictions: 1 <= num <= 1000
Examples:
>>> int_to_mini_roman(19) == "xix"
>>> int_to_mini_roman(152) == "clii"
>>> int_to_mini_roman(426) == "cdxxvi" |
CPP/157 | /*
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == true
right_angle_triangle(1, 2, 3) == false
*/
#include<stdio.h>
#include<math.h>
using namespace std;
bool right_angle_triangle(float a,float b,float c){
| if (abs(a*a+b*b-c*c)<1e-4 or abs(a*a+c*c-b*b)<1e-4 or abs(b*b+c*c-a*a)<1e-4) return true;
return false;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (right_angle_triangle(3, 4, 5) == true);
assert (right_angle_triangle(1, 2, 3) == false);
assert (right_angle_triangle(10, 6, 8) == true);
assert (right_angle_triangle(2, 2, 2) == false);
assert (right_angle_triangle(7, 24, 25) == true);
assert (right_angle_triangle(10, 5, 7) == false);
assert (right_angle_triangle(5, 12, 13) == true);
assert (right_angle_triangle(15, 8, 17) == true);
assert (right_angle_triangle(48, 55, 73) == true);
assert (right_angle_triangle(1, 1, 1) == false);
assert (right_angle_triangle(2, 2, 10) == false);
}
| #include<stdio.h>
#include<math.h>
using namespace std;
#include<algorithm>
#include<stdlib.h>
bool right_angle_triangle(float a,float b,float c){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (right_angle_triangle(3, 4, 5) == true);
assert (right_angle_triangle(1, 2, 3) == false);
}
| if (abs(a*a+b*b-c*c)<1e-4) return true;
return false;
}
| missing logic | incorrect output | right_angle_triangle | bool right_angle_triangle(float a,float b,float c) | Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == true
right_angle_triangle(1, 2, 3) == false | Write a C++ function `bool right_angle_triangle(float a,float b,float c)` to solve the following problem:
Given the lengths of the three sides of a triangle. Return true if the three
sides form a right-angled triangle, false otherwise.
A right-angled triangle is a triangle in which one angle is right angle or
90 degree.
Example:
right_angle_triangle(3, 4, 5) == true
right_angle_triangle(1, 2, 3) == false |
CPP/158 | /*
Write a function that accepts a vector of strings.
The vector contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max({"name", "of", 'string"}) == 'string"
find_max({"name", "enam", "game"}) == "enam"
find_max({"aaaaaaa", "bb" ,"cc"}) == "aaaaaaa"
*/
#include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
string find_max(vector<string> words){
| string max="";
int maxu=0;
for (int i=0;i<words.size();i++)
{
string unique="";
for (int j=0;j<words[i].length();j++)
if (find(unique.begin(),unique.end(),words[i][j])==unique.end())
unique=unique+words[i][j];
if (unique.length()>maxu or (unique.length()==maxu and words[i]<max))
{
max=words[i];
maxu=unique.length();
}
}
return max;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert ((find_max({"name", "of", "string"}) == "string"));
assert ((find_max({"name", "enam", "game"}) == "enam"));
assert ((find_max({"aaaaaaa", "bb", "cc"}) == "aaaaaaa"));
assert ((find_max({"abc", "cba"}) == "abc"));
assert ((find_max({"play", "this", "game", "of","footbott"}) == "footbott"));
assert ((find_max({"we", "are", "gonna", "rock"}) == "gonna"));
assert ((find_max({"we", "are", "a", "mad", "nation"}) == "nation"));
assert ((find_max({"this", "is", "a", "prrk"}) == "this"));
assert ((find_max({"b"}) == "b"));
assert ((find_max({"play", "play", "play"}) == "play"));
}
| #include<stdio.h>
#include<vector>
#include<string>
#include<algorithm>
using namespace std;
#include<math.h>
#include<stdlib.h>
string find_max(vector<string> words){
| #undef NDEBUG
#include<assert.h>
int main(){
assert ((find_max({"name", "of", "string"}) == "string"));
assert ((find_max({"name", "enam", "game"}) == "enam"));
assert ((find_max({"aaaaaaa", "bb", "cc"}) == "aaaaaaa"));
}
| string max="";
int maxu=0;
for (int i=0;i<words.size();i++)
{
string unique="";
for (int j=0;j<words[i].length();j++)
if (find(unique.begin(),unique.end(),words[i][j])==unique.end())
unique=unique+words[i][j];
if (unique.length()>maxu or unique.length()==maxu)
{
max=words[i];
maxu=unique.length();
}
}
return max;
}
| missing logic | incorrect output | find_max | string find_max(vector<string> words) | Write a function that accepts a vector of strings.
The vector contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max({"name", "of", 'string"}) == 'string"
find_max({"name", "enam", "game"}) == "enam"
find_max({"aaaaaaa", "bb" ,"cc"}) == "aaaaaaa" | Write a C++ function `string find_max(vector<string> words)` to solve the following problem:
Write a function that accepts a vector of strings.
The vector contains different words. Return the word with maximum number
of unique characters. If multiple strings have maximum number of unique
characters, return the one which comes first in lexicographical order.
find_max({"name", "of", 'string"}) == 'string"
find_max({"name", "enam", "game"}) == "enam"
find_max({"aaaaaaa", "bb" ,"cc"}) == "aaaaaaa" |
CPP/159 | /*
You"re a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return a vector of { total number of eaten carrots after your meals,
the number of carrots left after your meals }
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> {11, 4}
* eat(4, 8, 9) -> {12, 1}
* eat(1, 10, 10) -> {11, 0}
* eat(2, 11, 5) -> {7, 0}
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :)
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> eat(int number,int need,int remaining){
| if (need>remaining) return {number+remaining, 0};
return {number+need,remaining-need};
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(eat(5, 6, 10) , {11, 4}));
assert (issame(eat(4, 8, 9) , {12, 1}));
assert (issame(eat(1, 10, 10) , {11, 0}));
assert (issame(eat(2, 11, 5) , {7, 0}));
assert (issame(eat(4, 5, 7) , {9, 2}));
assert (issame(eat(4, 5, 1) , {5, 0}));
}
| #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> eat(int number,int need,int remaining){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(eat(5, 6, 10) , {11, 4}));
assert (issame(eat(4, 8, 9) , {12, 1}));
assert (issame(eat(1, 10, 10) , {11, 0}));
assert (issame(eat(2, 11, 5) , {7, 0}));
}
| if (need>remaining) return {number+need+remaining, 0};
return {number+need,number+remaining-need};
}
| excess logic | incorrect output | eat | vector<int> eat(int number,int need,int remaining) | You"re a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return a vector of { total number of eaten carrots after your meals,
the number of carrots left after your meals }
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> {11, 4}
* eat(4, 8, 9) -> {12, 1}
* eat(1, 10, 10) -> {11, 0}
* eat(2, 11, 5) -> {7, 0}
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :) | Write a C++ function `vector<int> eat(int number,int need,int remaining)` to solve the following problem:
You"re a hungry rabbit, and you already have eaten a certain number of carrots,
but now you need to eat more carrots to complete the day's meals.
you should return a vector of { total number of eaten carrots after your meals,
the number of carrots left after your meals }
if there are not enough remaining carrots, you will eat all remaining carrots, but will still be hungry.
Example:
* eat(5, 6, 10) -> {11, 4}
* eat(4, 8, 9) -> {12, 1}
* eat(1, 10, 10) -> {11, 0}
* eat(2, 11, 5) -> {7, 0}
Variables:
@number : integer
the number of carrots that you have eaten.
@need : integer
the number of carrots that you need to eat.
@remaining : integer
the number of remaining carrots thet exist in stock
Constrain:
* 0 <= number <= 1000
* 0 <= need <= 1000
* 0 <= remaining <= 1000
Have fun :) |
CPP/160 | /*
Given two vectors operator, and operand. The first vector has basic algebra operations, and
the second vector is a vector of integers. Use the two given vectors to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator{"+", "*", "-"}
vector = {2, 3, 4, 5}
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator vector is equal to the length of operand vector minus one.
Operand is a vector of of non-negative integers.
Operator vector has at least one operator, and operand vector has at least two operands.
*/
#include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int do_algebra(vector<string> operato, vector<int> operand){
| vector<int> num={};
vector<int> posto={};
for (int i=0;i<operand.size();i++)
posto.push_back(i);
for (int i=0;i<operato.size();i++)
if (operato[i]=="**")
{
while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]];
while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]];
operand[posto[i]]=pow(operand[posto[i]],operand[posto[i+1]]);
posto[i+1]=posto[i];
}
for (int i=0;i<operato.size();i++)
if (operato[i]=="*" or operato[i]=="//")
{
while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]];
while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]];
if (operato[i]=="*")
operand[posto[i]]=operand[posto[i]]*operand[posto[i+1]];
else
operand[posto[i]]=operand[posto[i]]/operand[posto[i+1]];
posto[i+1]=posto[i];
}
for (int i=0;i<operato.size();i++)
if (operato[i]=="+" or operato[i]=="-")
{
while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]];
while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]];
if (operato[i]=="+")
operand[posto[i]]=operand[posto[i]]+operand[posto[i+1]];
else
operand[posto[i]]=operand[posto[i]]-operand[posto[i+1]];
posto[i+1]=posto[i];
}
return operand[0];
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (do_algebra({"**", "*", "+"}, {2, 3, 4, 5}) == 37);
assert (do_algebra({"+", "*", "-"}, {2, 3, 4, 5}) == 9);
assert (do_algebra({"//", "*"}, {7, 3, 4}) == 8);
}
| #include<stdio.h>
#include<math.h>
#include<vector>
#include<string>
using namespace std;
#include<algorithm>
#include<stdlib.h>
int do_algebra(vector<string> operato, vector<int> operand){
| vector<int> num={};
vector<int> posto={};
for (int i=0;i<operand.size();i++)
posto.push_back(i);
for (int i=0;i<operato.size();i++)
if (operato[i]=="**")
{
while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]];
while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]];
operand[posto[i]]=pow(operand[posto[i+1]],operand[posto[i+1]]);
posto[i+1]=posto[i];
}
for (int i=0;i<operato.size();i++)
if (operato[i]=="*" or operato[i]=="//")
{
while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]];
while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]];
if (operato[i]=="*")
operand[posto[i]]=operand[posto[i]]*operand[posto[i+1]];
else
operand[posto[i]]=operand[posto[i]]/operand[posto[i+1]];
posto[i+1]=posto[i];
}
for (int i=0;i<operato.size();i++)
if (operato[i]=="+" or operato[i]=="-")
{
while (posto[posto[i]]!=posto[i]) posto[i]=posto[posto[i]];
while (posto[posto[i+1]]!=posto[i+1]) posto[i+1]=posto[posto[i+1]];
if (operato[i]=="+")
operand[posto[i]]=operand[posto[i]]+operand[posto[i+1]];
else
operand[posto[i]]=operand[posto[i]]-operand[posto[i+1]];
posto[i+1]=posto[i];
}
return operand[0];
}
| excess logic | incorrect output | do_algebra | int do_algebra(vector<string> operato, vector<int> operand) | Given two vectors operator, and operand. The first vector has basic algebra operations, and
the second vector is a vector of integers. Use the two given vectors to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator{"+", "*", "-"}
vector = {2, 3, 4, 5}
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator vector is equal to the length of operand vector minus one.
Operand is a vector of of non-negative integers.
Operator vector has at least one operator, and operand vector has at least two operands. | Write a C++ function `int do_algebra(vector<string> operato, vector<int> operand)` to solve the following problem:
Given two vectors operator, and operand. The first vector has basic algebra operations, and
the second vector is a vector of integers. Use the two given vectors to build the algebric
expression and return the evaluation of this expression.
The basic algebra operations:
Addition ( + )
Subtraction ( - )
Multiplication ( * )
Floor division ( // )
Exponentiation ( ** )
Example:
operator{"+", "*", "-"}
vector = {2, 3, 4, 5}
result = 2 + 3 * 4 - 5
=> result = 9
Note:
The length of operator vector is equal to the length of operand vector minus one.
Operand is a vector of of non-negative integers.
Operator vector has at least one operator, and operand vector has at least two operands. |
|
CPP/161 | /*
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
*/
#include<stdio.h>
#include<string>
using namespace std;
string solve(string s){
| int nletter=0;
string out="";
for (int i=0;i<s.length();i++)
{
char w=s[i];
if (w>=65 and w<=90) w=w+32;
else if (w>=97 and w<=122) w=w-32;
else nletter+=1;
out=out+w;
}
if (nletter==s.length())
{
string p(s.rbegin(),s.rend());
return p;
}
else return out;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (solve("AsDf") == "aSdF");
assert (solve("1234") == "4321");
assert (solve("ab") == "AB");
assert (solve("#a@C") == "#A@c");
assert (solve("#AsdfW^45") == "#aSDFw^45");
assert (solve("#6@2") == "2@6#");
assert (solve("#$a^D") == "#$A^d");
assert (solve("#ccc") == "#CCC");
}
| #include<stdio.h>
#include<string>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string solve(string s){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (solve("1234") == "4321");
assert (solve("ab") == "AB");
assert (solve("#a@C") == "#A@c");
}
| int nletter=0;
string out="";
for (int i=0;i<s.length();i++)
{
char w=s[i];
if (w>=65 and w<=90) w=w+32;
else nletter+=1;
out=out+w;
}
if (nletter==s.length())
{
string p(s.rbegin(),s.rend());
return p;
}
else return out;
}
| missing logic | incorrect output | solve | string solve(string s) | You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c" | Write a C++ function `string solve(string s)` to solve the following problem:
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c" |
CPP/162 | /*
Given a string 'text", return its md5 hash equivalent string.
If 'text" is an empty string, return None.
>>> string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62"
*/
#include<stdio.h>
#include<string>
#include<openssl/md5.h>
using namespace std;
string string_to_md5(string text){
| unsigned char md[16];
if (text.length()==0) return "None";
MD5_CTX c;
int i;
MD5_Init(&c);
MD5_Update(&c, (unsigned char*)text.c_str(), text.length());
MD5_Final(md, &c);
string out_str="";
for (int i=0;i<16;i++)
{
char w;
if (md[i]<160) w=48+md[i]/16;
else w=87+md[i]/16;
out_str=out_str+w;
if (md[i]%16<10) w=48+md[i]%16;
else w=87+md[i]%16;
out_str=out_str+w;
}
return out_str;
}
| #undef NDEBUG
#include<assert.h>
int main(){
assert (string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62");
assert (string_to_md5("") == "None");
assert (string_to_md5("A B C") == "0ef78513b0cb8cef12743f5aeb35f888");
assert (string_to_md5("password") == "5f4dcc3b5aa765d61d8327deb882cf99");
}
| #include<stdio.h>
#include<string>
#include<openssl/md5.h>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
string string_to_md5(string text){
| #undef NDEBUG
#include<assert.h>
int main(){
assert (string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62");
}
| unsigned char md[16];
if (text.length()==0) return "None";
MD5_CTX c;
int i;
MD5_Init(&c);
MD5_Update(&c, (unsigned char*)text.c_str(), text.length());
MD5_Final(md, &c);
string out_str="";
for (int i=0;i<16;i++)
{
char w;
if (md[i]<160) w=48+md[i]/16;
else w=87+md[i]/16;
out_str=out_str+w;
if (md[i]%16<87) w=48+md[i]%16;
else w=48+md[i]%16;
out_str=out_str+w;
}
return out_str;
}
| function misuse | incorrect output | string_to_md5 | string string_to_md5(string text) | Given a string 'text", return its md5 hash equivalent string.
If 'text" is an empty string, return None.
>>> string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" | Write a C++ function `string string_to_md5(string text)` to solve the following problem:
Given a string 'text", return its md5 hash equivalent string.
If 'text" is an empty string, return None.
>>> string_to_md5("Hello world") == "3e25960a79dbc69b674cd4ec67a72c62" |
CPP/163 | /*
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => {2, 4, 6, 8}
generate_integers(8, 2) => {2, 4, 6, 8}
generate_integers(10, 14) => {}
*/
#include<stdio.h>
#include<vector>
using namespace std;
vector<int> generate_integers(int a,int b){
| int m;
if (b<a)
{
m=a;a=b;b=m;
}
vector<int> out={};
for (int i=a;i<=b;i++)
if (i<10 and i%2==0) out.push_back(i);
return out;
}
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(generate_integers(2, 10) , {2, 4, 6, 8}));
assert (issame(generate_integers(10, 2) , {2, 4, 6, 8}));
assert (issame(generate_integers(132, 2) , {2, 4, 6, 8}));
assert (issame(generate_integers(17,89) , {}));
}
| #include<stdio.h>
#include<vector>
using namespace std;
#include<algorithm>
#include<math.h>
#include<stdlib.h>
vector<int> generate_integers(int a,int b){
| #undef NDEBUG
#include<assert.h>
bool issame(vector<int> a,vector<int>b){
if (a.size()!=b.size()) return false;
for (int i=0;i<a.size();i++)
{
if (a[i]!=b[i]) return false;
}
return true;
}
int main(){
assert (issame(generate_integers(2, 8) , {2, 4, 6, 8}));
assert (issame(generate_integers(8, 2) , {2, 4, 6, 8}));
assert (issame(generate_integers(10,14) , {}));
}
| int m;
if (b<a)
{
m=a;a=b;b=m;
}
vector<int> out={};
for (int i=a;i<b;i++)
if (i>10 and i%2==0) out.push_back(i);
return out;
}
| value misuse | incorrect output | generate_integers | vector<int> generate_integers(int a,int b) | Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => {2, 4, 6, 8}
generate_integers(8, 2) => {2, 4, 6, 8}
generate_integers(10, 14) => {} | Write a C++ function `vector<int> generate_integers(int a,int b)` to solve the following problem:
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generate_integers(2, 8) => {2, 4, 6, 8}
generate_integers(8, 2) => {2, 4, 6, 8}
generate_integers(10, 14) => {} |
Go/0 | import (
"math"
)
// Check if in given list of numbers, are any two numbers closer to each other than given threshold.
// >>> HasCloseElements([]float64{1.0, 2.0, 3.0}, 0.5)
// false
// >>> HasCloseElements([]float64{1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
// true
func HasCloseElements(numbers []float64, threshold float64) bool {
| for i := 0; i < len(numbers); i++ {
for j := i + 1; j < len(numbers); j++ {
var distance float64 = math.Abs(numbers[i] - numbers[j])
if distance < threshold {
return true
}
}
}
return false
}
| func TestHasCloseElements(t *testing.T) {
assert := assert.New(t)
assert.Equal(true, HasCloseElements([]float64{11.0, 2.0, 3.9, 4.0, 5.0, 2.2}, 0.3))
assert.Equal(false, HasCloseElements([]float64{1.0, 2.0, 3.9, 4.0, 5.0, 2.2}, 0.05))
assert.Equal(true, HasCloseElements([]float64{1.0, 2.0, 5.9, 4.0, 5.0}, 0.95))
assert.Equal(false, HasCloseElements([]float64{1.0, 2.0, 5.9, 4.0, 5.0}, 0.8))
assert.Equal(true, HasCloseElements([]float64{1.0, 2.0, 3.0, 4.0, 5.0, 2.0}, 0.1))
assert.Equal(true, HasCloseElements([]float64{1.1, 2.2, 3.1, 4.1, 5.1}, 1.0))
assert.Equal(false, HasCloseElements([]float64{1.1, 2.2, 3.1, 4.1, 5.1}, 0.5))
}
|
func HasCloseElements(numbers []float64, threshold float64) bool {
| func TestHasCloseElements(t *testing.T) {
assert := assert.New(t)
assert.Equal(false, HasCloseElements([]float64{1.0, 2.0, 3.0}, 0.5))
assert.Equal(true, HasCloseElements([]float64{1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3))
}
| for i := 0; i < len(numbers); i++ {
for j := i + 1; j < len(numbers); j++ {
var distance float64 = numbers[i] - numbers[j]
if distance < threshold {
return true
}
}
}
return false
}
| missing logic | incorrect output | HasCloseElements | func HasCloseElements(numbers []float64, threshold float64) bool | Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> HasCloseElements([]float64{1.0, 2.0, 3.0}, 0.5)
false
>>> HasCloseElements([]float64{1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
true | Write a Go function `func HasCloseElements(numbers []float64, threshold float64) bool` to solve the following problem:
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> HasCloseElements([]float64{1.0, 2.0, 3.0}, 0.5)
false
>>> HasCloseElements([]float64{1.0, 2.8, 3.0, 4.0, 5.0, 2.0}, 0.3)
true |
Java/0 | import java.util.*;
import java.lang.*;
class Solution {
/**
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> hasCloseElements(Arrays.asList(1.0, 2.0, 3.0), 0.5)
false
>>> hasCloseElements(Arrays.asList(1.0, 2.8, 3.0, 4.0, 5.0, 2.0), 0.3)
true
*/
public boolean hasCloseElements(List<Double> numbers, double threshold) {
| for (int i = 0; i < numbers.size(); i++) {
for (int j = i + 1; j < numbers.size(); j++) {
double distance = Math.abs(numbers.get(i) - numbers.get(j));
if (distance < threshold) return true;
}
}
return false;
}
} | public class Main {
public static void main(String[] args) {
Solution s = new Solution();
List<Boolean> correct = Arrays.asList(
s.hasCloseElements(new ArrayList<>(Arrays.asList(11.0, 2.0, 3.9, 4.0, 5.0, 2.2)), 0.3),
!s.hasCloseElements(new ArrayList<>(Arrays.asList(1.0, 2.0, 3.9, 4.0, 5.0, 2.2)), 0.05),
s.hasCloseElements(new ArrayList<>(Arrays.asList(1.0, 2.0, 5.9, 4.0, 5.0)), 0.95),
!s.hasCloseElements(new ArrayList<>(Arrays.asList(1.0, 2.0, 5.9, 4.0, 5.0)), 0.8),
s.hasCloseElements(new ArrayList<>(Arrays.asList(1.0, 2.0, 3.0, 4.0, 5.0, 2.0)), 0.1),
s.hasCloseElements(new ArrayList<>(Arrays.asList(1.1, 2.2, 3.1, 4.1, 5.1)), 1.0),
!s.hasCloseElements(new ArrayList<>(Arrays.asList(1.1, 2.2, 3.1, 4.1, 5.1)), 0.5)
);
if (correct.contains(false)) {
throw new AssertionError();
}
}
} | import java.util.*;
import java.lang.*;
class Solution {
public boolean hasCloseElements(List<Double> numbers, double threshold) {
| public class Main {
public static void main(String[] args) {
Solution s = new Solution();
List<Boolean> correct = Arrays.asList(
!s.hasCloseElements(new ArrayList<>(Arrays.asList(1.0, 2.0, 3.0)), 0.5),
s.hasCloseElements(new ArrayList<>(Arrays.asList(1.0, 2.8, 3.0, 4.0, 5.0, 2.0)), 0.3)
);
if (correct.contains(false)) {
throw new AssertionError();
}
}
}
| for (int i = 0; i < numbers.size(); i++) {
for (int j = i + 1; j < numbers.size(); j++) {
double distance = numbers.get(i) - numbers.get(j);
if (distance < threshold) return true;
}
}
return false;
}
} | missing logic | incorrect output | hasCloseElements | public boolean hasCloseElements(List<Double> numbers, double threshold) | Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> hasCloseElements(Arrays.asList(1.0, 2.0, 3.0), 0.5)
false
>>> hasCloseElements(Arrays.asList(1.0, 2.8, 3.0, 4.0, 5.0, 2.0), 0.3)
true | Write a Java function `public boolean hasCloseElements(List<Double> numbers, double threshold)` to solve the following problem:
Check if in given list of numbers, are any two numbers closer to each other than given threshold.
>>> hasCloseElements(Arrays.asList(1.0, 2.0, 3.0), 0.5)
false
>>> hasCloseElements(Arrays.asList(1.0, 2.8, 3.0, 4.0, 5.0, 2.0), 0.3)
true |
JavaScript/163 | /*
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(2, 8) => [2, 4, 6, 8]
generateIntegers(8, 2) => [2, 4, 6, 8]
generateIntegers(10, 14) => []
*/
const generateIntegers = (a, b) => {
| if (a > b) {
let tmp = a;
a = b;
b = tmp;
}
let y = []
for (let i = a; i <= b; i++) {
if (i == 2 || i == 4 || i == 6 || i == 8) { y.push(i) }
}
return y
}
| const testGenerateIntegers = () => {
console.assert(
JSON.stringify(generateIntegers(2, 10)) === JSON.stringify([2, 4, 6, 8])
)
console.assert(
JSON.stringify(generateIntegers(10, 2)) === JSON.stringify([2, 4, 6, 8])
)
console.assert(
JSON.stringify(generateIntegers(132, 2)) === JSON.stringify([2, 4, 6, 8])
)
console.assert(
JSON.stringify(generateIntegers(17, 89)) === JSON.stringify([])
)
}
testGenerateIntegers()
|
const generateIntegers = (a, b) => {
| const testGenerateIntegers = () => {
console.assert(
JSON.stringify(generateIntegers(2, 8)) === JSON.stringify([2, 4, 6, 8])
)
console.assert(
JSON.stringify(generateIntegers(8, 2)) === JSON.stringify([2, 4, 6, 8])
)
console.assert(
JSON.stringify(generateIntegers(10, 14)) === JSON.stringify([])
)
}
testGenerateIntegers()
| if (a > b) {
let tmp = a;
a = b;
b = tmp;
}
let y = []
for (let i = a; i > b; i++) {
if (i == 2 || i == 4 || i == 6 || i == 8) { y.push(i) }
}
return y
}
| value misuse | incorrect output | generateIntegers | const generateIntegers = (a, b) | Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(2, 8) => [2, 4, 6, 8]
generateIntegers(8, 2) => [2, 4, 6, 8]
generateIntegers(10, 14) => [] | Write a JavaScript function `const generateIntegers = (a, b)` to solve the following problem:
Given two positive integers a and b, return the even digits between a
and b, in ascending order.
For example:
generateIntegers(2, 8) => [2, 4, 6, 8]
generateIntegers(8, 2) => [2, 4, 6, 8]
generateIntegers(10, 14) => [] |
JavaScript/28 | /* Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc'
*/
const concatenate = (strings) => {
| return strings.join('');
}
| const testConcatenate = () => {
console.assert(concatenate([]) === '')
console.assert(concatenate(['x', 'y', 'z']) === 'xyz')
console.assert(concatenate(['x', 'y', 'z', 'w', 'k']) === 'xyzwk')
}
testConcatenate()
|
const concatenate = (strings) => {
| const testConcatenate = () => {
console.assert(concatenate([]) === '')
console.assert(concatenate(['a', 'b', 'c']) === 'abc')
}
testConcatenate()
| return strings.join(' ');
}
| excess logic | incorrect output | concatenate | const concatenate = (strings) | Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc' | Write a JavaScript function `const concatenate = (strings)` to solve the following problem:
Concatenate list of strings into a single string
>>> concatenate([])
''
>>> concatenate(['a', 'b', 'c'])
'abc' |
JavaScript/6 | /* Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parseNestedParens('(()()) ((())) () ((())()())')
[2, 3, 1, 3]
*/
const parseNestedParens = (paren_string) => {
| var parseParenGroup = function (s) {
let depth = 0, max_depth = 0;
for (const c of s) {
if (c == '(') {
depth += 1;
max_depth = Math.max(max_depth, depth);
} else {
depth -= 1;
}
}
return max_depth;
}
return paren_string.split(' ')
.filter(x => x != '')
.map(x => parseParenGroup(x));
}
| const testParseNestedParens = () => {
console.assert(
JSON.stringify(parseNestedParens('(()()) ((())) () ((())()())')) ===
JSON.stringify([2, 3, 1, 3])
)
console.assert(
JSON.stringify(parseNestedParens('() (()) ((())) (((())))')) ===
JSON.stringify([1, 2, 3, 4])
)
console.assert(
JSON.stringify(parseNestedParens('(()(())((())))')) === JSON.stringify([4])
)
}
testParseNestedParens()
|
const parseNestedParens = (paren_string) => {
| const testParseNestedParens = () => {
console.assert(
JSON.stringify(parseNestedParens('(()()) ((())) () ((())()())')) ===
JSON.stringify([2, 3, 1, 3])
)
}
testParseNestedParens()
| var parseParenGroup = function (s) {
let depth = 0, max_depth = 0;
for (const c of s) {
if (c == '(') {
depth += 1;
max_depth = Math.max(max_depth, depth);
} else {
max_depth -= 1;
}
}
return max_depth;
}
return paren_string.split(' ')
.filter(x => x != '')
.map(x => parseParenGroup(x));
}
| variable misuse | incorrect output | parseNestedParens | const parseNestedParens = (paren_string) | Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parseNestedParens('(()()) ((())) () ((())()())')
[2, 3, 1, 3] | Write a JavaScript function `const parseNestedParens = (paren_string)` to solve the following problem:
Input to this function is a string represented multiple groups for nested parentheses separated by spaces.
For each of the group, output the deepest level of nesting of parentheses.
E.g. (()()) has maximum two levels of nesting while ((())) has three.
>>> parseNestedParens('(()()) ((())) () ((())()())')
[2, 3, 1, 3] |
JavaScript/70 | /*
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList([1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList([5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList([]) == []
*/
const strangeSortList = (lst) => {
| var res = [], sw = true;
while (lst.length) {
res.push(sw ? Math.min(...lst) : Math.max(...lst));
lst.splice(lst.indexOf(res.at(-1)), 1);
sw = !sw;
}
return res;
}
| const testStrangeSortList = () => {
console.assert(
JSON.stringify(strangeSortList([1, 2, 3, 4])) ===
JSON.stringify([1, 4, 2, 3])
)
console.assert(
JSON.stringify(strangeSortList([5, 6, 7, 8, 9])) ===
JSON.stringify([5, 9, 6, 8, 7])
)
console.assert(
JSON.stringify(strangeSortList([1, 2, 3, 4, 5])) ===
JSON.stringify([1, 5, 2, 4, 3])
)
console.assert(
JSON.stringify(strangeSortList([5, 6, 7, 8, 9, 1])) ===
JSON.stringify([1, 9, 5, 8, 6, 7])
)
console.assert(
JSON.stringify(strangeSortList([5, 5, 5, 5])) ===
JSON.stringify([5, 5, 5, 5])
)
console.assert(JSON.stringify(strangeSortList([])) === JSON.stringify([]))
console.assert(
JSON.stringify(strangeSortList([1, 2, 3, 4, 5, 6, 7, 8])) ===
JSON.stringify([1, 8, 2, 7, 3, 6, 4, 5])
)
console.assert(
JSON.stringify(strangeSortList([0, 2, 2, 2, 5, 5, -5, -5])) ===
JSON.stringify([-5, 5, -5, 5, 0, 2, 2, 2])
)
console.assert(
JSON.stringify(strangeSortList([111111])) === JSON.stringify([111111])
)
}
testStrangeSortList()
|
const strangeSortList = (lst) => {
| const testStrangeSortList = () => {
console.assert(
JSON.stringify(strangeSortList([1, 2, 3, 4])) ===
JSON.stringify([1, 4, 2, 3])
)
console.assert(
JSON.stringify(strangeSortList([5, 5, 5, 5])) ===
JSON.stringify([5, 5, 5, 5])
)
console.assert(JSON.stringify(strangeSortList([])) === JSON.stringify([]))
}
testStrangeSortList()
| var res = [], sw = false;
while (lst.length) {
res.push(sw ? Math.min(...lst) : Math.max(...lst));
lst.splice(lst.indexOf(res.at(-1)), 1);
sw = !sw;
}
return res;
}
| operator misuse | incorrect output | strangeSortList | const strangeSortList = (lst) | Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList([1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList([5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList([]) == [] | Write a JavaScript function `const strangeSortList = (lst)` to solve the following problem:
Given list of integers, return list in strange order.
Strange sorting, is when you start with the minimum value,
then maximum of the remaining integers, then minimum and so on.
Examples:
strangeSortList([1, 2, 3, 4]) == [1, 4, 2, 3]
strangeSortList([5, 5, 5, 5]) == [5, 5, 5, 5]
strangeSortList([]) == [] |
JavaScript/62 | /* xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6]
*/
const derivative = (xs) => {
| return xs.map((x, i) => x * i).slice(1);
}
| const testDerivative = () => {
console.assert(
JSON.stringify(derivative([3, 1, 2, 4, 5])) ===
JSON.stringify([1, 4, 12, 20])
)
console.assert(
JSON.stringify(derivative([1, 2, 3])) === JSON.stringify([2, 6])
)
console.assert(
JSON.stringify(derivative([3, 2, 1])) === JSON.stringify([2, 2])
)
console.assert(
JSON.stringify(derivative([3, 2, 1, 0, 4])) ===
JSON.stringify([2, 2, 0, 16])
)
console.assert(JSON.stringify(derivative([1])) === JSON.stringify([]))
}
testDerivative()
|
const derivative = (xs) => {
| const testDerivative = () => {
console.assert(
JSON.stringify(derivative([3, 1, 2, 4, 5])) ===
JSON.stringify([1, 4, 12, 20])
)
console.assert(
JSON.stringify(derivative([1, 2, 3])) === JSON.stringify([2, 6])
)
}
testDerivative()
| return xs.map((x, i) => x * i);
}
| value misuse | incorrect output | derivative | const derivative = (xs) | xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6] | Write a JavaScript function `const derivative = (xs)` to solve the following problem:
xs represent coefficients of a polynomial.
xs[0] + xs[1] * x + xs[2] * x^2 + ....
Return derivative of this polynomial in the same form.
>>> derivative([3, 1, 2, 4, 5])
[1, 4, 12, 20]
>>> derivative([1, 2, 3])
[2, 6] |
JavaScript/57 | /*Return true is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
true
>>> monotonic([1, 20, 4, 10])
false
>>> monotonic([4, 1, 0, -10])
true
*/
const monotonic = (l) => {
| var sort1 = [...l].sort((a, b) => a - b);
var sort2 = [...l].sort((a, b) => b - a);
if (JSON.stringify(l) === JSON.stringify(sort1) ||
JSON.stringify(l) === JSON.stringify(sort2))
return true;
return false;
}
| const testMonotonic = () => {
console.assert(monotonic([1, 2, 4, 10]) === true)
console.assert(monotonic([1, 2, 4, 20]) === true)
console.assert(monotonic([1, 20, 4, 10]) === false)
console.assert(monotonic([4, 1, 0, -10]) === true)
console.assert(monotonic([4, 1, 1, 0]) === true)
console.assert(monotonic([1, 2, 3, 2, 5, 60]) === false)
console.assert(monotonic([1, 2, 3, 4, 5, 60]) === true)
console.assert(monotonic([9, 9, 9, 9]) === true)
}
testMonotonic()
|
const monotonic = (l) => {
| const testMonotonic = () => {
console.assert(monotonic([1, 2, 4, 10]) === true)
console.assert(monotonic([1, 20, 4, 10]) === false)
console.assert(monotonic([4, 1, 0, -10]) === true)
}
testMonotonic()
| var sort1 = [...l].sort((a, b) => a - b);
var sort2 = [...l].sort((a, b) => b - a);
if (JSON.stringify(l) === JSON.stringify(sort1) ||
JSON.stringify(l) === JSON.stringify(sort2))
return false;
return true;
}
| operator misuse | incorrect output | monotonic | const monotonic = (l) | Return true is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
true
>>> monotonic([1, 20, 4, 10])
false
>>> monotonic([4, 1, 0, -10])
true | Write a JavaScript function `const monotonic = (l)` to solve the following problem:
Return true is list elements are monotonically increasing or decreasing.
>>> monotonic([1, 2, 4, 20])
true
>>> monotonic([1, 20, 4, 10])
false
>>> monotonic([4, 1, 0, -10])
true |
JavaScript/35 | /*Return maximum element in the list.
>>> maxElement([1, 2, 3])
3
>>> maxElement([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123
*/
const maxElement = (l) => {
| return Math.max(...l);
}
| const testMaxElement = () => {
console.assert(maxElement([1, 2, 3]) === 3)
console.assert(maxElement([5, 3, -5, 2, -3, 3, 9, 0, 124, 1, -10]) === 124)
}
testMaxElement()
|
const maxElement = (l) => {
| const testMaxElement = () => {
console.assert(maxElement([1, 2, 3]) === 3)
console.assert(maxElement([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10]) === 123)
}
testMaxElement()
| return Math.min(...l);
}
| operator misuse | incorrect output | maxElement | const maxElement = (l) | Return maximum element in the list.
>>> maxElement([1, 2, 3])
3
>>> maxElement([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123 | Write a JavaScript function `const maxElement = (l)` to solve the following problem:
Return maximum element in the list.
>>> maxElement([1, 2, 3])
3
>>> maxElement([5, 3, -5, 2, -3, 3, 9, 0, 123, 1, -10])
123 |
JavaScript/26 | /* From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> removeDuplicates([1, 2, 3, 2, 4])
[1, 3, 4]
*/
const removeDuplicates = (numbers) => {
| var dict = new Object();
for (const num of numbers) {
if (num in dict) {
dict[num] += 1;
} else {
dict[num] = 1;
}
}
return numbers.filter(x => dict[x] <= 1);
}
| const testRemoveDuplicates = () => {
console.assert(JSON.stringify(removeDuplicates([])) === JSON.stringify([]))
console.assert(
JSON.stringify(removeDuplicates([1, 2, 3, 4])) ===
JSON.stringify([1, 2, 3, 4])
)
console.assert(
JSON.stringify(removeDuplicates([1, 2, 3, 2, 4, 3, 5])) ===
JSON.stringify([1, 4, 5])
)
}
testRemoveDuplicates()
|
const removeDuplicates = (numbers) => {
| const testRemoveDuplicates = () => {
console.assert(
JSON.stringify(removeDuplicates([1, 2, 3, 2,4])) ===
JSON.stringify([1,3, 4])
)
}
testRemoveDuplicates()
| var dict = new Object();
for (const num of numbers) {
if (num in dict) {
dict[num] += 1;
} else {
dict[num] = 1;
}
}
return numbers.filter(x > dict[x] < 1);
}
| operator misuse | incorrect output | removeDuplicates | const removeDuplicates = (numbers) | From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> removeDuplicates([1, 2, 3, 2, 4])
[1, 3, 4] | Write a JavaScript function `const removeDuplicates = (numbers)` to solve the following problem:
From a list of integers, remove all elements that occur more than once.
Keep order of elements left the same as in the input.
>>> removeDuplicates([1, 2, 3, 2, 4])
[1, 3, 4] |
JavaScript/139 | /*The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> specialFactorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer.
*/
const specialFactorial = (n) => {
| let p = 1;
let t = 1;
while (n > 1) {
let y = p;
while (y > 0) {
y--;
t *= n;
}
p++;
n--;
}
return t
}
| const testSpecialFactorial = () => {
console.assert(specialFactorial(4) === 288)
console.assert(specialFactorial(5) === 34560)
console.assert(specialFactorial(7) === 125411328000)
console.assert(specialFactorial(1) === 1)
}
testSpecialFactorial()
|
const specialFactorial = (n) => {
| const testSpecialFactorial = () => {
console.assert(specialFactorial(4) === 288)
}
testSpecialFactorial()
| let p = 1;
let t = 1;
while (n > 1) {
let y = p;
while (y > 0) {
y--;
n *= y;
t *= n;
}
p++;
p++;
n--;
}
return t
}
| excess logic | incorrect output | specialFactorial | const specialFactorial = (n) | The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> specialFactorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer. | Write a JavaScript function `const specialFactorial = (n)` to solve the following problem:
The Brazilian factorial is defined as:
brazilian_factorial(n) = n! * (n-1)! * (n-2)! * ... * 1!
where n > 0
For example:
>>> specialFactorial(4)
288
The function will receive an integer as input and should return the special
factorial of this integer. |
JavaScript/22 | /* Filter given list of any python values only for integers
>>> filterIntegers(['a', 3.14, 5])
[5]
>>> filterIntegers([1, 2, 3, 'abc', {}, []])
[1, 2, 3]
*/
const filterIntegers = (values) => {
| return values.filter(x => Number.isInteger(x));
}
| const testFilterIntegers = () => {
console.assert(JSON.stringify(filterIntegers([])) === JSON.stringify([]))
console.assert(
JSON.stringify(filterIntegers([4, {}, [], 23.2, 9, 'adasd'])) ===
JSON.stringify([4, 9])
)
console.assert(
JSON.stringify(filterIntegers([3, 'c', 3, 3, 'a', 'b'])) ===
JSON.stringify([3, 3, 3])
)
}
testFilterIntegers()
|
const filterIntegers = (values) => {
| const testFilterIntegers = () => {
console.assert(JSON.stringify(filterIntegers(['a', 3.14, 5])) === JSON.stringify([5]))
console.assert(
JSON.stringify(filterIntegers([1, 2, 3, 'abc', {}, []])) ===
JSON.stringify([1,2,3])
)
}
testFilterIntegers()
| values.filter(x => Number.isInteger(x));
return values;
}
| variable misuse | incorrect output | filterIntegers | const filterIntegers = (values) | Filter given list of any python values only for integers
>>> filterIntegers(['a', 3.14, 5])
[5]
>>> filterIntegers([1, 2, 3, 'abc', {}, []])
[1, 2, 3] | Write a JavaScript function `const filterIntegers = (values)` to solve the following problem:
Filter given list of any python values only for integers
>>> filterIntegers(['a', 3.14, 5])
[5]
>>> filterIntegers([1, 2, 3, 'abc', {}, []])
[1, 2, 3] |
JavaScript/151 | /* Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
doubleTheDifference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
doubleTheDifference([-1, -2, 0]) == 0
doubleTheDifference([9, -2]) == 81
doubleTheDifference([0]) == 0
If the input list is empty, return 0.
*/
const doubleTheDifference = (lst) => {
| let p = 0
for (let i = 0; i < lst.length; i++) {
if (lst[i] % 2 == 1 && lst[i] > 0) {
p += lst[i] * lst[i]
}
}
return p
}
| const testDoubleTheDifference = () => {
console.assert(doubleTheDifference([]) === 0)
console.assert(doubleTheDifference([5, 4]) === 25)
console.assert(doubleTheDifference([0.1, 0.2, 0.3]) === 0)
console.assert(doubleTheDifference([-10, -20, -30]) === 0)
console.assert(doubleTheDifference([-1, -2, 8]) === 0)
console.assert(doubleTheDifference([0.2, 3, 5]) === 34)
let lst = []
let odd_sum = 0
for (let i = -99; i < 100; i += 2) {
if (i % 2 != 0 && i > 0) { odd_sum += i * i }
lst.push(i)
}
console.assert(doubleTheDifference(lst) === odd_sum)
}
testDoubleTheDifference()
|
const doubleTheDifference = (lst) => {
| const testDoubleTheDifference = () => {
console.assert(doubleTheDifference([1,3,2,0]) === 10)
console.assert(doubleTheDifference([-1,-2,0]) === 0)
console.assert(doubleTheDifference([9,-2]) === 81)
console.assert(doubleTheDifference([0]) === 0)
}
testDoubleTheDifference()
| let p = 0
for (let i = 0; i < lst.length; i++) {
if (lst[i] > 0) {
p += lst[i]
}
}
return p
}
| missing logic | incorrect output | doubleTheDifference | const doubleTheDifference = (lst) | Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
doubleTheDifference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
doubleTheDifference([-1, -2, 0]) == 0
doubleTheDifference([9, -2]) == 81
doubleTheDifference([0]) == 0
If the input list is empty, return 0. | Write a JavaScript function `const doubleTheDifference = (lst)` to solve the following problem:
Given a list of numbers, return the sum of squares of the numbers
in the list that are odd. Ignore numbers that are negative or not integers.
doubleTheDifference([1, 3, 2, 0]) == 1 + 9 + 0 + 0 = 10
doubleTheDifference([-1, -2, 0]) == 0
doubleTheDifference([9, -2]) == 81
doubleTheDifference([0]) == 0
If the input list is empty, return 0. |
JavaScript/108 | /*
Write a function countNums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> countNums([]) == 0
>>> countNums([-1, 11, -11]) == 1
>>> countNums([1, 1, 2]) == 3
*/
const countNums = (arr) => {
| let p = 0
for (let i = 0; i < arr.length; i++) {
let h = arr[i]
if (h > 0) {
p++;
continue;
}
let k = 0
h = -h
while (h >= 10) {
k += h % 10;
h = (h - h % 10) / 10;
}
k -= h;
if (k > 0) { p++ }
}
return p
}
| const testCountNums = () => {
console.assert(countNums([]) === 0)
console.assert(countNums([-1, -2, 0]) === 0)
console.assert(countNums([1, 1, 2, -2, 3, 4, 5]) === 6)
console.assert(countNums([1, 6, 9, -6, 0, 1, 5]) === 5)
console.assert(countNums([1, 100, 98, -7, 1, -1]) === 4)
console.assert(countNums([12, 23, 34, -45, -56, 0]) === 5)
console.assert(countNums([-0, 1 ** 0]) === 1)
console.assert(countNums([1]) === 1)
}
testCountNums()
|
const countNums = (arr) => {
| const testCountNums = () => {
console.assert(countNums([]) === 0)
console.assert(countNums([-1, 11, -11]) === 1)
console.assert(countNums([1, 1, 2]) === 3)
}
testCountNums()
| let p = 0
for (let i = 0; i < arr.length; i++) {
let h = arr[i]
if (h > 0) {
p++;
continue;
}
let k = 0
h = -h
while (h >= 10) {
k += h % 10 * -1;
h = (h - h % 10) / 10;
}
k -= h;
if (k > 0) { p++ }
}
return p
}
| excess logic | incorrect output | countNums | const countNums = (arr) | Write a function countNums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> countNums([]) == 0
>>> countNums([-1, 11, -11]) == 1
>>> countNums([1, 1, 2]) == 3 | Write a JavaScript function `const countNums = (arr)` to solve the following problem:
Write a function countNums which takes an array of integers and returns
the number of elements which has a sum of digits > 0.
If a number is negative, then its first signed digit will be negative:
e.g. -123 has signed digits -1, 2, and 3.
>>> countNums([]) == 0
>>> countNums([-1, 11, -11]) == 1
>>> countNums([1, 1, 2]) == 3 |
JavaScript/8 | /* For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sumProduct([])
(0, 1)
>>> sumProduct([1, 2, 3, 4])
(10, 24)
*/
const sumProduct = (numbers, int) => {
| var sum_value = 0, prod_value = 1;
for (const n of numbers) {
sum_value += n;
prod_value *= n;
}
return [sum_value, prod_value];
}
| const testSumProduct = () => {
console.assert(JSON.stringify(sumProduct([])) === JSON.stringify([0, 1]))
console.assert(
JSON.stringify(sumProduct([1, 1, 1])) === JSON.stringify([3, 1])
)
console.assert(
JSON.stringify(sumProduct([100, 0])) === JSON.stringify([100, 0])
)
console.assert(
JSON.stringify(
sumProduct([3, 5, 7])) === JSON.stringify([3 + 5 + 7, 3 * 5 * 7])
)
console.assert(JSON.stringify(sumProduct([10])) === JSON.stringify([10, 10]))
}
testSumProduct()
|
const sumProduct = (numbers, int) => {
| const testSumProduct = () => {
console.assert(JSON.stringify(sumProduct([])) === JSON.stringify([0, 1]))
console.assert(
JSON.stringify(sumProduct([1, 2,3,4])) === JSON.stringify([10, 24])
)
}
testSumProduct()
| var sum_value = 0, prod_value = 0;
for (const n of numbers) {
sum_value += n;
prod_value *= n;
}
return [sum_value, prod_value];
}
| value misuse | incorrect output | sumProduct | const sumProduct = (numbers, int) | For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sumProduct([])
(0, 1)
>>> sumProduct([1, 2, 3, 4])
(10, 24) | Write a JavaScript function `const sumProduct = (numbers, int)` to solve the following problem:
For a given list of integers, return a tuple consisting of a sum and a product of all the integers in a list.
Empty sum should be equal to 0 and empty product should be equal to 1.
>>> sumProduct([])
(0, 1)
>>> sumProduct([1, 2, 3, 4])
(10, 24) |
JavaScript/7 | /* Filter an input list of strings only for ones that contain given substring
>>> filterBySubstring([], 'a')
[]
>>> filterBySubstring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array']
*/
const filterBySubstring = (strings, substring) => {
| return strings.filter(x => x.indexOf(substring) != -1);
}
| const testFilterBySubstring = () => {
console.assert(
JSON.stringify(filterBySubstring([], 'john')) === JSON.stringify([])
)
console.assert(
JSON.stringify(
filterBySubstring(
['xxx', 'asd', 'xxy', 'john doe', 'xxxAAA', 'xxx'],
'xxx'
)
) === JSON.stringify(['xxx', 'xxxAAA', 'xxx'])
)
console.assert(
JSON.stringify(
filterBySubstring(
['xxx', 'asd', 'aaaxxy', 'john doe', 'xxxAAA', 'xxx'],
'xx'
)
) === JSON.stringify(['xxx', 'aaaxxy', 'xxxAAA', 'xxx'])
)
console.assert(
JSON.stringify(
filterBySubstring(['grunt', 'trumpet', 'prune', 'gruesome'], 'run')
) === JSON.stringify(['grunt', 'prune'])
)
}
testFilterBySubstring()
|
const filterBySubstring = (strings, substring) => {
| const testFilterBySubstring = () => {
console.assert(
JSON.stringify(filterBySubstring([], 'a')) === JSON.stringify([])
)
console.assert(
JSON.stringify(
filterBySubstring(
['abc', 'bacd', 'cde', 'array'], 'a'
)
) === JSON.stringify(['abc', 'bacd', 'array'])
)
}
testFilterBySubstring()
| return strings.filter(x => substring.indexOf(x) != -1);
}
| variable misuse | incorrect output | filterBySubstring | const filterBySubstring = (strings, substring) | Filter an input list of strings only for ones that contain given substring
>>> filterBySubstring([], 'a')
[]
>>> filterBySubstring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array'] | Write a JavaScript function `const filterBySubstring = (strings, substring)` to solve the following problem:
Filter an input list of strings only for ones that contain given substring
>>> filterBySubstring([], 'a')
[]
>>> filterBySubstring(['abc', 'bacd', 'cde', 'array'], 'a')
['abc', 'bacd', 'array'] |
JavaScript/23 | /* Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3
*/
const strlen = (string) => {
| return string.length;
}
| const testStrlen = () => {
console.assert(strlen('') === 0)
console.assert(strlen('x') === 1)
console.assert(strlen('asdasnakj') === 9)
}
testStrlen()
|
const strlen = (string) => {
| const testStrlen = () => {
console.assert(strlen('') === 0)
console.assert(strlen('abc') === 3)
}
testStrlen()
| return string.length - 1;
}
| value misuse | incorrect output | strlen | const strlen = (string) | Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3 | Write a JavaScript function `const strlen = (string)` to solve the following problem:
Return length of given string
>>> strlen('')
0
>>> strlen('abc')
3 |
JavaScript/55 | /*Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21
*/
const fib = (n) => {
| if (n == 0)
return 0;
if (n == 1)
return 1;
return fib(n - 1) + fib(n - 2);
}
| const testFib = () => {
console.assert(fib(10) === 55)
console.assert(fib(1) === 1)
console.assert(fib(8) === 21)
console.assert(fib(11) === 89)
console.assert(fib(12) === 144)
}
testFib()
|
const fib = (n) => {
| const testFib = () => {
console.assert(fib(10) === 55)
console.assert(fib(1) === 1)
console.assert(fib(8) === 21)
}
testFib()
| if (n == 0)
return 0;
if (n == 1)
return 1;
if (n == 2)
return 2;
return fib(n - 1) + fib(n - 2);
}
| excess logic | incorrect output | fib | const fib = (n) | Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21 | Write a JavaScript function `const fib = (n)` to solve the following problem:
Return n-th Fibonacci number.
>>> fib(10)
55
>>> fib(1)
1
>>> fib(8)
21 |
JavaScript/59 | /*Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largestPrimeFactor(13195)
29
>>> largestPrimeFactor(2048)
2
*/
const largestPrimeFactor = (n) => {
| var isPrime = function (k) {
if (k < 2)
return false;
for (let i = 2; i < k - 1; i++)
if (k % i == 0)
return false;
return true;
}
var largest = 1;
for (let j = 2; j < n + 1; j++)
if (n % j == 0 && isPrime(j))
largest = Math.max(largest, j);
return largest;
}
| const testLargestPrimeFactor = () => {
console.assert(largestPrimeFactor(15) === 5)
console.assert(largestPrimeFactor(27) === 3)
console.assert(largestPrimeFactor(63) === 7)
console.assert(largestPrimeFactor(330) === 11)
console.assert(largestPrimeFactor(13195) === 29)
}
testLargestPrimeFactor()
|
const largestPrimeFactor = (n) => {
| const testLargestPrimeFactor = () => {
console.assert(largestPrimeFactor(2048) === 2)
console.assert(largestPrimeFactor(13195) === 29)
}
testLargestPrimeFactor()
| var isPrime = function (k) {
if (k < 2)
return false;
for (let i = 2; i < k - 1; i++)
if (k % i == 0)
return false;
return true;
}
var largest = 1;
for (let j = 2; j < n + 1; j++)
if (n % j == 0 && isPrime(n))
largest = Math.max(largest, j);
return largest;
}
| variable misuse | incorrect output | largestPrimeFactor | const largestPrimeFactor = (n) | Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largestPrimeFactor(13195)
29
>>> largestPrimeFactor(2048)
2 | Write a JavaScript function `const largestPrimeFactor = (n)` to solve the following problem:
Return the largest prime factor of n. Assume n > 1 and is not a prime.
>>> largestPrimeFactor(13195)
29
>>> largestPrimeFactor(2048)
2 |
JavaScript/129 | /*
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1]
*/
const minPath = (grid, k) => {
| let m = 0
let n = 0
for (let i = 0; i < grid.length; i++) {
for (let j = 0; j < grid.length; j++) {
if (grid[i][j] == 1) {
m = i;
n = j;
break;
}
}
}
let min = grid.length * grid.length
if (m > 0 && grid[m - 1][n] < min) { min = grid[m - 1][n] }
if (n > 0 && grid[m][n - 1] < min) { min = grid[m][n - 1] }
if (m < grid.length - 1 && grid[m + 1][n] < min) { min = grid[m + 1][n] }
if (n < grid.length - 1 && grid[m][n + 1] < min) { min = grid[m][n + 1] }
let p = []
for (let i = 0; i < k; i++) {
if (i % 2 == 0) { p.push(1) }
else { p.push(min) }
}
return p
}
| const testMinPath = () => {
console.assert(
JSON.stringify(
minPath(
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
],
3
)
) === JSON.stringify([1, 2, 1])
)
console.assert(
JSON.stringify(
minPath(
[
[5, 9, 3],
[4, 1, 6],
[7, 8, 2],
],
1
)
) === JSON.stringify([1])
)
console.assert(
JSON.stringify(
minPath(
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12],
[13, 14, 15, 16],
],
4
)
) === JSON.stringify([1, 2, 1, 2])
)
console.assert(
JSON.stringify(
minPath(
[
[6, 4, 13, 10],
[5, 7, 12, 1],
[3, 16, 11, 15],
[8, 14, 9, 2],
],
7
)
) === JSON.stringify([1, 10, 1, 10, 1, 10, 1])
)
console.assert(
JSON.stringify(
minPath(
[
[8, 14, 9, 2],
[6, 4, 13, 15],
[5, 7, 1, 12],
[3, 10, 11, 16],
],
5
)
) === JSON.stringify([1, 7, 1, 7, 1])
)
console.assert(
JSON.stringify(
minPath(
[
[11, 8, 7, 2],
[5, 16, 14, 4],
[9, 3, 15, 6],
[12, 13, 10, 1],
],
9
)
) === JSON.stringify([1, 6, 1, 6, 1, 6, 1, 6, 1])
)
console.assert(
JSON.stringify(
minPath(
[
[12, 13, 10, 1],
[9, 3, 15, 6],
[5, 16, 14, 4],
[11, 8, 7, 2],
],
12
)
) === JSON.stringify([1, 6, 1, 6, 1, 6, 1, 6, 1, 6, 1, 6])
)
console.assert(
JSON.stringify(
minPath(
[
[2, 7, 4],
[3, 1, 5],
[6, 8, 9],
],
8
)
) === JSON.stringify([1, 3, 1, 3, 1, 3, 1, 3])
)
console.assert(
JSON.stringify(
minPath(
[
[6, 1, 5],
[3, 8, 9],
[2, 7, 4],
],
8
)
) === JSON.stringify([1, 5, 1, 5, 1, 5, 1, 5])
)
console.assert(
JSON.stringify(
minPath(
[
[1, 2],
[3, 4],
],
10
)
) === JSON.stringify([1, 2, 1, 2, 1, 2, 1, 2, 1, 2])
)
console.assert(
JSON.stringify(
minPath(
[
[1, 3],
[4, 2],
],
10
)
) === JSON.stringify([1, 3, 1, 3, 1, 3, 1, 3, 1, 3])
)
}
testMinPath()
|
const minPath = (grid, k) => {
| const testMinPath = () => {
console.assert(
JSON.stringify(
minPath(
[
[1, 2, 3],
[4, 5, 6],
[7, 8, 9],
],
3
)
) === JSON.stringify([1, 2, 1])
)
console.assert(
JSON.stringify(
minPath(
[
[5, 9, 3],
[4, 1, 6],
[7, 8, 2],
],
1
)
) === JSON.stringify([1])
)
}
testMinPath()
| let m = 0
let n = 0
for (let i = 0; i < grid.length; i++) {
for (let j = 0; j < grid.length; j++) {
if (grid[i][j] == 1) {
m = i;
n = j;
break;
}
}
}
let min = grid.length * grid.length
if (m > 0 && grid[m - 1][n] < min) { min = grid[m][n] }
if (n > 0 && grid[m][n - 1] < min) { min = grid[m][n] }
if (m < grid.length - 1 && grid[m + 1][n] < min) { min = grid[m][n] }
if (n < grid.length - 1 && grid[m][n + 1] < min) { min = grid[m][n] }
let p = []
for (let i = 0; i < k; i++) {
if (i % 2 == 0) { p.push(1) }
else { p.push(min) }
}
return p
}
| value misuse | incorrect output | minPath | const minPath = (grid, k) | Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1] | Write a JavaScript function `const minPath = (grid, k)` to solve the following problem:
Given a grid with N rows and N columns (N >= 2) and a positive integer k,
each cell of the grid contains a value. Every integer in the range [1, N * N]
inclusive appears exactly once on the cells of the grid.
You have to find the minimum path of length k in the grid. You can start
from any cell, and in each step you can move to any of the neighbor cells,
in other words, you can go to cells which share an edge with you current
cell.
Please note that a path of length k means visiting exactly k cells (not
necessarily distinct).
You CANNOT go off the grid.
A path A (of length k) is considered less than a path B (of length k) if
after making the ordered lists of the values on the cells that A and B go
through (let's call them lst_A and lst_B), lst_A is lexicographically less
than lst_B, in other words, there exist an integer index i (1 <= i <= k)
such that lst_A[i] < lst_B[i] and for any j (1 <= j < i) we have
lst_A[j] = lst_B[j].
It is guaranteed that the answer is unique.
Return an ordered list of the values on the cells that the minimum path go through.
Examples:
Input: grid = [ [1,2,3], [4,5,6], [7,8,9]], k = 3
Output: [1, 2, 1]
Input: grid = [ [5,9,3], [4,1,6], [7,8,2]], k = 1
Output: [1] |
JavaScript/161 | /*You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c"
*/
const solve = (s) => {
| let t = 0
let p = ''
for (let i = 0; i < s.length; i++) {
let y = s[i].charCodeAt()
if (y >= 65 && y <= 90) {
y += 32;
t = 1;
} else if (y >= 97 && y <= 122) {
y -= 32;
t = 1;
}
p += String.fromCharCode(y)
}
if (t == 1) { return p }
let u = ''
for (let i = 0; i < p.length; i++) {
u += p[p.length - i - 1]
}
return u
}
| const testSolve = () => {
console.assert(solve('AsDf') === 'aSdF')
console.assert(solve('1234') === '4321')
console.assert(solve('ab') === 'AB')
console.assert(solve('#a@C') === '#A@c')
console.assert(solve('#AsdfW^45') === '#aSDFw^45')
console.assert(solve('#6@2') === '2@6#')
console.assert(solve('#$a^D') === '#$A^d')
console.assert(solve('#ccc') === '#CCC')
}
testSolve()
|
const solve = (s) => {
| const testSolve = () => {
console.assert(solve('1234') === '4321')
console.assert(solve('ab') === 'AB')
console.assert(solve('#a@C') === '#A@c')
}
testSolve()
| let t = 0
let p = ''
for (let i = 0; i < s.length; i++) {
let y = s[i].charCodeAt()
if (y >= 65 && y <= 90) {
y += 32;
t = 1;
}
p += String.fromCharCode(y)
}
if (t == 1) { return p }
let u = ''
for (let i = 0; i < p.length; i++) {
u += p[p.length - i - 1]
}
return u
}
| missing logic | incorrect output | solve | const solve = (s) | You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c" | Write a JavaScript function `const solve = (s)` to solve the following problem:
You are given a string s.
if s[i] is a letter, reverse its case from lower to upper or vise versa,
otherwise keep it as it is.
If the string contains no letters, reverse the string.
The function should return the resulted string.
Examples
solve("1234") = "4321"
solve("ab") = "AB"
solve("#a@C") = "#A@c" |
JavaScript/143 | /*
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters
*/
const wordsInSentence = (sentence) => {
| let t = sentence.split(/\s/)
let p = ''
for (let j = 0; j < t.length; j++) {
let len = t[j].length;
let u = 1
if (len == 1 || len == 0) { continue }
for (let i = 2; i * i <= len; i++) {
if (len % i == 0) { u = 0 }
}
if (u == 0) { continue }
if (p == '') { p += t[j] }
else { p = p + ' ' + t[j] }
}
return p
}
| const testWordsInSentence = () => {
console.assert(wordsInSentence('This is a test') === 'is')
console.assert(wordsInSentence('lets go for swimming') === 'go for')
console.assert(
wordsInSentence('there is no place available here') === 'there is no place'
)
console.assert(wordsInSentence('Hi I am Hussein') === 'Hi am Hussein')
console.assert(wordsInSentence('go for it') === 'go for it')
console.assert(wordsInSentence('here') === '')
console.assert(wordsInSentence('here is') === 'is')
}
testWordsInSentence()
|
const wordsInSentence = (sentence) => {
| const testWordsInSentence = () => {
console.assert(wordsInSentence('This is a test') === 'is')
console.assert(wordsInSentence('lets go for swimming') === 'go for')
}
testWordsInSentence()
| let t = sentence.split(/\s/)
let p = ''
for (let j = 0; j < t.length; j++) {
let len = t[j].length;
let u = 1
for (let i = 2; i * i <= len; i++) {
if (len % i == 0) { u = 0 }
}
if (u == 0) { continue }
if (p == '') { p += t[j] }
else { p = p + ' ' + t[j] }
}
return p
}
| missing logic | incorrect output | wordsInSentence | const wordsInSentence = (sentence) | You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters | Write a JavaScript function `const wordsInSentence = (sentence)` to solve the following problem:
You are given a string representing a sentence,
the sentence contains some words separated by a space,
and you have to return a string that contains the words from the original sentence,
whose lengths are prime numbers,
the order of the words in the new string should be the same as the original one.
Example 1:
Input: sentence = "This is a test"
Output: "is"
Example 2:
Input: sentence = "lets go for swimming"
Output: "go for"
Constraints:
* 1 <= len(sentence) <= 100
* sentence contains only letters |
JavaScript/50 | /*
returns encoded string by shifting every character by 5 in the alphabet.
*/
const encodeShift = (s) => {
return s.split("").map(ch => String.fromCharCode(
((ch.charCodeAt(0) + 5 - "a".charCodeAt(0)) % 26) + "a".charCodeAt(0)
)).join("");
}
/*
takes as input string encoded with encode_shift function. Returns decoded string.
*/
const decodeShift = (s) => {
| return s.split("").map(ch => String.fromCharCode(
((ch.charCodeAt(0) - 5 + 26 - "a".charCodeAt(0)) % 26) + "a".charCodeAt(0)
)).join("");
}
| const testDecodeShift = () => {
const letters = new Array(26)
.fill(null)
.map((v, i) => String.fromCharCode(97 + i))
for (let i = 0; i < 100; i++) {
let str = new Array(Math.floor(Math.random() * 20)).fill(null);
str = str.map(item => letters[Math.floor(Math.random() * letters.length)]).join('');
let encoded_str = encodeShift(str)
console.assert(decodeShift(encoded_str) === str)
}
}
testDecodeShift()
| const encodeShift = (s) => {
return s.split("").map(ch => String.fromCharCode(
((ch.charCodeAt(0) + 5 - "a".charCodeAt(0)) % 26) + "a".charCodeAt(0)
)).join("");
}
const decodeShift = (s) => {
| return s.split("").map(ch => String.fromCharCode(
((ch.charCodeAt(0) - 5 + 26 - "a".charCodeAt(0)) % 26) + ch.charCodeAt(0)
)).join("");
}
| variable misuse | incorrect output | decodeShift | const decodeShift = (s) | takes as input string encoded with encode_shift function. Returns decoded string. | Write a JavaScript function `const decodeShift = (s)` to solve the following problem:
takes as input string encoded with encode_shift function. Returns decoded string. |
|
JavaScript/155 | /*Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(-12) ==> (1, 1)
evenOddCount(123) ==> (1, 2)
*/
const evenOddCount = (num) => {
| let o = 0
let e = 0
if (num < 0) { num = -num }
while (num > 0) {
if (num % 2 == 0) { e++ }
else { o++ }
num = (num - num % 10) / 10
}
return (e, o)
}
| const testEvenOddCount = () => {
console.assert(JSON.stringify(evenOddCount(7)) === JSON.stringify((0, 1)))
console.assert(JSON.stringify(evenOddCount(-78)) === JSON.stringify((1, 1)))
console.assert(JSON.stringify(evenOddCount(3452)) === JSON.stringify((2, 2)))
console.assert(
JSON.stringify(evenOddCount(346211)) === JSON.stringify((3, 3))
)
console.assert(
JSON.stringify(evenOddCount(-345821)) === JSON.stringify((3, 3))
)
console.assert(JSON.stringify(evenOddCount(-2)) === JSON.stringify((1, 0)))
console.assert(
JSON.stringify(evenOddCount(-45347)) === JSON.stringify((2, 3))
)
console.assert(JSON.stringify(evenOddCount(0)) === JSON.stringify((1, 0)))
}
testEvenOddCount()
|
const evenOddCount = (num) => {
| const testEvenOddCount = () => {
console.assert(JSON.stringify(evenOddCount(-12)) === JSON.stringify((1, 1)))
console.assert(JSON.stringify(evenOddCount(123)) === JSON.stringify((1, 2)))
}
testEvenOddCount()
| let o = 0
let e = 0
if (num < 0) { num = -num }
while (num > 0) {
if (num % 2 == 0) { e++ }
else { o++ }
num = num - num % 10
}
return (e, o)
}
| missing logic | incorrect output | evenOddCount | const evenOddCount = (num) | Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(-12) ==> (1, 1)
evenOddCount(123) ==> (1, 2) | Write a JavaScript function `const evenOddCount = (num)` to solve the following problem:
Given an integer. return a tuple that has the number of even and odd digits respectively.
Example:
evenOddCount(-12) ==> (1, 1)
evenOddCount(123) ==> (1, 2) |
JavaScript/107 | /*
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively.
*/
const evenOddPalindrome = (n) => {
| let e = 0
let o = 0
for (let i = 1; i <= n; i++) {
let k = i.toString()
let p = 1
for (let j = 0; j < k.length; j++) {
if (k[j] != k[k.length - j - 1]) {
p = 0;
break;
}
}
if (p == 1) {
if (k % 2 == 0) { e++ }
else { o++ }
}
}
return (e, o)
}
| const testEvenOddPalindrome = () => {
console.assert(
JSON.stringify(evenOddPalindrome(123)) === JSON.stringify((8, 13))
)
console.assert(
JSON.stringify(evenOddPalindrome(12)) === JSON.stringify((4, 6))
)
console.assert(
JSON.stringify(evenOddPalindrome(3)) === JSON.stringify((1, 2))
)
console.assert(
JSON.stringify(evenOddPalindrome(63)) === JSON.stringify((6, 8))
)
console.assert(
JSON.stringify(evenOddPalindrome(25)) === JSON.stringify((5, 6))
)
console.assert(
JSON.stringify(evenOddPalindrome(19)) === JSON.stringify((4, 6))
)
console.assert(
JSON.stringify(evenOddPalindrome(9)) === JSON.stringify((4, 5))
)
console.assert(
JSON.stringify(evenOddPalindrome(1)) === JSON.stringify((0, 1))
)
}
testEvenOddPalindrome()
|
const evenOddPalindrome = (n) => {
| const testEvenOddPalindrome = () => {
console.assert(
JSON.stringify(evenOddPalindrome(12)) === JSON.stringify((4, 6))
)
console.assert(
JSON.stringify(evenOddPalindrome(3)) === JSON.stringify((1, 2))
)
}
testEvenOddPalindrome()
| let e = 0
let o = 0
for (let i = 1; i <= n; i++) {
let k = i.toString()
let p = 1
for (let j = 0; j < k.length; j++) {
if (k[j] != k[k.length - j - 1]) {
p = 0;
break;
}
}
if (p == 1) {
if (k % 2 == 1) { e++ }
else { o++ }
}
}
return (e, o)
}
| value misuse | incorrect output | evenOddPalindrome | const evenOddPalindrome = (n) | Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively. | Write a JavaScript function `const evenOddPalindrome = (n)` to solve the following problem:
Given a positive integer n, return a tuple that has the number of even and odd
integer palindromes that fall within the range(1, n), inclusive.
Example 1:
Input: 3
Output: (1, 2)
Explanation:
Integer palindrome are 1, 2, 3. one of them is even, and two of them are odd.
Example 2:
Input: 12
Output: (4, 6)
Explanation:
Integer palindrome are 1, 2, 3, 4, 5, 6, 7, 8, 9, 11. four of them are even, and 6 of them are odd.
Note:
1. 1 <= n <= 10^3
2. returned tuple has the number of even and odd integer palindromes respectively. |
JavaScript/56 | /* brackets is a string of "<" and ">".
return false if every opening bracket has a corresponding closing bracket.
>>> correctBracketing("<")
false
>>> correctBracketing("<>")
false
>>> correctBracketing("<<><>>")
false
>>> correctBracketing("><<>")
false
*/
const correctBracketing = (brackets) => {
| var depth = 0;
for (const b of brackets) {
if (b == "<")
depth += 1;
else
depth -= 1;
if (depth < 0)
return false;
}
return depth == 0;
}
| const testCorrectBracketing = () => {
console.assert(correctBracketing('<>') === true)
console.assert(correctBracketing('<<><>>') === true)
console.assert(correctBracketing('<><><<><>><>') === true)
console.assert(correctBracketing('<><><<<><><>><>><<><><<>>>') === true)
console.assert(correctBracketing('<<<><>>>>') === false)
console.assert(correctBracketing('><<>') === false)
console.assert(correctBracketing('<') === false)
console.assert(correctBracketing('<<<<') === false)
console.assert(correctBracketing('>') === false)
console.assert(correctBracketing('<<>') === false)
console.assert(correctBracketing('<><><<><>><>><<>') === false)
console.assert(correctBracketing('<><><<><>><>>><>') === false)
}
testCorrectBracketing()
|
const correctBracketing = (brackets) => {
| const testCorrectBracketing = () => {
console.assert(correctBracketing('<>') === true)
console.assert(correctBracketing('<<><>>') === true)
console.assert(correctBracketing('><<>') === false)
console.assert(correctBracketing('<') === false)
}
testCorrectBracketing()
| var depth = 0;
for (const b of brackets) {
if (b == ">")
depth += 1;
else
depth -= 1;
if (depth < 0)
return false;
}
return depth == 0;
}
| operator misuse | incorrect output | correctBracketing | const correctBracketing = (brackets) | brackets is a string of "<" and ">".
return false if every opening bracket has a corresponding closing bracket.
>>> correctBracketing("<")
false
>>> correctBracketing("<>")
false
>>> correctBracketing("<<><>>")
false
>>> correctBracketing("><<>")
false | Write a JavaScript function `const correctBracketing = (brackets)` to solve the following problem:
brackets is a string of "<" and ">".
return false if every opening bracket has a corresponding closing bracket.
>>> correctBracketing("<")
false
>>> correctBracketing("<>")
false
>>> correctBracketing("<<><>>")
false
>>> correctBracketing("><<>")
false |
JavaScript/114 | /*
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6
*/
const minSubArraySum = (nums) => {
| let min = nums[0]
for (let i = 0; i < nums.length; i++) {
for (let j = i + 1; j <= nums.length; j++) {
let s = 0;
for (let k = i; k < j; k++) {
s += nums[k]
}
if (s < min) { min = s }
}
}
return min
}
| const testMinSubArraySum = () => {
console.assert(minSubArraySum([2, 3, 4, 1, 2, 4]) === 1)
console.assert(minSubArraySum([-1, -2, -3]) === -6)
console.assert(minSubArraySum([-1, -2, -3, 2, -10]) === -14)
console.assert(minSubArraySum([-9999999999999999]) === -9999999999999999)
console.assert(minSubArraySum([0, 10, 20, 1000000]) === 0)
console.assert(minSubArraySum([-1, -2, -3, 10, -5]) === -6)
console.assert(minSubArraySum([100, -1, -2, -3, 10, -5]) === -6)
console.assert(minSubArraySum([10, 11, 13, 8, 3, 4]) === 3)
console.assert(minSubArraySum([100, -33, 32, -1, 0, -2]) === -33)
console.assert(minSubArraySum([-10]) === -10)
console.assert(minSubArraySum([7]) === 7)
console.assert(minSubArraySum([1, -1]) === -1)
}
testMinSubArraySum()
|
const minSubArraySum = (nums) => {
| const testMinSubArraySum = () => {
console.assert(minSubArraySum([2, 3, 4, 1, 2, 4]) === 1)
console.assert(minSubArraySum([-1, -2, -3]) === -6)
}
testMinSubArraySum()
| let min = Math.min(nums)
for (let i = 0; i < nums.length; i++) {
for (let j = i + 1; j <= nums.length; j++) {
let s = 0;
for (let k = i; k < j; k++) {
s += nums[k]
}
if (s < min) { min = s }
}
}
return min
}
| function misuse | incorrect output | minSubarraySum | const minSubArraySum = (nums) | Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6 | Write a JavaScript function `const minSubArraySum = (nums)` to solve the following problem:
Given an array of integers nums, find the minimum sum of any non-empty sub-array
of nums.
Example
minSubArraySum([2, 3, 4, 1, 2, 4]) == 1
minSubArraySum([-1, -2, -3]) == -6 |
JavaScript/71 | /*
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(3, 4, 5) == 6.00
triangleArea(1, 2, 10) == -1
*/
const triangleArea = (a, b, c) => {
| if (a + b <= c || a + c <= b || b + c <= a)
return -1;
var s = (a + b + c) / 2;
var area = Math.pow(s * (s - a) * (s - b) * (s - c), 0.5);
area = area.toFixed(2);
return area;
}
| const testTriangleArea = () => {
console.assert(triangleArea(3, 4, 5) == 6.0)
console.assert(triangleArea(1, 2, 10) == -1)
console.assert(triangleArea(4, 8, 5) == 8.18)
console.assert(triangleArea(2, 2, 2) == 1.73)
console.assert(triangleArea(1, 2, 3) == -1)
console.assert(triangleArea(10, 5, 7) == 16.25)
console.assert(triangleArea(2, 6, 3) == -1)
console.assert(triangleArea(1, 1, 1) == 0.43)
console.assert(triangleArea(2, 2, 10) == -1)
}
testTriangleArea()
|
const triangleArea = (a, b, c) => {
| const testTriangleArea = () => {
console.assert(triangleArea(3, 4, 5) == 6.0)
console.assert(triangleArea(1, 2, 10) == -1)
}
testTriangleArea()
| if (a + b <= c || a + c <= b || b + c <= a)
return -1;
var s = (a + b + c);
var area = Math.pow(s * (s - a) * (s - b) * (s - c), 0.5);
area = area.toFixed(2);
return area;
}
| missing logic | incorrect output | triangleArea | const triangleArea = (a, b, c) | Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(3, 4, 5) == 6.00
triangleArea(1, 2, 10) == -1 | Write a JavaScript function `const triangleArea = (a, b, c)` to solve the following problem:
Given the lengths of the three sides of a triangle. Return the area of
the triangle rounded to 2 decimal points if the three sides form a valid triangle.
Otherwise return -1
Three sides make a valid triangle when the sum of any two sides is greater
than the third side.
Example:
triangleArea(3, 4, 5) == 6.00
triangleArea(1, 2, 10) == -1 |
JavaScript/1 | /* Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separateParenGroups('( ) (( )) (( )( ))')
['()', '(())', '(()())']
*/
const separateParenGroups = (paren_string) => {
| var result = [];
var current_string = [];
var current_depth = 0;
for (const c of paren_string) {
if (c == '(') {
current_depth += 1;
current_string.push(c);
} else if (c == ')') {
current_depth -= 1;
current_string.push(c);
if (current_depth == 0) {
result.push(current_string.join(''));
current_string = [];
}
}
}
return result;
}
| const testSeparateParenGroups = () => {
console.assert(
JSON.stringify(separateParenGroups('(()()) ((())) () ((())()())')) ===
JSON.stringify(['(()())', '((()))', '()', '((())()())'])
)
console.assert(
JSON.stringify(separateParenGroups('() (()) ((())) (((())))')) ===
JSON.stringify(['()', '(())', '((()))', '(((())))'])
)
console.assert(
JSON.stringify(separateParenGroups('(()(())((())))')) ===
JSON.stringify(['(()(())((())))'])
)
console.assert(
JSON.stringify(separateParenGroups('( ) (( )) (( )( ))')) ===
JSON.stringify(['()', '(())', '(()())'])
)
}
testSeparateParenGroups()
|
const separateParenGroups = (paren_string) => {
| const testSeparateParenGroups = () => {
console.assert(
JSON.stringify(separateParenGroups('( ) (( )) (( )( ))')) ===
JSON.stringify(['()', '(())', '(()())'])
)
}
testSeparateParenGroups()
| var result = [];
var current_string = [];
var current_depth = 0;
for (const c of paren_string) {
if (c == '(') {
current_depth += 1;
current_string.push(c);
} else if (c == ')') {
current_depth -= 1;
current_string.push(c);
if (current_depth < 0) {
result.push(current_string.join(''));
current_string = [];
}
}
}
return result;
}
| operator misuse | incorrect output | separateParenGroups | const separateParenGroups = (paren_string) | Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separateParenGroups('( ) (( )) (( )( ))')
['()', '(())', '(()())'] | Write a JavaScript function `const separateParenGroups = (paren_string)` to solve the following problem:
Input to this function is a string containing multiple groups of nested parentheses. Your goal is to
separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each other
Ignore any spaces in the input string.
>>> separateParenGroups('( ) (( )) (( )( ))')
['()', '(())', '(()())'] |
JavaScript/40 | /*
triplesSumToZero takes a list of integers as an input.
it returns true if there are three distinct elements in the list that
sum to zero, and false otherwise.
>>> triplesSumToZero([1, 3, 5, 0])
false
>>> triplesSumToZero([1, 3, -2, 1])
true
>>> triplesSumToZero([1, 2, 3, 7])
false
>>> triplesSumToZero([2, 4, -5, 3, 9, 7])
true
>>> triplesSumToZero([1])
false
*/
const triplesSumToZero = (l) => {
| for (let i = 0; i < l.length; i++)
for (let j = i + 1; j < l.length; j++)
for (let k = j + 1; k < l.length; k++)
if (l[i] + l[j] + l[k] == 0)
return true;
return false;
}
| const testTriplesSumToZero = () => {
console.assert(triplesSumToZero([1, 3, 5, 0]) === false)
console.assert(triplesSumToZero([1, 3, 5, -1]) === false)
console.assert(triplesSumToZero([1, 3, -2, 1]) === true)
console.assert(triplesSumToZero([1, 2, 3, 7]) === false)
console.assert(triplesSumToZero([1, 2, 5, 7]) === false)
console.assert(triplesSumToZero([2, 4, -5, 3, 9, 7]) === true)
console.assert(triplesSumToZero([1]) === false)
console.assert(triplesSumToZero([1, 3, 5, -100]) === false)
console.assert(triplesSumToZero([100, 3, 5, -100]) === false)
}
testTriplesSumToZero()
|
const triplesSumToZero = (l) => {
| const testTriplesSumToZero = () => {
console.assert(triplesSumToZero([1, 3, 5, 0]) === false)
console.assert(triplesSumToZero([1, 3, -2, 1]) === true)
console.assert(triplesSumToZero([1, 2, 3, 7]) === false)
console.assert(triplesSumToZero([2, 4, -5, 3, 9, 7]) === true)
}
testTriplesSumToZero()
| for (let i = 1; i < l.length; i++)
for (let j = i + 1; j < l.length; j++)
for (let k = j + 1; k < l.length; k++)
if (l[i] + l[j] + l[k] == 0)
return true;
return false;
}
| value misuse | incorrect output | triplesSumToZero | const triplesSumToZero = (l) | triplesSumToZero takes a list of integers as an input.
it returns true if there are three distinct elements in the list that
sum to zero, and false otherwise.
>>> triplesSumToZero([1, 3, 5, 0])
false
>>> triplesSumToZero([1, 3, -2, 1])
true
>>> triplesSumToZero([1, 2, 3, 7])
false
>>> triplesSumToZero([2, 4, -5, 3, 9, 7])
true
>>> triplesSumToZero([1])
false | Write a JavaScript function `const triplesSumToZero = (l)` to solve the following problem:
triplesSumToZero takes a list of integers as an input.
it returns true if there are three distinct elements in the list that
sum to zero, and false otherwise.
>>> triplesSumToZero([1, 3, 5, 0])
false
>>> triplesSumToZero([1, 3, -2, 1])
true
>>> triplesSumToZero([1, 2, 3, 7])
false
>>> triplesSumToZero([2, 4, -5, 3, 9, 7])
true
>>> triplesSumToZero([1])
false |
JavaScript/152 | /*I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6]
*/
const compare = (game, guess) => {
| for (let i = 0; i < guess.length; i++) {
game[i] -= guess[i]
if (game[i]<0)
game[i]=-game[i]; }
return game
}
| const testCompare = () => {
console.assert(
JSON.stringify(compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2])) ===
JSON.stringify([0, 0, 0, 0, 3, 3])
)
console.assert(
JSON.stringify(compare([0,5,0,0,0,4],[4,1,1,0,0,-2])) ===
JSON.stringify([4,4,1,0,0,6])
)
console.assert(
JSON.stringify(compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2])) ===
JSON.stringify([0, 0, 0, 0, 3, 3])
)
console.assert(
JSON.stringify(compare([0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0])) ===
JSON.stringify([0, 0, 0, 0, 0, 0])
)
console.assert(
JSON.stringify(compare([1, 2, 3], [-1, -2, -3])) ===
JSON.stringify([2, 4, 6])
)
console.assert(
JSON.stringify(compare([1, 2, 3, 5], [-1, 2, 3, 4])) ===
JSON.stringify([2, 0, 0, 1])
)
}
testCompare()
|
const compare = (game, guess) => {
| const testCompare = () => {
console.assert(
JSON.stringify(compare([1, 2, 3, 4, 5, 1], [1, 2, 3, 4, 2, -2])) ===
JSON.stringify([0, 0, 0, 0, 3, 3])
)
console.assert(
JSON.stringify(compare([0,5,0,0,0,4],[4,1,1,0,0,-2])) ===
JSON.stringify([4,4,1,0,0,6])
)
}
testCompare()
| for (let i = 0; i < guess.length; i++) {
game[i] -= guess[i]
if (game[i]<0)
game[i]=-game[i];
if (guess[i]!=0)
game[i]-=guess[i]; }
return game
}
| excess logic | incorrect output | compare | const compare = (game, guess) | I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] | Write a JavaScript function `const compare = (game, guess)` to solve the following problem:
I think we all remember that feeling when the result of some long-awaited
event is finally known. The feelings and thoughts you have at that moment are
definitely worth noting down and comparing.
Your task is to determine if a person correctly guessed the results of a number of matches.
You are given two arrays of scores and guesses of equal length, where each index shows a match.
Return an array of the same length denoting how far off each guess was. If they have guessed correctly,
the value is 0, and if not, the value is the absolute difference between the guess and the score.
example:
compare([1,2,3,4,5,1],[1,2,3,4,2,-2]) -> [0,0,0,0,3,3]
compare([0,5,0,0,0,4],[4,1,1,0,0,-2]) -> [4,4,1,0,0,6] |
JavaScript/87 | /*
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow([], 1) == []
getRow([[], [1], [1, 2, 3]], 3) == [(2, 2)]
*/
const getRow = (lst, x) => {
| let t = []
for (let i = 0; i < lst.length; i++) {
for (let j = lst[i].length - 1; j >= 0; j--) {
if (lst[i][j] == x) {
t.push((i, j))
}
}
}
return t
}
| const testGetRow = () => {
console.assert(
JSON.stringify(
getRow(
[
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 1, 6],
[1, 2, 3, 4, 5, 1],
],
1
)
) === JSON.stringify([(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)])
)
console.assert(
JSON.stringify(
getRow(
[
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
],
2
)
) === JSON.stringify([(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1)])
)
console.assert(
JSON.stringify(
getRow(
[
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 5, 6],
[1, 1, 3, 4, 5, 6],
[1, 2, 1, 4, 5, 6],
[1, 2, 3, 1, 5, 6],
[1, 2, 3, 4, 1, 6],
[1, 2, 3, 4, 5, 1],
],
1
)
) ===
JSON.stringify([
(0, 0),
(1, 0),
(2, 1),
(2, 0),
(3, 2),
(3, 0),
(4, 3),
(4, 0),
(5, 4),
(5, 0),
(6, 5),
(6, 0),
])
)
console.assert(JSON.stringify(getRow([], 1)) === JSON.stringify([]))
console.assert(JSON.stringify(getRow([[1]], 2)) === JSON.stringify([]))
console.assert(
JSON.stringify(getRow([[], [1], [1, 2, 3]], 3)) === JSON.stringify([(2, 2)])
)
}
testGetRow()
|
const getRow = (lst, x) => {
| const testGetRow = () => {
console.assert(
JSON.stringify(
getRow(
[
[1, 2, 3, 4, 5, 6],
[1, 2, 3, 4, 1, 6],
[1, 2, 3, 4, 5, 1],
],
1
)
) === JSON.stringify([(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)])
)
console.assert(JSON.stringify(getRow([], 1)) === JSON.stringify([]))
console.assert(
JSON.stringify(getRow([[], [1], [1, 2, 3]], 3)) === JSON.stringify([(2, 2)])
)
}
testGetRow()
| let t = []
for (let i = 0; i < lst.length; i++) {
for (let j = lst[i].length - 1; j >= 0; j--) {
if (lst[i][j] == x) {
t.push((j, i))
}
}
}
return t
}
| variable misuse | incorrect output | getRow | const getRow = (lst, x) | You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow([], 1) == []
getRow([[], [1], [1, 2, 3]], 3) == [(2, 2)] | Write a JavaScript function `const getRow = (lst, x)` to solve the following problem:
You are given a 2 dimensional data, as a nested lists,
which is similar to matrix, however, unlike matrices,
each row may contain a different number of columns.
Given lst, and integer x, find integers x in the list,
and return list of tuples, [(x1, y1), (x2, y2) ...] such that
each tuple is a coordinate - (row, columns), starting with 0.
Sort coordinates initially by rows in ascending order.
Also, sort coordinates of the row by columns in descending order.
Examples:
getRow([
[1,2,3,4,5,6],
[1,2,3,4,1,6],
[1,2,3,4,5,1]
], 1) == [(0, 0), (1, 4), (1, 0), (2, 5), (2, 0)]
getRow([], 1) == []
getRow([[], [1], [1, 2, 3]], 3) == [(2, 2)] |
JavaScript/138 | /*Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(4) == false
isEqualToSumEven(6) == false
isEqualToSumEven(8) == true
*/
const isEqualToSumEven = (n) => {
| return (n >= 8 && n % 2 == 0)
}
| const testIsEqualToSumEven = () => {
console.assert(isEqualToSumEven(4) === false)
console.assert(isEqualToSumEven(6) === false)
console.assert(isEqualToSumEven(8) === true)
console.assert(isEqualToSumEven(10) === true)
console.assert(isEqualToSumEven(11) === false)
console.assert(isEqualToSumEven(12) === true)
console.assert(isEqualToSumEven(13) === false)
console.assert(isEqualToSumEven(16) === true)
}
testIsEqualToSumEven()
|
const isEqualToSumEven = (n) => {
| const testIsEqualToSumEven = () => {
console.assert(isEqualToSumEven(4) === false)
console.assert(isEqualToSumEven(6) === false)
console.assert(isEqualToSumEven(8) === true)
}
testIsEqualToSumEven()
| return (n >= 8 && n <= 8 && n % 2 == 0)
}
| excess logic | incorrect output | isEqualToSumEven | const isEqualToSumEven = (n) | Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(4) == false
isEqualToSumEven(6) == false
isEqualToSumEven(8) == true | Write a JavaScript function `const isEqualToSumEven = (n)` to solve the following problem:
Evaluate whether the given number n can be written as the sum of exactly 4 positive even numbers
Example
isEqualToSumEven(4) == false
isEqualToSumEven(6) == false
isEqualToSumEven(8) == true |
JavaScript/39 | /*
primeFib returns n-th number that is a Fibonacci number and it's also prime.
>>> primeFib(1)
2
>>> primeFib(2)
3
>>> primeFib(3)
5
>>> primeFib(4)
13
>>> primeFib(5)
89
*/
const primeFib = (n) => {
| var isPrime = function (p) {
if (p < 2)
return false;
for (let k = 2; k < Math.min(Math.floor(Math.sqrt(p)) + 1, p - 1); k++) {
if (p % k == 0)
return false;
}
return true;
}
var f = [0, 1];
while (true) {
f.push(f.at(-1) + f.at(-2));
if (isPrime(f.at(-1)))
n -= 1;
if (n == 0)
return f.at(-1);
}
}
| const testPrimeFib = () => {
console.assert(primeFib(1) === 2)
console.assert(primeFib(2) === 3)
console.assert(primeFib(3) === 5)
console.assert(primeFib(4) === 13)
console.assert(primeFib(5) === 89)
console.assert(primeFib(6) === 233)
console.assert(primeFib(7) === 1597)
console.assert(primeFib(8) === 28657)
console.assert(primeFib(9) === 514229)
console.assert(primeFib(10) === 433494437)
}
testPrimeFib()
|
const primeFib = (n) => {
| const testPrimeFib = () => {
console.assert(primeFib(1) === 2)
console.assert(primeFib(2) === 3)
console.assert(primeFib(3) === 5)
console.assert(primeFib(4) === 13)
console.assert(primeFib(5) === 89)
}
testPrimeFib()
| var isPrime = function (p) {
if (p < 2)
return false;
for (let k = 2; k < Math.min(Math.floor(Math.sqrt(p)), p); k++) {
if (p % k == 0)
return false;
}
return true;
}
var f = [0, 1];
while (true) {
f.push(f.at(-1) + f.at(-2));
if (isPrime(f.at(-1)))
n -= 1;
if (n == 0)
return f.at(-1);
}
}
| value misuse | incorrect output | primeFib | const primeFib = (n) | primeFib returns n-th number that is a Fibonacci number and it's also prime.
>>> primeFib(1)
2
>>> primeFib(2)
3
>>> primeFib(3)
5
>>> primeFib(4)
13
>>> primeFib(5)
89 | Write a JavaScript function `const primeFib = (n)` to solve the following problem:
primeFib returns n-th number that is a Fibonacci number and it's also prime.
>>> primeFib(1)
2
>>> primeFib(2)
3
>>> primeFib(3)
5
>>> primeFib(4)
13
>>> primeFib(5)
89 |
Python/0 | from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
""" Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""
| for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = abs(elem - elem2)
if distance < threshold:
return True
return False
|
def check(has_close_elements):
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True
assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False
assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True
assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False
assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True
assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True
assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False
check(has_close_elements) | from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
| def check(has_close_elements):
assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False
assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True
check(has_close_elements)
| for idx, elem in enumerate(numbers):
for idx2, elem2 in enumerate(numbers):
if idx != idx2:
distance = elem - elem2
if distance < threshold:
return True
return False
| missing logic | incorrect output | has_close_elements | has_close_elements(numbers: List[float], threshold: float) -> bool | Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True | Write a Python function `has_close_elements(numbers: List[float], threshold: float) -> bool` to solve the following problem:
Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
>>> has_close_elements([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True |
Rust/0 | fn main(){}
use std::{slice::Iter, cmp::{max, self}, mem::replace, collections::{HashSet, HashMap}, ops::Index, ascii::AsciiExt};
use rand::Rng;
use regex::Regex;
use md5;
use std::any::{Any, TypeId};
/*
Check if in given list of numbers, are any two numbers closer to each other than
given threshold.
*/
fn has_close_elements(numbers:Vec<f32>, threshold: f32) -> bool{
|
for i in 0..numbers.len(){
for j in 1..numbers.len(){
if i != j {
let distance:f32 = numbers[i] - numbers[j];
if distance.abs() < threshold{
return true;
}
}
}
}
return false;
}
|
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_has_close_elements() {
assert_eq!(has_close_elements(vec![11.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3), true);
assert_eq!(has_close_elements(vec![1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05), false);
assert_eq!(has_close_elements(vec![1.0, 2.0, 5.9, 4.0, 5.0], 0.95), true);
assert_eq!(has_close_elements(vec![1.0, 2.0, 5.9, 4.0, 5.0], 0.8), false);
assert_eq!(has_close_elements(vec![1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1), true);
assert_eq!(has_close_elements(vec![1.1, 2.2, 3.1, 4.1, 5.1], 1.0), true);
assert_eq!(has_close_elements(vec![1.1, 2.2, 3.1, 4.1, 5.1], 0.5), false);
}
}
|
use std::{slice::Iter, cmp::{max, self}, mem::replace, collections::{HashSet, HashMap}, ops::Index, ascii::AsciiExt};
use rand::Rng;
use regex::Regex;
use md5;
use std::any::{Any, TypeId};
fn has_close_elements(numbers:Vec<f32>, threshold: f32) -> bool{
| None |
for i in 0..numbers.len(){
for j in 1..numbers.len(){
if i != j {
let distance:f32 = numbers[i] - numbers[j];
if distance < threshold{
return true;
}
}
}
}
return false;
}
| missing logic | incorrect output | has_close_elements | has_close_elements(numbers:Vec<f32>, threshold: f32) -> bool | Check if in given list of numbers, are any two numbers closer to each other than
given threshold. | Write a Rust function `has_close_elements(numbers:Vec<f32>, threshold: f32) -> bool` to solve the following problem:
Check if in given list of numbers, are any two numbers closer to each other than
given threshold. |