ryokamoi commited on
Commit
39c6c69
1 Parent(s): 59bf883

Updated README.md - added VLMEvalKit

Browse files
Files changed (1) hide show
  1. README.md +33 -13
README.md CHANGED
@@ -113,14 +113,17 @@ configs:
113
  ---
114
  # VisOnlyQA
115
 
116
- VisOnlyQA is a dataset proposed in the paper "[VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information](https://arxiv.org/abs/2412.00947)".
117
 
118
  VisOnlyQA is designed to evaluate the visual perception capability of large vision language models (LVLMs) on geometric information of scientific figures. The evaluation set includes 1,200 mlutiple choice questions in 12 visual perception tasks on 4 categories of scientific figures. We also provide a training dataset consisting of 70k instances.
119
 
120
  * Datasets:
121
- * Eval-Real: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real)
122
- * Eval-Synthetic: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic)
123
- * Train: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train)
 
 
 
124
  * Code: [https://github.com/psunlpgroup/VisOnlyQA](https://github.com/psunlpgroup/VisOnlyQA)
125
 
126
  <p align="center">
@@ -138,7 +141,32 @@ VisOnlyQA is designed to evaluate the visual perception capability of large visi
138
 
139
  ## Dataset
140
 
141
- The dataset is provided in Hugging Face Dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142
 
143
  * Eval-Real: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real)
144
  * 500 instances for questions on figures in existing datasets (e.g., MathVista, MMMU, and CharXiv)
@@ -149,14 +177,6 @@ The dataset is provided in Hugging Face Dataset.
149
 
150
  [dataset](https://github.com/psunlpgroup/VisOnlyQA/tree/main/dataset) folder of the GitHub repository includes identical datasets, except for the training data.
151
 
152
- ### Examples
153
-
154
- <p align="center">
155
- <img src="readme_figures/examples.png" width="800">
156
- </p>
157
-
158
- ### Usage
159
-
160
  ```python
161
  from datasets import load_dataset
162
 
 
113
  ---
114
  # VisOnlyQA
115
 
116
+ This repository contains the code and data for the paper "[VisOnlyQA: Large Vision Language Models Still Struggle with Visual Perception of Geometric Information](https://arxiv.org/abs/2412.00947)".
117
 
118
  VisOnlyQA is designed to evaluate the visual perception capability of large vision language models (LVLMs) on geometric information of scientific figures. The evaluation set includes 1,200 mlutiple choice questions in 12 visual perception tasks on 4 categories of scientific figures. We also provide a training dataset consisting of 70k instances.
119
 
120
  * Datasets:
121
+ * VisOnlyQA is available at [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) 🔥🔥🔥
122
+ * VisOnlyQA in VLMEvalKit is different from the original one. Refer to [this section](#vlmevalkit) for details.
123
+ * Hugging Face
124
+ * Eval-Real: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real)
125
+ * Eval-Synthetic: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Synthetic)
126
+ * Train: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Train)
127
  * Code: [https://github.com/psunlpgroup/VisOnlyQA](https://github.com/psunlpgroup/VisOnlyQA)
128
 
129
  <p align="center">
 
141
 
142
  ## Dataset
143
 
144
+ VisOnlyQA is provided in two formats: VLMEvalKit and Hugging Face Dataset. You can use either of them to evaluate your models and report the results in your papers. However, when you report the results, please explicitly mention which version of the dataset you used because the two versions are different.
145
+
146
+ ### Examples
147
+
148
+ <p align="center">
149
+ <img src="readme_figures/examples.png" width="800">
150
+ </p>
151
+
152
+ ### VLMEvalKit
153
+
154
+ [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) provides one-command evaluation. However, VLMEvalKit is not designed to reproduce the results in the paper. We welcome using it to report the results on VisOnlyQA in your papers, but please explicitly mention that you used VLMEvalKit.
155
+
156
+ The major differences are:
157
+
158
+ * VisOnlyQA on VLMEvalKit does not include the `chemistry__shape_multi` split
159
+ * VLMEvalKit uses different prompts and postprocessing.
160
+
161
+ Refer to [this document](https://github.com/open-compass/VLMEvalKit/blob/main/docs/en/Quickstart.md) for the installation and setup of VLMEvalKit. After setting up the environment, you can evaluate any supported models on VisOnlyQA with the following command (this example is for InternVL2-26B).
162
+
163
+ ```bash
164
+ python run.py --data VisOnlyQA-VLMEvalKit --model InternVL2-26B
165
+ ```
166
+
167
+ ### Hugging Face Dataset
168
+
169
+ The original VisOnlyQA dataset is provided in Hugging Face Dataset. If you want to reproduce the results in our paper, please use this version and code in the GitHub repository.
170
 
171
  * Eval-Real: [https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real](https://huggingface.co/datasets/ryokamoi/VisOnlyQA_Eval_Real)
172
  * 500 instances for questions on figures in existing datasets (e.g., MathVista, MMMU, and CharXiv)
 
177
 
178
  [dataset](https://github.com/psunlpgroup/VisOnlyQA/tree/main/dataset) folder of the GitHub repository includes identical datasets, except for the training data.
179
 
 
 
 
 
 
 
 
 
180
  ```python
181
  from datasets import load_dataset
182