Datasets:
Commit
·
0c78895
1
Parent(s):
088c9bb
Fix `license` metadata (#1)
Browse files- Fix `license` metadata (e3454351ea8da55eda4b8bed6639e560d3824b5b)
Co-authored-by: Julien Chaumond <[email protected]>
README.md
CHANGED
@@ -1,148 +1,148 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- expert-generated
|
4 |
-
language_creators:
|
5 |
-
- machine-generated
|
6 |
-
|
7 |
-
- hi
|
8 |
-
- en
|
9 |
-
|
10 |
-
- unknown
|
11 |
-
multilinguality:
|
12 |
-
- multilingual
|
13 |
-
pretty_name: HashSet Manual
|
14 |
-
size_categories:
|
15 |
-
- unknown
|
16 |
-
source_datasets:
|
17 |
-
- original
|
18 |
-
task_categories:
|
19 |
-
- structure-prediction
|
20 |
-
task_ids:
|
21 |
-
- named-entity-recognition
|
22 |
-
- structure-prediction-other-word-segmentation
|
23 |
-
---
|
24 |
-
|
25 |
-
# Dataset Card for HashSet Manual
|
26 |
-
|
27 |
-
## Dataset Description
|
28 |
-
|
29 |
-
- **Repository:** [prashantkodali/HashSet](https://github.com/prashantkodali/HashSet)
|
30 |
-
- **Paper:** [HashSet -- A Dataset For Hashtag Segmentation](https://arxiv.org/abs/2201.06741)
|
31 |
-
|
32 |
-
### Dataset Summary
|
33 |
-
|
34 |
-
Hashset is a new dataset consisting on 1.9k manually annotated and 3.3M loosely supervised tweets for testing the
|
35 |
-
efficiency of hashtag segmentation models. We compare State of The Art Hashtag Segmentation models on Hashset and other
|
36 |
-
baseline datasets (STAN and BOUN). We compare and analyse the results across the datasets to argue that HashSet can act
|
37 |
-
as a good benchmark for hashtag segmentation tasks.
|
38 |
-
|
39 |
-
HashSet Manual: contains 1.9k manually annotated hashtags. Each row consists of the hashtag, segmented hashtag ,named entity annotations, whether the hashtag contains mix of hindi and english tokens and/or contains non-english tokens.
|
40 |
-
|
41 |
-
### Languages
|
42 |
-
|
43 |
-
Mostly Hindi and English.
|
44 |
-
|
45 |
-
## Dataset Structure
|
46 |
-
|
47 |
-
### Data Instances
|
48 |
-
|
49 |
-
```
|
50 |
-
{
|
51 |
-
"index": 10,
|
52 |
-
"hashtag": "goodnewsmegan",
|
53 |
-
"segmentation": "good news megan",
|
54 |
-
"spans": {
|
55 |
-
"start": [
|
56 |
-
8
|
57 |
-
],
|
58 |
-
"end": [
|
59 |
-
13
|
60 |
-
],
|
61 |
-
"text": [
|
62 |
-
"megan"
|
63 |
-
]
|
64 |
-
},
|
65 |
-
"source": "roman",
|
66 |
-
"gold_position": null,
|
67 |
-
"mix": false,
|
68 |
-
"other": false,
|
69 |
-
"ner": true,
|
70 |
-
"annotator_id": 1,
|
71 |
-
"annotation_id": 2088,
|
72 |
-
"created_at": "2021-12-30 17:10:33.800607",
|
73 |
-
"updated_at": "2021-12-30 17:10:59.714840",
|
74 |
-
"lead_time": 3896.182,
|
75 |
-
"rank": {
|
76 |
-
"position": [
|
77 |
-
1,
|
78 |
-
2,
|
79 |
-
3,
|
80 |
-
4,
|
81 |
-
5,
|
82 |
-
6,
|
83 |
-
7,
|
84 |
-
8,
|
85 |
-
9,
|
86 |
-
10
|
87 |
-
],
|
88 |
-
"candidate": [
|
89 |
-
"goodnewsmegan",
|
90 |
-
"goodnewsmeg an",
|
91 |
-
"goodnews megan",
|
92 |
-
"goodnewsmega n",
|
93 |
-
"go odnewsmegan",
|
94 |
-
"good news megan",
|
95 |
-
"good newsmegan",
|
96 |
-
"g oodnewsmegan",
|
97 |
-
"goodnewsme gan",
|
98 |
-
"goodnewsm egan"
|
99 |
-
]
|
100 |
-
}
|
101 |
-
}
|
102 |
-
```
|
103 |
-
|
104 |
-
### Data Fields
|
105 |
-
|
106 |
-
- `index`: a numerical index annotated by Kodali et al..
|
107 |
-
- `hashtag`: the original hashtag.
|
108 |
-
- `segmentation`: the gold segmentation for the hashtag.
|
109 |
-
- `spans`: named entity spans.
|
110 |
-
- `source`: data source.
|
111 |
-
- `gold_position`: position of the gold segmentation on the `segmentation` field inside the `rank`.
|
112 |
-
- `mix`: The hashtag has a mix of English and Hindi tokens.
|
113 |
-
- `other`: The hashtag has non-English tokens.
|
114 |
-
- `ner`: The hashtag has named entities.
|
115 |
-
- `annotator_id`: annotator ID.
|
116 |
-
- `annotation_id`: annotation ID.
|
117 |
-
- `created_at`: Creation date timestamp.
|
118 |
-
- `updated_at`: Update date timestamp.
|
119 |
-
- `lead_time`: Lead time field annotated by Kodali et al..
|
120 |
-
- `rank`: Rank of each candidate selected by a baseline word segmenter ( WordBreaker ).
|
121 |
-
- `candidates`: Candidates selected by a baseline word segmenter ( WordBreaker ).
|
122 |
-
|
123 |
-
## Dataset Creation
|
124 |
-
|
125 |
-
- All hashtag segmentation and identifier splitting datasets on this profile have the same basic fields: `hashtag` and `segmentation` or `identifier` and `segmentation`.
|
126 |
-
|
127 |
-
- The only difference between `hashtag` and `segmentation` or between `identifier` and `segmentation` are the whitespace characters. Spell checking, expanding abbreviations or correcting characters to uppercase go into other fields.
|
128 |
-
|
129 |
-
- There is always whitespace between an alphanumeric character and a sequence of any special characters ( such as `_` , `:`, `~` ).
|
130 |
-
|
131 |
-
- If there are any annotations for named entity recognition and other token classification tasks, they are given in a `spans` field.
|
132 |
-
|
133 |
-
## Additional Information
|
134 |
-
|
135 |
-
### Citation Information
|
136 |
-
|
137 |
-
```
|
138 |
-
@article{kodali2022hashset,
|
139 |
-
title={HashSet--A Dataset For Hashtag Segmentation},
|
140 |
-
author={Kodali, Prashant and Bhatnagar, Akshala and Ahuja, Naman and Shrivastava, Manish and Kumaraguru, Ponnurangam},
|
141 |
-
journal={arXiv preprint arXiv:2201.06741},
|
142 |
-
year={2022}
|
143 |
-
}
|
144 |
-
```
|
145 |
-
|
146 |
-
### Contributions
|
147 |
-
|
148 |
This dataset was added by [@ruanchaves](https://github.com/ruanchaves) while developing the [hashformers](https://github.com/ruanchaves/hashformers) library.
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language_creators:
|
5 |
+
- machine-generated
|
6 |
+
language:
|
7 |
+
- hi
|
8 |
+
- en
|
9 |
+
license:
|
10 |
+
- unknown
|
11 |
+
multilinguality:
|
12 |
+
- multilingual
|
13 |
+
pretty_name: HashSet Manual
|
14 |
+
size_categories:
|
15 |
+
- unknown
|
16 |
+
source_datasets:
|
17 |
+
- original
|
18 |
+
task_categories:
|
19 |
+
- structure-prediction
|
20 |
+
task_ids:
|
21 |
+
- named-entity-recognition
|
22 |
+
- structure-prediction-other-word-segmentation
|
23 |
+
---
|
24 |
+
|
25 |
+
# Dataset Card for HashSet Manual
|
26 |
+
|
27 |
+
## Dataset Description
|
28 |
+
|
29 |
+
- **Repository:** [prashantkodali/HashSet](https://github.com/prashantkodali/HashSet)
|
30 |
+
- **Paper:** [HashSet -- A Dataset For Hashtag Segmentation](https://arxiv.org/abs/2201.06741)
|
31 |
+
|
32 |
+
### Dataset Summary
|
33 |
+
|
34 |
+
Hashset is a new dataset consisting on 1.9k manually annotated and 3.3M loosely supervised tweets for testing the
|
35 |
+
efficiency of hashtag segmentation models. We compare State of The Art Hashtag Segmentation models on Hashset and other
|
36 |
+
baseline datasets (STAN and BOUN). We compare and analyse the results across the datasets to argue that HashSet can act
|
37 |
+
as a good benchmark for hashtag segmentation tasks.
|
38 |
+
|
39 |
+
HashSet Manual: contains 1.9k manually annotated hashtags. Each row consists of the hashtag, segmented hashtag ,named entity annotations, whether the hashtag contains mix of hindi and english tokens and/or contains non-english tokens.
|
40 |
+
|
41 |
+
### Languages
|
42 |
+
|
43 |
+
Mostly Hindi and English.
|
44 |
+
|
45 |
+
## Dataset Structure
|
46 |
+
|
47 |
+
### Data Instances
|
48 |
+
|
49 |
+
```
|
50 |
+
{
|
51 |
+
"index": 10,
|
52 |
+
"hashtag": "goodnewsmegan",
|
53 |
+
"segmentation": "good news megan",
|
54 |
+
"spans": {
|
55 |
+
"start": [
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"end": [
|
59 |
+
13
|
60 |
+
],
|
61 |
+
"text": [
|
62 |
+
"megan"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
"source": "roman",
|
66 |
+
"gold_position": null,
|
67 |
+
"mix": false,
|
68 |
+
"other": false,
|
69 |
+
"ner": true,
|
70 |
+
"annotator_id": 1,
|
71 |
+
"annotation_id": 2088,
|
72 |
+
"created_at": "2021-12-30 17:10:33.800607",
|
73 |
+
"updated_at": "2021-12-30 17:10:59.714840",
|
74 |
+
"lead_time": 3896.182,
|
75 |
+
"rank": {
|
76 |
+
"position": [
|
77 |
+
1,
|
78 |
+
2,
|
79 |
+
3,
|
80 |
+
4,
|
81 |
+
5,
|
82 |
+
6,
|
83 |
+
7,
|
84 |
+
8,
|
85 |
+
9,
|
86 |
+
10
|
87 |
+
],
|
88 |
+
"candidate": [
|
89 |
+
"goodnewsmegan",
|
90 |
+
"goodnewsmeg an",
|
91 |
+
"goodnews megan",
|
92 |
+
"goodnewsmega n",
|
93 |
+
"go odnewsmegan",
|
94 |
+
"good news megan",
|
95 |
+
"good newsmegan",
|
96 |
+
"g oodnewsmegan",
|
97 |
+
"goodnewsme gan",
|
98 |
+
"goodnewsm egan"
|
99 |
+
]
|
100 |
+
}
|
101 |
+
}
|
102 |
+
```
|
103 |
+
|
104 |
+
### Data Fields
|
105 |
+
|
106 |
+
- `index`: a numerical index annotated by Kodali et al..
|
107 |
+
- `hashtag`: the original hashtag.
|
108 |
+
- `segmentation`: the gold segmentation for the hashtag.
|
109 |
+
- `spans`: named entity spans.
|
110 |
+
- `source`: data source.
|
111 |
+
- `gold_position`: position of the gold segmentation on the `segmentation` field inside the `rank`.
|
112 |
+
- `mix`: The hashtag has a mix of English and Hindi tokens.
|
113 |
+
- `other`: The hashtag has non-English tokens.
|
114 |
+
- `ner`: The hashtag has named entities.
|
115 |
+
- `annotator_id`: annotator ID.
|
116 |
+
- `annotation_id`: annotation ID.
|
117 |
+
- `created_at`: Creation date timestamp.
|
118 |
+
- `updated_at`: Update date timestamp.
|
119 |
+
- `lead_time`: Lead time field annotated by Kodali et al..
|
120 |
+
- `rank`: Rank of each candidate selected by a baseline word segmenter ( WordBreaker ).
|
121 |
+
- `candidates`: Candidates selected by a baseline word segmenter ( WordBreaker ).
|
122 |
+
|
123 |
+
## Dataset Creation
|
124 |
+
|
125 |
+
- All hashtag segmentation and identifier splitting datasets on this profile have the same basic fields: `hashtag` and `segmentation` or `identifier` and `segmentation`.
|
126 |
+
|
127 |
+
- The only difference between `hashtag` and `segmentation` or between `identifier` and `segmentation` are the whitespace characters. Spell checking, expanding abbreviations or correcting characters to uppercase go into other fields.
|
128 |
+
|
129 |
+
- There is always whitespace between an alphanumeric character and a sequence of any special characters ( such as `_` , `:`, `~` ).
|
130 |
+
|
131 |
+
- If there are any annotations for named entity recognition and other token classification tasks, they are given in a `spans` field.
|
132 |
+
|
133 |
+
## Additional Information
|
134 |
+
|
135 |
+
### Citation Information
|
136 |
+
|
137 |
+
```
|
138 |
+
@article{kodali2022hashset,
|
139 |
+
title={HashSet--A Dataset For Hashtag Segmentation},
|
140 |
+
author={Kodali, Prashant and Bhatnagar, Akshala and Ahuja, Naman and Shrivastava, Manish and Kumaraguru, Ponnurangam},
|
141 |
+
journal={arXiv preprint arXiv:2201.06741},
|
142 |
+
year={2022}
|
143 |
+
}
|
144 |
+
```
|
145 |
+
|
146 |
+
### Contributions
|
147 |
+
|
148 |
This dataset was added by [@ruanchaves](https://github.com/ruanchaves) while developing the [hashformers](https://github.com/ruanchaves/hashformers) library.
|