rlasseri commited on
Commit
9a1e20b
·
1 Parent(s): 9363afd

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: OrangeSum
3
+ annotations_creators:
4
+ - found
5
+ language_creators:
6
+ - found
7
+ language:
8
+ - fr
9
+ license:
10
+ - unknown
11
+ multilinguality:
12
+ - monolingual
13
+ size_categories:
14
+ - 10K<n<100K
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - summarization
19
+ task_ids:
20
+ - news-articles-headline-generation
21
+ - news-articles-summarization
22
+ paperswithcode_id: orangesum
23
+ dataset_info:
24
+ - config_name: abstract
25
+ features:
26
+ - name: text
27
+ dtype: string
28
+ - name: summary
29
+ dtype: string
30
+ splits:
31
+ - name: train
32
+ num_bytes: 53531651
33
+ num_examples: 21401
34
+ - name: test
35
+ num_bytes: 3785207
36
+ num_examples: 1500
37
+ - name: validation
38
+ num_bytes: 3698650
39
+ num_examples: 1500
40
+ download_size: 23058350
41
+ dataset_size: 61015508
42
+ - config_name: title
43
+ features:
44
+ - name: text
45
+ dtype: string
46
+ - name: summary
47
+ dtype: string
48
+ splits:
49
+ - name: train
50
+ num_bytes: 65225136
51
+ num_examples: 30659
52
+ - name: test
53
+ num_bytes: 3176690
54
+ num_examples: 1500
55
+ - name: validation
56
+ num_bytes: 3276713
57
+ num_examples: 1500
58
+ download_size: 27321627
59
+ dataset_size: 71678539
60
+ ---
61
+ # Dataset Card for OrangeSum
62
+ ## Table of Contents
63
+ - [Dataset Description](#dataset-description)
64
+ - [Dataset Summary](#dataset-summary)
65
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
66
+ - [Languages](#languages)
67
+ - [Dataset Structure](#dataset-structure)
68
+ - [Data Instances](#data-instances)
69
+ - [Data Fields](#data-fields)
70
+ - [Data Splits](#data-splits)
71
+ - [Dataset Creation](#dataset-creation)
72
+ - [Curation Rationale](#curation-rationale)
73
+ - [Source Data](#source-data)
74
+ - [Annotations](#annotations)
75
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
76
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
77
+ - [Social Impact of Dataset](#social-impact-of-dataset)
78
+ - [Discussion of Biases](#discussion-of-biases)
79
+ - [Other Known Limitations](#other-known-limitations)
80
+ - [Additional Information](#additional-information)
81
+ - [Dataset Curators](#dataset-curators)
82
+ - [Licensing Information](#licensing-information)
83
+ - [Citation Information](#citation-information)
84
+ - [Contributions](#contributions)
85
+ ## Dataset Description
86
+ - **Repository:** [OrangeSum repository](https://github.com/Tixierae/OrangeSum)
87
+ - **Paper:** [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
88
+ - **Point of Contact:** [Antoine J.-P. Tixier]([email protected])
89
+ ### Dataset Summary
90
+ The OrangeSum dataset was inspired by the XSum dataset. It was created by scraping the "Orange Actu" website: https://actu.orange.fr/. Orange S.A. is a large French multinational telecommunications corporation, with 266M customers worldwide. Scraped pages cover almost a decade from Feb 2011 to Sep 2020. They belong to five main categories: France, world, politics, automotive, and society. The society category is itself divided into 8 subcategories: health, environment, people, culture, media, high-tech, unsual ("insolite" in French), and miscellaneous.
91
+ Each article featured a single-sentence title as well as a very brief abstract, both professionally written by the author of the article. These two fields were extracted from each page, thus creating two summarization tasks: OrangeSum Title and OrangeSum Abstract.
92
+ ### Supported Tasks and Leaderboards
93
+ **Tasks:** OrangeSum Title and OrangeSum Abstract.
94
+ To this day, there is no Leaderboard for this dataset.
95
+ ### Languages
96
+ The text in the dataset is in French.
97
+ ## Dataset Structure
98
+ ### Data Instances
99
+ A data instance consists of a news article and a summary. The summary can be a short abstract or a title depending on the configuration.
100
+ Example:
101
+ **Document:** Le temps sera pluvieux sur huit départements de la France ces prochaines heures : outre les trois départements bretons placés en vigilance orange jeudi matin, cinq autres départements du sud du Massif Central ont été à leur tour placés en alerte orange pluie et inondation. Il s'agit de l'Aveyron, du Cantal, du Gard, de la Lozère, et de la Haute-Loire. Sur l'ensemble de l'épisode, les cumuls de pluies attendus en Bretagne sont compris entre 40 et 60 mm en 24 heures et peuvent atteindre localement les 70 mm en 24 heures.Par la suite, la dégradation qui va se mettre en place cette nuit sur le Languedoc et le sud du Massif Central va donner sur l'Aveyron une première salve intense de pluie. Des cumuls entre 70 et 100 mm voir 120 mm localement sont attendus sur une durée de 24 heures. Sur le relief des Cévennes on attend de 150 à 200 mm, voire 250 mm très ponctuellement sur l'ouest du Gard et l'est de la Lozère. Cet épisode va s'estomper dans la soirée avec le décalage des orages vers les régions plus au nord. Un aspect orageux se mêlera à ces précipitations, avec de la grêle possible, des rafales de vent et une forte activité électrique.
102
+ **Abstract:** Outre les trois départements bretons, cinq autres départements du centre de la France ont été placés en vigilance orange pluie-inondation.
103
+ **Title:** Pluie-inondations : 8 départements en alerte orange.
104
+ ### Data Fields
105
+ `text`: the document to be summarized. \
106
+ `summary`: the summary of the source document.
107
+ ### Data Splits
108
+ The data is split into a training, validation and test in both configuration.
109
+ | | train | validation | test |
110
+ |----------|------:|-----------:|-----:|
111
+ | Abstract | 21400 | 1500 | 1500 |
112
+ | Title | 30658 | 1500 | 1500 |
113
+ ## Dataset Creation
114
+ ### Curation Rationale
115
+ The goal here was to create a French equivalent of the recently introduced [XSum](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset) dataset. Unlike the historical summarization datasets, CNN, DailyMail, and NY Times, which favor extractive strategies, XSum, as well as OrangeSum require the models to display a high degree of abstractivity to perform well. The summaries in OrangeSum are not catchy headlines, but rather capture the gist of the articles.
116
+ ### Source Data
117
+ #### Initial Data Collection and Normalization
118
+ Each article features a single-sentence title as well as a very brief abstract. Extracting these two fields from each news article page, creates two summarization tasks: OrangeSum Title and OrangeSum Abstract. As a post-processing step, all empty articles and those whose summaries were shorter than 5 words were removed. For OrangeSum Abstract, the top 10% articles in terms of proportion of novel unigrams in the abstracts were removed, as it was observed that such abstracts tend to be introductions rather than real abstracts. This corresponded to a threshold of 57% novel unigrams. For both OrangeSum Title and OrangeSum Abstract, 1500 pairs for testing and 1500 for validation are set aside, and all the remaining ones are used for training.
119
+ #### Who are the source language producers?
120
+ The authors of the artiles.
121
+ ### Annotations
122
+ #### Annotation process
123
+ The smmaries are professionally written by the author of the articles.
124
+ #### Who are the annotators?
125
+ The authors of the artiles.
126
+ ### Personal and Sensitive Information
127
+ [More Information Needed]
128
+ ## Considerations for Using the Data
129
+ ### Social Impact of Dataset
130
+ [More Information Needed]
131
+ ### Discussion of Biases
132
+ [More Information Needed]
133
+ ### Other Known Limitations
134
+ [More Information Needed]
135
+ ## Additional Information
136
+ ### Dataset Curators
137
+ The dataset was initially created by Antoine J.-P. Tixier.
138
+ ### Licensing Information
139
+ [More Information Needed]
140
+ ### Citation Information
141
+ ```
142
+ @article{eddine2020barthez,
143
+ title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model},
144
+ author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis},
145
+ journal={arXiv preprint arXiv:2010.12321},
146
+ year={2020}
147
+ }
148
+ ```
149
+ ### Contributions
150
+ Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset.