asahi417's picture
update
cfddbe1
import json
import os
import tarfile
import zipfile
import gzip
import requests
from itertools import chain
from glob import glob
import gdown
from random import seed, shuffle
from datasets import load_dataset
k = 10 # the 3rd level negative-distance ranking
m = 5 # the 3rd level negative-distance ranking
top_n = 10 # threshold of positive pairs in the 1st and 2nd relation
seed(42)
def wget(url, cache_dir: str = './cache', gdrive_filename: str = None):
""" wget and uncompress data_iterator """
os.makedirs(cache_dir, exist_ok=True)
if url.startswith('https://drive.google.com'):
assert gdrive_filename is not None, 'please provide fileaname for gdrive download'
gdown.download(url, f'{cache_dir}/{gdrive_filename}', quiet=False)
filename = gdrive_filename
else:
filename = os.path.basename(url)
with open(f'{cache_dir}/{filename}', "wb") as f:
r = requests.get(url)
f.write(r.content)
path = f'{cache_dir}/{filename}'
if path.endswith('.tar.gz') or path.endswith('.tgz') or path.endswith('.tar'):
if path.endswith('.tar'):
tar = tarfile.open(path)
else:
tar = tarfile.open(path, "r:gz")
tar.extractall(cache_dir)
tar.close()
os.remove(path)
elif path.endswith('.zip'):
with zipfile.ZipFile(path, 'r') as zip_ref:
zip_ref.extractall(cache_dir)
os.remove(path)
elif path.endswith('.gz'):
with gzip.open(path, 'rb') as f:
with open(path.replace('.gz', ''), 'wb') as f_write:
f_write.write(f.read())
os.remove(path)
def get_training_data():
""" Get RelBERT training data
Returns
-------
pairs: dictionary of list (positive pairs, negative pairs)
{'1b': [[0.6, ('office', 'desk'), ..], [[-0.1, ('aaa', 'bbb'), ...]]
"""
cache_dir = 'cache'
os.makedirs(cache_dir, exist_ok=True)
remove_relation = None
path_answer = f'{cache_dir}/Phase2Answers'
path_scale = f'{cache_dir}/Phase2AnswersScaled'
url = 'https://drive.google.com/u/0/uc?id=0BzcZKTSeYL8VYWtHVmxUR3FyUmc&export=download'
filename = 'SemEval-2012-Platinum-Ratings.tar.gz'
if not (os.path.exists(path_scale) and os.path.exists(path_answer)):
wget(url, gdrive_filename=filename, cache_dir=cache_dir)
files_answer = [os.path.basename(i) for i in glob(f'{path_answer}/*.txt')]
files_scale = [os.path.basename(i) for i in glob(f'{path_scale}/*.txt')]
assert files_answer == files_scale, f'files are not matched: {files_scale} vs {files_answer}'
positives = {}
negatives = {}
positives_limit = {}
all_relation_type = {}
# score_range = [90.0, 88.7] # the absolute value of max/min prototypicality rating
for i in files_scale:
relation_id = i.split('-')[-1].replace('.txt', '')
if remove_relation and int(relation_id[:-1]) in remove_relation:
continue
with open(f'{path_answer}/{i}', 'r') as f:
lines_answer = [_l.replace('"', '').split('\t') for _l in f.read().split('\n')
if not _l.startswith('#') and len(_l)]
relation_type = list(set(list(zip(*lines_answer))[-1]))
assert len(relation_type) == 1, relation_type
relation_type = relation_type[0]
with open(f'{path_scale}/{i}', 'r') as f:
# list of tuple [score, ("a", "b")]
scales = [[float(_l[:5]), _l[6:].replace('"', '')] for _l in f.read().split('\n')
if not _l.startswith('#') and len(_l)]
scales = sorted(scales, key=lambda _x: _x[0])
# positive pairs are in the reverse order of prototypicality score
positive_pairs = [[s, tuple(p.split(':'))] for s, p in filter(lambda _x: _x[0] > 0, scales)]
positive_pairs = sorted(positive_pairs, key=lambda x: x[0], reverse=True)
positives[relation_id] = list(list(zip(*positive_pairs))[1])
positives_limit[relation_id] = list(list(zip(*positive_pairs[:min(top_n, len(positive_pairs))]))[1])
negatives[relation_id] = [tuple(p.split(':')) for s, p in filter(lambda _x: _x[0] < 0, scales)]
all_relation_type[relation_id] = relation_type
parent = list(set([i[:-1] for i in all_relation_type.keys()]))
# 1st level relation contrast (among parent relations)
relation_pairs_1st = []
for p in parent:
child_positive = list(filter(lambda x: x.startswith(p), list(all_relation_type.keys())))
child_negative = list(filter(lambda x: not x.startswith(p), list(all_relation_type.keys())))
positive_pairs = []
negative_pairs = []
for c in child_positive:
positive_pairs += positives_limit[c]
for c in child_negative:
negative_pairs += positives_limit[c]
relation_pairs_1st += [{
"positives": positive_pairs, "negatives": negative_pairs, "relation_type": p, "level": "parent"
}]
# 2nd level relation contrast (among child relations) & 3rd level relation contrast (within child relations)
relation_pairs_2nd = []
for p in all_relation_type.keys():
positive_pairs = positives_limit[p]
negative_pairs = []
for n in all_relation_type.keys():
if p == n:
continue
negative_pairs += positives[n]
relation_pairs_2nd += [{
"positives": positive_pairs, "negatives": negative_pairs, "relation_type": p, "level": "child"
}]
relation_pairs_3rd = []
for p in all_relation_type.keys():
positive_pairs = positives[p]
negative_pairs = positives[p] + negatives[p]
for n, anchor in enumerate(positive_pairs):
if n > m:
continue
for _n, posi in enumerate(positive_pairs):
if n < _n and len(negative_pairs) > _n + k:
relation_pairs_3rd += [{
"positives": [anchor, posi],
"negatives": negative_pairs[_n + k:],
"relation_type": p,
"level": "child_prototypical"
}]
print(len(relation_pairs_3rd))
train = relation_pairs_1st + relation_pairs_2nd + relation_pairs_3rd
# conceptnet as the validation set
cn = load_dataset('relbert/conceptnet_high_confidence_v2')
valid = list(chain(*cn.values()))
for i in valid:
i['level'] = 'N/A'
return train, valid
if __name__ == '__main__':
data_train, data_validation = get_training_data()
print(f"- training data : {len(data_train)}")
print(f"- validation data : {len(data_validation)}")
with open('dataset/train.jsonl', 'w') as f_writer:
f_writer.write('\n'.join([json.dumps(i) for i in data_train]))
with open('dataset/valid.jsonl', 'w') as f_writer:
f_writer.write('\n'.join([json.dumps(i) for i in data_validation]))