Datasets:
Tasks:
Audio Classification
Sub-tasks:
keyword-spotting
Languages:
English
Size:
10K - 100K
ArXiv:
License:
soeren
commited on
Commit
·
fb12e65
1
Parent(s):
22fa011
build script
Browse files- .gitattributes +1 -0
- .gitignore +7 -0
- data/clip_metadata.py +10 -0
- data/create_enriched_annotated_speechcommands.py +174 -0
- data/dataset_audio_test_clipped.parquet.gzip +3 -0
- data/dataset_audio_train_clipped.parquet.gzip +3 -0
- data/dataset_audio_validation_clipped.parquet.gzip +3 -0
- speech_commands_enriched.py +46 -17
.gitattributes
CHANGED
@@ -52,3 +52,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
52 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
53 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
55 |
+
*.parquet.gzip filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Pipfile
|
2 |
+
Pipfile.lock
|
3 |
+
|
4 |
+
data/dataset_audio_annotated_and_embedding_with_probs.parquet.gzip
|
5 |
+
data/dataset_audio_test.parquet.gzip
|
6 |
+
data/dataset_audio_train.parquet.gzip
|
7 |
+
data/dataset_audio_validation.parquet.gzip
|
data/clip_metadata.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
_SPLIT = "validation"
|
4 |
+
|
5 |
+
df = pd.read_parquet("data/dataset_audio_" + _SPLIT +".parquet.gzip")
|
6 |
+
|
7 |
+
clipped_df = df.filter(["Probability", "Predicted Label", "Annotated Labels", "Probability Vector", "embedding_reduced"],
|
8 |
+
axis=1)
|
9 |
+
|
10 |
+
clipped_df.to_parquet("data/dataset_audio_" + _SPLIT +"_clipped.parquet.gzip")
|
data/create_enriched_annotated_speechcommands.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# # Create embeddings with the transformer library
|
5 |
+
#
|
6 |
+
# We use the Huggingface transformers library to create an embedding for a an audio dataset
|
7 |
+
#
|
8 |
+
#
|
9 |
+
#
|
10 |
+
|
11 |
+
# ## tldr; Play as callable functions
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
import datasets
|
16 |
+
from transformers import AutoFeatureExtractor, AutoModel, ASTForAudioClassification
|
17 |
+
import torch
|
18 |
+
from renumics import spotlight
|
19 |
+
import pandas as pd
|
20 |
+
import umap
|
21 |
+
import numpy as np
|
22 |
+
|
23 |
+
_SPLIT = "train"
|
24 |
+
|
25 |
+
def __set_device():
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
27 |
+
if device == "cuda":
|
28 |
+
torch.cuda.empty_cache()
|
29 |
+
return device
|
30 |
+
|
31 |
+
|
32 |
+
def extract_embeddings(model, feature_extractor):
|
33 |
+
"""Utility to compute embeddings."""
|
34 |
+
device = model.device
|
35 |
+
|
36 |
+
def pp(batch):
|
37 |
+
audios = [element["array"] for element in batch["audio"]]
|
38 |
+
inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True).to(device)
|
39 |
+
embeddings = model(**inputs).last_hidden_state[:, 0].cpu()
|
40 |
+
|
41 |
+
return {"embedding": embeddings}
|
42 |
+
|
43 |
+
|
44 |
+
return pp
|
45 |
+
|
46 |
+
|
47 |
+
def huggingface_embedding(dataset, modelname, batched=True, batch_size=8):
|
48 |
+
# initialize huggingface model
|
49 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True)
|
50 |
+
model = AutoModel.from_pretrained(modelname, output_hidden_states=True)
|
51 |
+
|
52 |
+
#compute embedding
|
53 |
+
device = __set_device()
|
54 |
+
extract_fn = extract_embeddings(model.to(device), feature_extractor)
|
55 |
+
updated_dataset = dataset.map(extract_fn, batched=batched, batch_size=batch_size)
|
56 |
+
|
57 |
+
return updated_dataset
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
def batch_probabilities(model, feature_extractor):
|
65 |
+
device = model.device
|
66 |
+
|
67 |
+
def processing(batch):
|
68 |
+
audios = [element["array"] for element in batch["audio"]]
|
69 |
+
inputs = feature_extractor(raw_speech=audios, return_tensors="pt", padding=True, sampling_rate=16000).to(device)
|
70 |
+
outputs = model(**inputs)
|
71 |
+
return {"logits": outputs.logits}
|
72 |
+
return processing
|
73 |
+
|
74 |
+
|
75 |
+
def annotate_probabilities(dataset, modelname, batched=True, batch_size= 8):
|
76 |
+
model = ASTForAudioClassification.from_pretrained(modelname)
|
77 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(modelname, padding=True)
|
78 |
+
|
79 |
+
device = __set_device()
|
80 |
+
calc_outputs = batch_probabilities (model.to(device), feature_extractor)
|
81 |
+
output_dataset = dataset.map(calc_outputs, batched = batched, batch_size = batch_size)
|
82 |
+
|
83 |
+
return output_dataset
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
def annotate_batch(model, dataset):
|
91 |
+
device = model.device
|
92 |
+
|
93 |
+
def batch_annotation(batch):
|
94 |
+
logits = [torch.tensor(element) for element in batch["logits"]]
|
95 |
+
probabilities_per_class = [torch.nn.functional.softmax(logit, dim=-1) for logit in logits]
|
96 |
+
predicted_class_ids = [torch.argmax(logit).item() for logit in logits]
|
97 |
+
predicted_labels = [model.config.id2label[predicted_class_id] for predicted_class_id in predicted_class_ids]
|
98 |
+
# pre-trained model to different amount of classes
|
99 |
+
# -> id2label only reflects "internal label", not actual dataset label
|
100 |
+
annotated_labels = [labels[element] for element in batch["label"]]
|
101 |
+
probabilities = []
|
102 |
+
for index, prob_per_class in enumerate(probabilities_per_class):
|
103 |
+
probabilities.append(prob_per_class[predicted_class_ids[index]].item())
|
104 |
+
return {"Probability": probabilities, "Predicted Label": predicted_labels,
|
105 |
+
"Annotated Labels": annotated_labels, "Probability Vector": probabilities_per_class}
|
106 |
+
|
107 |
+
return batch_annotation
|
108 |
+
|
109 |
+
def annotate_dataset(dataset, modelname, batched=True, batch_size=8):
|
110 |
+
model = ASTForAudioClassification.from_pretrained(modelname)
|
111 |
+
device = __set_device()
|
112 |
+
|
113 |
+
annotate = annotate_batch(model.to(device), dataset)
|
114 |
+
annotated_dataset = dataset.map(annotate, batched=batched, batch_size=batch_size)
|
115 |
+
|
116 |
+
return annotated_dataset
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
# ## Step-by-step example on speech-commands
|
123 |
+
#
|
124 |
+
# ### Load speech-commands from Huggingface hub
|
125 |
+
|
126 |
+
# Use validation split to evaluate model's performance on unseen data
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
dataset = datasets.load_dataset('speech_commands', 'v0.01', split=_SPLIT)
|
131 |
+
|
132 |
+
|
133 |
+
labels = dataset.features["label"].names
|
134 |
+
|
135 |
+
|
136 |
+
# Let's have a look at all of the labels that we want to predict
|
137 |
+
|
138 |
+
print(labels)
|
139 |
+
|
140 |
+
|
141 |
+
# ### Compute probabilities and annotate dataset
|
142 |
+
|
143 |
+
# First, calculate logits per sample
|
144 |
+
|
145 |
+
|
146 |
+
# calculate logits for each sample and annotate
|
147 |
+
dataset_annotated = annotate_probabilities(dataset, "MIT/ast-finetuned-speech-commands-v2")
|
148 |
+
|
149 |
+
|
150 |
+
# Now annotate labels and probabilities
|
151 |
+
|
152 |
+
dataset_annotated_complete = annotate_dataset(dataset_annotated, "MIT/ast-finetuned-speech-commands-v2")
|
153 |
+
|
154 |
+
|
155 |
+
# ### Compute embedding with vision transformer from Huggingface
|
156 |
+
|
157 |
+
dataset_enriched = huggingface_embedding(dataset_annotated_complete, "MIT/ast-finetuned-speech-commands-v2")
|
158 |
+
|
159 |
+
|
160 |
+
# ### Reduce embeddings for faster visualization
|
161 |
+
|
162 |
+
embeddings = np.stack(np.array(dataset_enriched['embedding']))
|
163 |
+
reducer = umap.UMAP()
|
164 |
+
reduced_embedding = reducer.fit_transform(embeddings)
|
165 |
+
dataset_enriched = dataset_enriched.add_column("embedding_reduced", list(reduced_embedding))
|
166 |
+
|
167 |
+
|
168 |
+
print(dataset_enriched.features)
|
169 |
+
|
170 |
+
|
171 |
+
df = dataset_enriched.to_pandas()
|
172 |
+
|
173 |
+
|
174 |
+
df.to_parquet("data/dataset_audio_" + _SPLIT + ".parquet.gzip", compression='gzip')
|
data/dataset_audio_test_clipped.parquet.gzip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8b6ae3710263e5e83c9f6784e1945b15a97bde88a6b7d1b45587b0d6278345c
|
3 |
+
size 698777
|
data/dataset_audio_train_clipped.parquet.gzip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8e208d54feef82c4a7e1f120787e4b1074cf7cad75035e3640714636965e84f
|
3 |
+
size 8525172
|
data/dataset_audio_validation_clipped.parquet.gzip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:390eaf7ec5fdc8a832651b6255948aeba7291ae1b2afc5de73229aa25c48a73c
|
3 |
+
size 1566541
|
speech_commands_enriched.py
CHANGED
@@ -22,6 +22,7 @@ import datasets
|
|
22 |
|
23 |
from pathlib import Path
|
24 |
|
|
|
25 |
|
26 |
_CITATION = """
|
27 |
@article{speechcommandsv2,
|
@@ -51,6 +52,7 @@ Version 0.01 of the data set (configuration `"v0.01"`) was released on August 3r
|
|
51 |
In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
|
52 |
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
|
53 |
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".
|
|
|
54 |
|
55 |
|
56 |
In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".
|
@@ -130,17 +132,17 @@ class SpeechCommandsConfig(datasets.BuilderConfig):
|
|
130 |
|
131 |
class SpeechCommands(datasets.GeneratorBasedBuilder):
|
132 |
BUILDER_CONFIGS = [
|
133 |
-
SpeechCommandsConfig(
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
),
|
144 |
SpeechCommandsConfig(
|
145 |
name="v0.02",
|
146 |
description=textwrap.dedent(
|
@@ -165,6 +167,12 @@ class SpeechCommands(datasets.GeneratorBasedBuilder):
|
|
165 |
"is_unknown": datasets.Value("bool"),
|
166 |
"speaker_id": datasets.Value("string"),
|
167 |
"utterance_id": datasets.Value("int8"),
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
}
|
169 |
),
|
170 |
homepage=_URL,
|
@@ -182,35 +190,48 @@ class SpeechCommands(datasets.GeneratorBasedBuilder):
|
|
182 |
"test": _DL_URL.format(name=self.config.name, split="test"),
|
183 |
}
|
184 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
return [
|
187 |
datasets.SplitGenerator(
|
188 |
name=datasets.Split.TRAIN,
|
189 |
gen_kwargs={
|
190 |
"archive_path": dl_manager.download_and_extract(archive_paths["train"]),
|
|
|
191 |
},
|
192 |
),
|
193 |
datasets.SplitGenerator(
|
194 |
name=datasets.Split.VALIDATION,
|
195 |
gen_kwargs={
|
196 |
"archive_path": dl_manager.download_and_extract(archive_paths["validation"]),
|
|
|
197 |
},
|
198 |
),
|
199 |
datasets.SplitGenerator(
|
200 |
name=datasets.Split.TEST,
|
201 |
gen_kwargs={
|
202 |
"archive_path": dl_manager.download_and_extract(archive_paths["test"]),
|
|
|
203 |
},
|
204 |
),
|
205 |
]
|
206 |
|
207 |
-
def _generate_examples(self, archive_path):
|
208 |
|
209 |
-
|
210 |
|
211 |
pathlist = Path(archive_path).glob('**/*.wav')
|
212 |
|
213 |
-
for path in pathlist:
|
|
|
|
|
214 |
|
215 |
pathcomponents = str(path).split("/")
|
216 |
word = pathcomponents[-2]
|
@@ -236,8 +257,16 @@ class SpeechCommands(datasets.GeneratorBasedBuilder):
|
|
236 |
"is_unknown": is_unknown,
|
237 |
"speaker_id": speaker_id,
|
238 |
"utterance_id": utterance_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
}
|
240 |
|
241 |
-
#for debugging
|
242 |
-
|
243 |
-
|
|
|
|
|
|
22 |
|
23 |
from pathlib import Path
|
24 |
|
25 |
+
import pandas as pd
|
26 |
|
27 |
_CITATION = """
|
28 |
@article{speechcommandsv2,
|
|
|
52 |
In version 0.01 thirty different words were recoded: "Yes", "No", "Up", "Down", "Left",
|
53 |
"Right", "On", "Off", "Stop", "Go", "Zero", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Nine",
|
54 |
"Bed", "Bird", "Cat", "Dog", "Happy", "House", "Marvin", "Sheila", "Tree", "Wow".
|
55 |
+
This version is not yet supported.
|
56 |
|
57 |
|
58 |
In version 0.02 more words were added: "Backward", "Forward", "Follow", "Learn", "Visual".
|
|
|
132 |
|
133 |
class SpeechCommands(datasets.GeneratorBasedBuilder):
|
134 |
BUILDER_CONFIGS = [
|
135 |
+
#SpeechCommandsConfig(
|
136 |
+
# name="v0.01",
|
137 |
+
# description=textwrap.dedent(
|
138 |
+
# """\
|
139 |
+
# Version 0.01 of the SpeechCommands dataset. Contains 30 words
|
140 |
+
# (20 of them are auxiliary) and background noise.
|
141 |
+
# """
|
142 |
+
# ),
|
143 |
+
# labels=LABELS_V1,
|
144 |
+
# version=datasets.Version("0.1.0"),
|
145 |
+
#),
|
146 |
SpeechCommandsConfig(
|
147 |
name="v0.02",
|
148 |
description=textwrap.dedent(
|
|
|
167 |
"is_unknown": datasets.Value("bool"),
|
168 |
"speaker_id": datasets.Value("string"),
|
169 |
"utterance_id": datasets.Value("int8"),
|
170 |
+
#enriched features:
|
171 |
+
"Probability": datasets.Value("float64"),
|
172 |
+
"Predicted Label": datasets.Value("string"),
|
173 |
+
"Annotated Labels": datasets.Value("string"),
|
174 |
+
"Probability Vector": datasets.Sequence(feature=datasets.Value("float64"), length=35),
|
175 |
+
"embedding_reduced": datasets.Sequence(feature=datasets.Value("float32"), length=2),
|
176 |
}
|
177 |
),
|
178 |
homepage=_URL,
|
|
|
190 |
"test": _DL_URL.format(name=self.config.name, split="test"),
|
191 |
}
|
192 |
)
|
193 |
+
|
194 |
+
metadata_paths = dl_manager.download(
|
195 |
+
{
|
196 |
+
"train": "data/dataset_audio_train_clipped.parquet.gzip",
|
197 |
+
"test": "data/dataset_audio_test_clipped.parquet.gzip",
|
198 |
+
"validation": "data/dataset_audio_validation_clipped.parquet.gzip"
|
199 |
+
}
|
200 |
+
)
|
201 |
|
202 |
return [
|
203 |
datasets.SplitGenerator(
|
204 |
name=datasets.Split.TRAIN,
|
205 |
gen_kwargs={
|
206 |
"archive_path": dl_manager.download_and_extract(archive_paths["train"]),
|
207 |
+
"metadata": pd.read_parquet(metadata_paths["train"]),
|
208 |
},
|
209 |
),
|
210 |
datasets.SplitGenerator(
|
211 |
name=datasets.Split.VALIDATION,
|
212 |
gen_kwargs={
|
213 |
"archive_path": dl_manager.download_and_extract(archive_paths["validation"]),
|
214 |
+
"metadata": pd.read_parquet(metadata_paths["validation"]),
|
215 |
},
|
216 |
),
|
217 |
datasets.SplitGenerator(
|
218 |
name=datasets.Split.TEST,
|
219 |
gen_kwargs={
|
220 |
"archive_path": dl_manager.download_and_extract(archive_paths["test"]),
|
221 |
+
"metadata": pd.read_parquet(metadata_paths["test"]),
|
222 |
},
|
223 |
),
|
224 |
]
|
225 |
|
226 |
+
def _generate_examples(self, archive_path, metadata):
|
227 |
|
228 |
+
# HINT: metadata should already be the split-specific metadata
|
229 |
|
230 |
pathlist = Path(archive_path).glob('**/*.wav')
|
231 |
|
232 |
+
for path, row in zip(pathlist, metadata.iterrows()):
|
233 |
+
|
234 |
+
# row is a tuple containg an index and a pandas series
|
235 |
|
236 |
pathcomponents = str(path).split("/")
|
237 |
word = pathcomponents[-2]
|
|
|
257 |
"is_unknown": is_unknown,
|
258 |
"speaker_id": speaker_id,
|
259 |
"utterance_id": utterance_id,
|
260 |
+
#enriched features:
|
261 |
+
"Probability": row[1]["Probability"],
|
262 |
+
"Predicted Label": row[1]["Predicted Label"],
|
263 |
+
"Annotated Labels": row[1]["Annotated Labels"],
|
264 |
+
"Probability Vector": row[1]["Probability Vector"],
|
265 |
+
"embedding_reduced": row[1]["embedding_reduced"]
|
266 |
}
|
267 |
|
268 |
+
#for debugging, comment out after
|
269 |
+
if __name__ == "__main__":
|
270 |
+
datasets.builder.has_sufficient_disk_space = lambda needed_bytes, directory='.': True
|
271 |
+
ds = datasets.load_dataset("speech_commands_enriched.py", 'v0.02', split="train",
|
272 |
+
streaming=False)
|