Syoy commited on
Commit
1444a6f
·
1 Parent(s): 9151572

updated readme

Browse files
Files changed (1) hide show
  1. README.md +16 -1
README.md CHANGED
@@ -154,6 +154,10 @@ a ClassLabel for the label and a ClassLabel for the class.
154
  'domain': 0 (source)
155
  'label': 0 (normal)
156
  'class': 1 (fan)
 
 
 
 
157
  'ast-finetuned-audioset-10-10-0.4593-embeddings': [0.8152204155921936,
158
  1.5862374305725098, ...,
159
  1.7154160737991333]
@@ -174,8 +178,9 @@ The length of each audio file is 10 seconds.
174
  - `domain`: an integer whose value may be either _0_, indicating that the audio sample is from the _source_ domain, _1_, indicating that the audio sample is from the _target_.
175
  - `class`: an integer as class label.
176
  - `label`: an integer whose value may be either _0_, indicating that the audio sample is _normal_, _1_, indicating that the audio sample contains an _anomaly_.
 
 
177
  - `embeddings_ast-finetuned-audioset-10-10-0.4593`: an `datasets.Sequence(Value("float32"), shape=(1, 768))` representing audio embeddings that are generated with an [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTFeatureExtractor).
178
- - `embeddings_dcase2023_task2_baseline_ae`: an `datasets.Sequence(Value("float32"), shape=(1, 512))` representing audio embeddings that are generated with the [**DCASE 2023 Challenge Task 2 Baseline Auto Encoder**](https://github.com/nttcslab/dcase2023_task2_baseline_ae). **Seven individual class-specific AEs** are trained. Dimensionality Reduction is applied with **PCA** separately for each class with a fit on the respecting training set of samples.
179
 
180
  ### Data Splits
181
 
@@ -217,6 +222,16 @@ The data consists of the normal/anomalous operating sounds of seven types of rea
217
  - Slide rail
218
  - Valve
219
 
 
 
 
 
 
 
 
 
 
 
220
  ### Source Data
221
 
222
  #### Definition
 
154
  'domain': 0 (source)
155
  'label': 0 (normal)
156
  'class': 1 (fan)
157
+ 'dev_train_lof_anomaly': 0
158
+ 'dev_train_lof_anomaly_score': 1.241023
159
+ 'add_train_lof_anomaly': 1
160
+ 'add_train_lof_anomaly_score': 1.806289
161
  'ast-finetuned-audioset-10-10-0.4593-embeddings': [0.8152204155921936,
162
  1.5862374305725098, ...,
163
  1.7154160737991333]
 
178
  - `domain`: an integer whose value may be either _0_, indicating that the audio sample is from the _source_ domain, _1_, indicating that the audio sample is from the _target_.
179
  - `class`: an integer as class label.
180
  - `label`: an integer whose value may be either _0_, indicating that the audio sample is _normal_, _1_, indicating that the audio sample contains an _anomaly_.
181
+ - '*_lof_anomaly': an integer as anomaly indicator. The anomaly prediction is computed with the [Local Outlier Factor](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html) algorithm based on the "*"-dataset.
182
+ - '*_lof_anomaly_score': a float as anomaly score. The anomaly score is computed with the [Local Outlier Factor](https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html) algorithm based on the "*"-dataset.
183
  - `embeddings_ast-finetuned-audioset-10-10-0.4593`: an `datasets.Sequence(Value("float32"), shape=(1, 768))` representing audio embeddings that are generated with an [Audio Spectrogram Transformer](https://huggingface.co/docs/transformers/model_doc/audio-spectrogram-transformer#transformers.ASTFeatureExtractor).
 
184
 
185
  ### Data Splits
186
 
 
222
  - Slide rail
223
  - Valve
224
 
225
+ The "additional training data" and "evaluation data" datasets contain the following classes:
226
+
227
+ - bandsaw
228
+ - grinder
229
+ - shaker
230
+ - ToyDrone
231
+ - ToyNscale
232
+ - ToyTank
233
+ - Vacuum
234
+
235
  ### Source Data
236
 
237
  #### Definition