dcase23-task2-enriched / dcase23-task2-enriched.py
Syoy's picture
modified config.splits form url
507730a
raw
history blame
8.47 kB
import os
import datasets
import datasets.info
import pandas as pd
from pathlib import Path
from renumics import spotlight
from datasets import load_dataset
from typing import Iterable, Dict, Optional, Union, List
_CITATION = """\
@dataset{kota_dohi_2023_7687464,
author = {Kota Dohi and
Keisuke and
Noboru and
Daisuke and
Yuma and
Tomoya and
Harsh and
Takashi and
Yohei},
title = {DCASE 2023 Challenge Task 2 Development Dataset},
month = mar,
year = 2023,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.7687464},
url = {https://doi.org/10.5281/zenodo.7687464}
}
"""
_LICENSE = "Creative Commons Attribution 4.0 International Public License"
_METADATA_REG = r"attributes_\d+.csv"
_NUM_TARGETS = 2
_NUM_CLASSES = 7
_TARGET_NAMES = ["normal", "anomaly"]
_CLASS_NAMES = ["gearbox", "fan", "bearing", "slider", "ToyCar", "ToyTrain", "valve"]
_HOMEPAGE = {
"dev": "https://zenodo.org/record/7687464#.Y_96q9LMLmH",
"add": None,
"eval": None,
}
DATA_URLS = {
"dev": {
"train": "data/dev_train.tar.gz",
"test": "data/dev_test.tar.gz",
"metadata": "data/dev_metadata.csv",
},
"add": {
"train": "data/add_train.tar.gz",
"test": "data/add_test.tar.gz",
"metadata": "data/add_metadata.csv",
},
"eval": {
"train": "data/eval_train.tar.gz",
"test": "data/eval_test.tar.gz",
"metadata": "data/eval_metadata.csv",
},
}
STATS = {
"name": "Enriched Dataset of 'DCASE 2023 Challenge Task 2'",
"configs": {
'dev': {
'date': "Mar 1, 2023",
'version': "1.0.0",
'homepage': "https://zenodo.org/record/7687464#.ZABmANLMLmH",
"splits": ["train", "test"],
},
'add': {
'date': None,
'version': "0.0.0",
'homepage': None,
"splits": ["train", "test"],
},
'eval': {
'date': None,
'version': "0.0.0",
'homepage': None,
"splits": ["test"],
},
}
}
DATASET = {
'dev': 'DCASE 2023 Challenge Task 2 Development Dataset',
'add': 'DCASE 2023 Challenge Task 2 Additional Train Dataset',
'eval': 'DCASE 2023 Challenge Task 2 Evaluation Dataset',
}
_SPOTLIGHT_LAYOUT = "data/config-spotlight-layout.json"
_SPOTLIGHT_RENAME = {
"audio": "original_audio",
"path": "audio",
}
class DCASE2023Task2DatasetConfig(datasets.BuilderConfig):
"""BuilderConfig for DCASE2023Task2Dataset."""
def __init__(self, name, version, **kwargs):
self.release_date = kwargs.pop("release_date", None)
self.homepage = kwargs.pop("homepage", None)
self.data_urls = kwargs.pop("data_urls", None)
self.splits = kwargs.pop("splits", None)
self._rename = kwargs.pop("rename", None)
self._layout = kwargs.pop("layout", None)
description = (
f"Dataset for the DCASE 2023 Challenge Task 2 'First-Shot Unsupervised Anomalous Sound Detection "
f"for Machine Condition Monitoring'. released on {self.release_date}. Original data available under"
f"{self.homepage}. "
f"CONFIG: {name}."
)
super(DCASE2023Task2DatasetConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
)
def to_spotlight(self, data: Union[pd.DataFrame, datasets.Dataset]) -> pd.DataFrame:
if type(data) == datasets.Dataset:
df = data.to_pandas()
df["split"] = data.split
df["config"] = data.config_name
class_names = data.features["class"].names
df["class_name"] = df["class"].apply(lambda x: class_names[x])
elif type(data) == pd.DataFrame:
df = data
else:
raise TypeError("type(data) not in Union[pd.DataFrame, datasets.Dataset]")
df["file_path"] = df["path"]
df.rename(columns=self._rename, inplace=True)
return df.copy()
def get_layout(self):
return self._layout
class DCASE2023Task2Dataset(datasets.GeneratorBasedBuilder):
"""Dataset for the DCASE 2023 Challenge Task 2 "First-Shot Unsupervised Anomalous Sound Detection
for Machine Condition Monitoring"."""
VERSION = datasets.Version("0.0.2")
DEFAULT_CONFIG_NAME = "dev"
BUILDER_CONFIGS = [
DCASE2023Task2DatasetConfig(
name=key,
version=stats["version"],
dataset=DATASET[key],
homepage=_HOMEPAGE[key],
data_urls=DATA_URLS[key],
release_date=stats["date"],
splits=stats["splits"],
layout=_SPOTLIGHT_LAYOUT,
rename=_SPOTLIGHT_RENAME,
)
for key, stats in STATS["configs"].items()
]
def _info(self):
features = datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16_000),
"path": datasets.Value("string"),
"section": datasets.Value("int64"),
"d1p": datasets.Value("string"),
"d1v": datasets.Value("string"),
"d2p": datasets.Value("string"),
"d2v": datasets.Value("string"),
"d3p": datasets.Value("string"),
"d3v": datasets.Value("string"),
"label": datasets.ClassLabel(num_classes=_NUM_TARGETS, names=_TARGET_NAMES),
"class": datasets.ClassLabel(num_classes=_NUM_CLASSES, names=_CLASS_NAMES),
# "baseline-embeddings": datasets.Array2D(shape=(64, 1), dtype='float32'), # todo: add
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=self.config.description,
features=features,
supervised_keys=datasets.info.SupervisedKeysData("label"),
homepage=self.config.homepage,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(
self,
dl_manager: datasets.DownloadManager
):
"""Returns SplitGenerators."""
dl_manager.download_config.ignore_url_params = True
audio_path = {}
local_extracted_archive = {}
split_type = {"train": datasets.Split.TRAIN, "test": datasets.Split.TEST}
for split in split_type:
audio_path[split] = dl_manager.download(self.config.data_urls[split])
local_extracted_archive[split] = dl_manager.extract(
audio_path[split]) if not dl_manager.is_streaming else None
return [
datasets.SplitGenerator(
name=split_type[split],
gen_kwargs={
"split": split,
"local_extracted_archive": local_extracted_archive[split],
"audio_files": dl_manager.iter_archive(audio_path[split]),
"metadata_file": dl_manager.download_and_extract(self.config.data_urls["metadata"]),
},
) for split in split_type
]
def _generate_examples(
self,
split: str,
local_extracted_archive: Union[Dict, List],
audio_files: Optional[Iterable],
metadata_file: Optional[str],
):
"""Yields examples."""
metadata = pd.read_csv(metadata_file)
data_fields = list(self._info().features.keys())
id_ = 0
for path, f in audio_files:
lookup = Path(path).parent.name + "/" + Path(path).name
if lookup in metadata["path"].values:
path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
audio = {"path": path, "bytes": f.read()}
result = {field: None for field in data_fields}
result.update(metadata[metadata["path"] == lookup].T.squeeze().to_dict())
result["path"] = path
yield id_, {**result, "audio": audio}
id_ += 1
if __name__ == "__main__":
ds = load_dataset("dcase23-task2-enriched.py", "dev", split="train", streaming=True)