File size: 4,493 Bytes
d33cdda 9edeb25 d33cdda 9edeb25 f2da732 c18e48a d33cdda 20ed7b1 a500767 20ed7b1 a500767 d33cdda 20ed7b1 d33cdda 20ed7b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- n<1K
pretty_name: Analogy Question
---
# Dataset Card for "relbert/analogy_questions"
## Dataset Description
- **Repository:** [RelBERT](https://github.com/asahi417/relbert)
- **Paper:** [https://aclanthology.org/2021.acl-long.280/](https://aclanthology.org/2021.acl-long.280/)
- **Dataset:** Analogy Questions
### Dataset Summary
This dataset contains 5 different word analogy questions used in [Analogy Language Model](https://aclanthology.org/2021.acl-long.280/).
- original analogy questions
| name | Size (valid/test) | Num of choice | Num of relation group | Original Reference |
|-----------|------------------:|--------------:|----------------------:|:--------------------------------------------------------------------------:|
| `u2` | 24/228 | 5,4,3 | 9 | [EnglishForEveryone](https://englishforeveryone.org/Topics/Analogies.html) |
| `u4` | 48/432 | 5,4,3 | 5 | [EnglishForEveryone](https://englishforeveryone.org/Topics/Analogies.html) |
| `google` | 50/500 | 4 | 2 | [Mikolov et al., (2013)](https://www.aclweb.org/anthology/N13-1090.pdf) |
| `bats` | 199/1799 | 4 | 3 | [Gladkova et al., (2016)](https://www.aclweb.org/anthology/N18-2017.pdf) |
- extra analogy questions
| name | Size (valid/test) | Num of choice (valid/test) | Num of relation group (valid/test) | Original Reference |
|:------------------------------------|:--------------------|:-----------------------------|:-------------------------------------|:-----------------------------------------------------------------------------------------------------------------------|
| `semeval2012_relational_similarity` | 79/- | 3/- | 79/- | [relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity) |
| `t_rex_relational_similarity` | 496/183 | 74/48 | 60/19 | [relbert/t_rex_relational_similarity](https://huggingface.co/datasets/relbert/t_rex_relational_similarity) |
| `conceptnet_relational_similarity` | 1112/1192 | 19/17 | 18/16 | [relbert/conceptnet_relational_similarity](https://huggingface.co/datasets/relbert/conceptnet_relational_similarity) |
| `nell_relational_similarity` | 400/600 | 5/7 | 4/6 | [relbert/nell_relational_similarity](https://huggingface.co/datasets/relbert/nell_relational_similarity) |
| `scan` | 178/1616 | 3,36,136,10,45,78,15,21,55,120,153,91,28/3,36,136,10,45,78,15,21,55,120,153,91,28 | 2/2 | [relbert/scientific_and_creative_analogy](https://huggingface.co/datasets/relbert/scientific_and_creative_analogy) |
## Dataset Structure
### Data Instances
An example of `test` looks as follows.
```
{
"stem": ["raphael", "painter"],
"answer": 2,
"choice": [["andersen", "plato"],
["reading", "berkshire"],
["marx", "philosopher"],
["tolstoi", "edison"]]
}
```
The `stem` is the query word pair, `choice` has word pair candidates,
and `answer` indicates the index of correct candidate which starts from `0`.
All data is lowercased except Google dataset.
### Citation Information
```
@inproceedings{ushio-etal-2021-bert-is,
title ={{BERT} is to {NLP} what {A}lex{N}et is to {CV}: {C}an {P}re-{T}rained {L}anguage {M}odels {I}dentify {A}nalogies?},
author={Ushio, Asahi and
Espinosa-Anke, Luis and
Schockaert, Steven and
Camacho-Collados, Jose},
booktitle={Proceedings of the {ACL}-{IJCNLP} 2021 Main Conference},
year={2021},
publisher={Association for Computational Linguistics}
}
```
### LICENSE
The LICENSE of all the resources are under [CC-BY-NC-4.0](./LICENSE). Thus, they are freely available for academic purpose or individual research, but restricted for commercial use.
|