suflaj commited on
Commit
7472b62
·
verified ·
1 Parent(s): 45ef5c4

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +171 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - audio-classification
5
+ language:
6
+ - de
7
+ - en
8
+ - es
9
+ - fr
10
+ - it
11
+ - nl
12
+ - pl
13
+ - sv
14
+ tags:
15
+ - speech
16
+ - speech-classifiation
17
+ - text-to-speech
18
+ - spoofing
19
+ - multilingualism
20
+
21
+ pretty_name: FLEURS-HS
22
+ size_categories:
23
+ - 10K<n<100K
24
+ ---
25
+
26
+ # FLEURS-HS
27
+
28
+ An extension of the [FLEURS](https://huggingface.co/datasets/google/fleurs) dataset for synthetic speech detection using text-to-speech.
29
+
30
+ ## Dataset Details
31
+
32
+ ### Dataset Description
33
+
34
+ The dataset features 8 languages originally seen in FLEURS:
35
+
36
+ - German
37
+ - English
38
+ - Spanish
39
+ - French
40
+ - Italian
41
+ - Dutch
42
+ - Polish
43
+ - Swedish
44
+
45
+ The original FLEURS samples are used as `human` samples, while `synthetic` samples are generated using:
46
+
47
+ - [Google Cloud Text-To-Speech](https://cloud.google.com/text-to-speech)
48
+ - [Azure Text-To-Speech](https://azure.microsoft.com/en-us/products/ai-services/text-to-speech)
49
+ - [Amazon Polly](https://aws.amazon.com/polly/)
50
+
51
+ The resulting dataset features roughly twice the samples per language (every `human` sample usually has its `synthetic` counterpart).
52
+
53
+
54
+ - **Curated by:** [KONTXT by RealNetworks](https://realnetworks.com/kontxt)
55
+ - **Funded by:** [RealNetworks](https://realnetworks.com/)
56
+ - **Language(s) (NLP):** English, German, Spanish, French, Italian, Dutch, Polish, Swedish
57
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0) for the code, [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) for the dataset
58
+
59
+ ### Dataset Sources
60
+
61
+ The original FLEURS dataset was downloaded from [HuggingFace](https://huggingface.co/datasets/google/fleurs).
62
+
63
+ - **FLEURS Repository:** [HuggingFace](https://huggingface.co/datasets/google/fleurs)
64
+ - **FLEURS Paper:** [arXiv](https://arxiv.org/abs/2205.12446)
65
+
66
+ - **Paper:** Synthetic speech detection with Wav2Vec 2.0 in various language settings
67
+
68
+ ## Uses
69
+
70
+ This dataset is best used to train synthetic speech detection. Each sample contains an `Audio` feature, and a label: `human` or `synthetic`.
71
+
72
+ ### Direct Use
73
+
74
+ The following snippet of code demonstrates loading the training split for English:
75
+
76
+ ```python
77
+ from datasets import load_dataset
78
+
79
+ fleurs_hs = load_dataset(
80
+ "realnetworks-kontxt/fleurs-hs",
81
+ "en_us",
82
+ split="train",
83
+ trust_remote_code=True,
84
+ )
85
+ ```
86
+
87
+ To load a different language, change `en_us` into one of the following:
88
+ - `de_de` for German
89
+ - `es_419` for Spanish
90
+ - `fr_fr` for French
91
+ - `it_it` for Italian
92
+ - `nl_nl` for Dutch
93
+ - `pl_pl` for Polish
94
+ - `sv_se` for Swedish
95
+
96
+ To load a different split, change the `split` value to `dev` or `test`.
97
+
98
+ The `trust_remote_code=True` parameter is necessary because this dataset uses a custom loader. To check out which code is being ran, check out the [loading script](./fleurs-hs.py).
99
+
100
+ ## Dataset Structure
101
+
102
+ The dataset data is contained in the [data directory](./data).
103
+
104
+ There exists 1 directory per language.
105
+
106
+ Within those directories, there is a directory named `splits`; it contains 1 file per split:
107
+ - `train.tar.gz`
108
+ - `dev.tar.gz`
109
+ - `test.tar.gz`
110
+
111
+ Those `.tar.gz` files contain 2 directories:
112
+ - `human`
113
+ - `synthetic`
114
+
115
+ Each of these directories contain the `.wav` files for the label (and split). Keep in mind the the two directories can't be merged as they share most of their file names. An identical file name implies a speaker-voice pair, ex. `human/123.wav` and `synthetic/123.wav`.
116
+
117
+ Finally, back to the language directory, it contains 4 metadata files, which are not used in the loaded dataset, but might be useful to researchers:
118
+ - `recording-metadata.csv`
119
+ - contains the transcript ID, file name, split and gender of the original FLEURS samples
120
+ - `recording-transcripts.csv`
121
+ - contains the transcrpits of the original FLEURS samples
122
+ - `voice-distribution.csv`
123
+ - contains the TTS vendor, TTS name, TTS engine, FLEURS gender and TTS gender for each ID-file name pair
124
+ - useful for tracking what models were used to get specific synthetic samples
125
+ - `voice-metadata.csv`
126
+ - contains the groupation of TTS' used alongside the splits they were used for
127
+
128
+ ### Sample
129
+
130
+ A sample contains contains an Audio feature `audio`, and a string `label`.
131
+
132
+ ```
133
+ {
134
+ 'audio': {
135
+ 'path': 'human/10004088536354799741.wav',
136
+ 'array': array([0., 0., 0., ..., 0., 0., 0.]),
137
+ 'sampling_rate': 16000
138
+ },
139
+ 'label': 'human'
140
+ }
141
+ ```
142
+
143
+ ## Citation
144
+
145
+ The dataset is featured alongside our paper, **Synthetic speech detection with Wav2Vec 2.0 in various language settings**, which will be published on IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW). We'll provide links once it's available online.
146
+
147
+ **BibTeX:**
148
+
149
+ Note, the following BibTeX is incomplete - we'll update it once the actual one is known.
150
+
151
+ ```
152
+ @inproceedings{dropuljic-ssdww2v2ivls
153
+ author={Dropuljić, Branimir and Šuflaj, Miljenko and Jertec, Andrej and Obadić, Leo}
154
+ booktitle={2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)}
155
+ title={Synthetic speech detection with Wav2Vec 2.0 in various language settings}
156
+ year={2024}
157
+ volume={}
158
+ number={}
159
+ pages={1-5}
160
+ keywords={Synthetic speech detection;text-to-speech;wav2vec 2.0;spoofing attack;multilingualism}
161
+ doi={}
162
+ }
163
+ ```
164
+
165
+ ## Dataset Card Authors
166
+
167
+ - [Miljenko Šuflaj](https://huggingface.co/suflaj)
168
+
169
+ ## Dataset Card Contact
170
+
171
+ - [Miljenko Šuflaj](mailto:[email protected])