|
import numpy as np |
|
import datasets |
|
from PIL import Image |
|
|
|
|
|
class KMNIST(datasets.GeneratorBasedBuilder): |
|
"""Kuzushiji-MNIST and Kuzushiji-49 datasets.""" |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="kmnist", description="Kuzushiji-MNIST dataset with 10 classes."), |
|
datasets.BuilderConfig(name="k49mnist", description="Kuzushiji-49 dataset with 49 classes."), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "kmnist": |
|
num_classes = 10 |
|
else: |
|
num_classes = 49 |
|
return datasets.DatasetInfo( |
|
description="Kuzushiji-MNIST and Kuzushiji-49 datasets.", |
|
features=datasets.Features({ |
|
"image": datasets.Image(), |
|
"label": datasets.ClassLabel(num_classes=num_classes), |
|
}), |
|
supervised_keys=("image", "label"), |
|
license="CC BY-SA 4.0", |
|
homepage="https://github.com/rois-codh/kmnist", |
|
citation=""" |
|
@online{clanuwat2018deep, |
|
author = {Tarin Clanuwat and Mikel Bober-Irizar and Asanobu Kitamoto and Alex Lamb and Kazuaki Yamamoto and David Ha}, |
|
title = {Deep Learning for Classical Japanese Literature}, |
|
date = {2018-12-03}, |
|
year = {2018}, |
|
eprintclass = {cs.CV}, |
|
eprinttype = {arXiv}, |
|
eprint = {cs.CV/1812.01718}, |
|
} |
|
""" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = { |
|
"kmnist": { |
|
"train_imgs": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-train-imgs.npz", |
|
"train_labels": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-train-labels.npz", |
|
"test_imgs": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-test-imgs.npz", |
|
"test_labels": "http://codh.rois.ac.jp/kmnist/dataset/kmnist/kmnist-test-labels.npz", |
|
}, |
|
"k49mnist": { |
|
"train_imgs": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-train-imgs.npz", |
|
"train_labels": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-train-labels.npz", |
|
"test_imgs": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-test-imgs.npz", |
|
"test_labels": "http://codh.rois.ac.jp/kmnist/dataset/k49/k49-test-labels.npz", |
|
}, |
|
} |
|
selected_urls = urls[self.config.name] |
|
downloaded_files = dl_manager.download(selected_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images_path": downloaded_files["train_imgs"], |
|
"labels_path": downloaded_files["train_labels"] |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"images_path": downloaded_files["test_imgs"], |
|
"labels_path": downloaded_files["test_labels"] |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, images_path, labels_path): |
|
images = np.load(images_path)["arr_0"] |
|
labels = np.load(labels_path)["arr_0"] |
|
|
|
for idx, (image, label) in enumerate(zip(images, labels)): |
|
|
|
image = Image.fromarray(image, mode="L") |
|
yield idx, {"image": image, "label": int(label)} |
|
|