File size: 3,815 Bytes
8812ade d197b31 8812ade |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
license: mit
tags:
- nifty
- stock-movement
- news-and-events
- RLMF
task_categories:
- multiple-choice
- time-series-forecasting
- document-question-answering
task_ids:
- topic-classification
- semantic-similarity-classification
- multiple-choice-qa
- univariate-time-series-forecasting
- document-question-answering
language:
- en
pretty_name: nifty-rl
size_categories:
- 1K<n<100k
configs:
- config_name: nifty-rl
data_files:
- split: train
path: "train.jsonl"
- split: test
path: "test.jsonl"
- split: valid
path: "valid.jsonl"
default: true
---
<h1>
<img alt="RH" src="./nifty-icon.png" style="display:inline-block; vertical-align:middle; width:120px; height:120px; object-fit:contain" />
The News-Informed Financial Trend Yield (NIFTY) Dataset.
</h1>
The News-Informed Financial Trend Yield (NIFTY) Dataset. Details of the dataset, including data procurement and filtering can be found in the paper here: https://arxiv.org/abs/2405.09747.
## π Table of Contents
- [𧩠NIFTY Dataset](#nifty-dataset)
- [π Table of Contents](#table-of-contents)
- [π Usage](#usage)
- [Downloading the dataset](#downloading-the-dataset)
- [Dataset structure](#dataset-structure)
- [Large Language Models](#large-language-models)
- [βοΈ Contributing](#contributing)
- [π Citing](#citing)
- [π Acknowledgements](#acknowledgements)
## π [Usage](#usage)
Downloading and using this dataset should be straight-forward following the Huggingface datasets framework.
### [Downloading the dataset](#downloading-the-dataset)
The NIFTY dataset is available on huggingface [here](https://huggingface.co/datasets/raeidsaqur/NIFTY) and can be downloaded with the following python snipped:
```python
from datasets import load_dataset
# If the dataset is gated/private, make sure you have run huggingface-cli login
dataset = load_dataset("raeidsaqur/nifty-rl")
```
### [Dataset structure](#dataset-structure)
The dataset is split into 3 partition, train, valid and test and each partition is a jsonl file where a single row has the following keys.
```python
['prompt', 'chosen', 'rejected', 'chosen_label', 'chosen_value']
```
Currently, the dataset has 2111 examples in total, the dates randing from 2010-01-06 to 2020-09-21.
<!-- The number of examples for each split is given below.
| Split | Num Examples | Date range |
|-------|--------------|------------|
|Train |1477 |2010-01-06 - 2017-06-27 |
|Valid|317 | 2017-06-28- 2019-02-12|
|Test |317|2019-02-13 - 2020-09-21|
-->
<!--
<img alt="St" src="./imgs/visualize_nifty_1794_2019-02-13.png"
style="display:inline-block; vertical-align:middle; width:640px;
height:640px; object-fit:contain" />
-->
## βοΈ [Contributing](#contributing)
We welcome contributions to this repository (noticed a typo? a bug?). To propose a change:
```
git clone https://huggingface.co/datasets/raeidsaqur/nifty-rl
cd nifty-rl
git checkout -b my-branch
pip install -r requirements.txt
pip install -e .
```
Once your changes are made, make sure to lint and format the code (addressing any warnings or errors):
```
isort .
black .
flake8 .
```
Then, submit your change as a pull request.
## π [Citing](#citing)
If you use the NIFTY Financial dataset in your work, please consider citing our paper:
```
@article{raeidsaqur2024NiftyRL,
title = {NIFTY-RL: Financial News Headlines Dataset for LLM Alignment using Reinforcement Learning.},
author = {Raeid Saqur},
year = 2024,
journal = {ArXiv},
url = {https://arxiv.org/abs/2024.5599314}
}
```
## π [Acknowledgements](#acknowledgements)
The authors acknowledge and thank the generous computing provided by the Vector Institute, Toronto.
|