File size: 7,884 Bytes
9bf9071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101f7f
 
 
 
 
 
 
 
 
 
 
 
 
9bf9071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9234e36
 
 
5a19fff
 
 
 
9234e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a19fff
 
9234e36
 
 
 
 
 
 
 
 
 
 
 
 
6110dc9
 
 
 
 
 
 
 
 
 
 
 
9234e36
6110dc9
9234e36
 
 
 
 
 
 
6110dc9
9234e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a19fff
9234e36
5a19fff
9234e36
5a19fff
9234e36
5a19fff
9234e36
5a19fff
9234e36
 
 
 
 
5a19fff
 
9234e36
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
---
license: cc-by-sa-4.0
task_categories:
- question-answering
- table-question-answering
- text-generation
language:
- en
tags:
- croissant
pretty_name: UDA-QA
size_categories:
- 10K<n<100K
config_names:
- feta
- nq
- paper_text
- paper_tab
- fin
- tat
dataset_info:
- config_name: feta
  features:
  - name: doc_name
    dtype: string
  - name: q_uid
    dtype: string
  - name: question
    dtype: string
  - name: answer
    dtype: string
  - name: doc_url
    dtype: string
- config_name: nq
  features:
  - name: doc_name
    dtype: string
  - name: q_uid
    dtype: string
  - name: question
    dtype: string
  - name: short_answer
    dtype: string
  - name: long_answer
    dtype: string
  - name: doc_url
    dtype: string
- config_name: paper_text
  features:
  - name: doc_name
    dtype: string
  - name: q_uid
    dtype: string
  - name: question
    dtype: string
  - name: answer_1
    dtype: string
  - name: answer_2
    dtype: string
  - name: answer_3
    dtype: string
- config_name: paper_tab
  features:
  - name: doc_name
    dtype: string
  - name: q_uid
    dtype: string
  - name: question
    dtype: string
  - name: answer_1
    dtype: string
  - name: answer_2
    dtype: string
  - name: answer_3
    dtype: string
- config_name: fin
  features:
  - name: doc_name
    dtype: string
  - name: q_uid
    dtype: string
  - name: question
    dtype: string
  - name: answer_1
    dtype: string
  - name: answer_2
    dtype: string
# - config_name: tat
#   features:
#   - name: doc_name
#     dtype: string
#   - name: q_uid
#     dtype: string
#   - name: question
#     dtype: string
#   - name: answer
#   - name: answer_scale
#     dtype: string
#   - name: answer_type
#     dtype: string

configs:
- config_name: feta
  data_files:
  - split: test
    path: feta/test*
- config_name: nq
  data_files:
  - split: test
    path: nq/test*
- config_name: paper_text
  data_files:
  - split: test
    path: paper_text/test*
- config_name: paper_tab
  data_files:
  - split: test
    path: paper_tab/test*
- config_name: fin
  data_files:
  - split: test
    path: fin/test*
- config_name: tat
  data_files:
  - split: test
    path: tat/test*
---
# Dataset Card for Dataset Name

UDA (Unstructured Document Analysis) is a benchmark suite for Retrieval Augmented Generation (RAG) in real-world document analysis. 
Each entry in the UDA dataset is organized as a *document-question-answer* triplet, where a question is raised from the document, accompanied by a corresponding ground-truth answer. 
The documents are retained in their original file formats without parsing or segmentation; 
they consist of both textual and tabular data, reflecting the complex nature of real-world analytical scenarios.

## Dataset Details

### Dataset Description


- **Curated by:** Yulong Hui, Tsinghua University
- **Language(s) (NLP):** English
- **License:** CC-BY-SA-4.0
- **Repository:** https://github.com/qinchuanhui/UDA-Benchmark

## Uses

### Direct Use

Question-answering tasks on complete unstructured documents. 

After loading the dataset, you should also **download the sourc document files from the folder `src_doc_files`**.

More usage guidelines please refer to https://github.com/qinchuanhui/UDA-Benchmark 


### Extended Use

Evaluate the effectiveness of retrieval strategies using the evidence provided in the `extended_qa_info` folder.

Directly assess the performance of LLMs in numerical reasoning and table reasoning, using the evidence in the `extended_qa_info` folder as context.

Assess the effectiveness of parsing strategies on unstructured PDF documents.


## Dataset Structure

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
#### Descriptive Statistics

 Sub Dataset (folder_name) | Source Domain | Doc Format | Doc Num | Q&A Num | Avg #Words | Avg #Pages |Q&A Types 
 --- | --- | --- | --- | --- | ---| --- |--- 
FinHybrid (fin) | finance reports  | PDF        | 788 | 8190 | 76.6k | 147.8 |arithmetic
TatHybrid (tat)|  finance reports |PDF|170|14703|77.5k|148.5|extractive, counting, arithmetic
PaperTab (paper_tab)| academic papers    |PDF|307|393|6.1k|11.0|extractive, yes/no, free-form 
PaperText (paper_text)| academic   papers     | PDF|1087|2804|5.9k|10.6|extractive, yes/no, free-form 
FetaTab (feta)| wikipedia     |PDF & HTML|878|1023|6.0k|14.9|free-form 
NqText (nq)| wikipedia      |PDF & HTML|645|2477|6.1k|14.9|extractive      



#### Data Fields
Field Name | Field Value | Description| Example 
--- | --- | ---|--- 
doc_name | string | name of the source document | 1912.01214 
q_uid | string      | unique id of the question | 9a05a5f4351db75da371f7ac12eb0b03607c4b87 
question | string | raised question | which datasets did they experiment with? 
answer  <br />or  answer_1, answer_2 <br />or short_answer,  long_answer | string | ground truth answer/answers | Europarl, MultiUN 

**Additional Notes:**  Some sub-datasets may have multiple ground_truth answers, where the answers are organized as `answer_1`, `answer_2` (in FinHybrid, PaperTab and PaperText) or `short_answer`, `long_answer` (in NqText); In sub-dataset TatHybrid, the answer is organized as a sequence, due to the involvement of the multi-span Q&A type. Additionally, some sub-datasets may have unique data fields. For example, `doc_url` in FetaTab and NqText describes the Wikipedia URL page, while `answer_type` and `answer_scale` in TatHybrid provide extended answer references.


## Dataset Creation

### Source Data

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

#### Data Collection and Processing

We collect the Q&A labels from the open-released datasets (i.e., source  datasets), which are all annotated by human participants. 
Then we conduct a series of essential constructing actions, including source-document identification, categorization, filtering, data transformation.

#### Who are the source data producers?

[1] CHEN, Z., CHEN, W., SMILEY, C., SHAH, S., BOROVA, I., LANGDON, D., MOUSSA, R., BEANE, M., HUANG, T.-H., ROUTLEDGE, B., ET AL. Finqa: A dataset of numerical reasoning over financial data. arXiv preprint arXiv:2109.00122 (2021).

[2] ZHU, F., LEI, W., FENG, F., WANG, C., ZHANG, H., AND CHUA, T.-S. Towards complex document understanding by discrete reasoning. In Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 4857–4866.

[3] DASIGI, P., LO, K., BELTAGY, I., COHAN, A., SMITH, N. A., AND GARDNER, M. A dataset of information-seeking questions and answers anchored in research papers. arXiv preprint arXiv:2105.03011 (2021).

[4] NAN, L., HSIEH, C., MAO, Z., LIN, X. V., VERMA, N., ZHANG, R., KRYS ́ CIN ́ SKI, W., SCHOELKOPF, H., KONG, R., TANG, X., ET AL. Fetaqa: Free-form table question answering. Transactions of the Association for Computational Linguistics 10 (2022), 35–49.

[5] KWIATKOWSKI, T., PALOMAKI, J., REDFIELD, O., COLLINS, M., PARIKH, A., ALBERTI, C., EPSTEIN, D., POLOSUKHIN, I., DEVLIN, J., LEE, K., ET AL. Natural questions: a benchmark for question answering research. Transactions of the Association for Computational Linguistics 7 (2019), 453–466.


## Considerations for Using the Data
#### Personal and Sensitive Information

The dataset doesn't contain data that might be considered personal, sensitive, or private. The sources of data are publicly available reports, papers and wikipedia pages, which have been commonly utilized and accepted by the broader community.



<!-- ## Citation [optional] -->

<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

<!-- **BibTeX:** -->


## Dataset Card Contact

[email protected]