Datasets:
File size: 4,216 Bytes
f0b005d 06124c0 f0b005d 06124c0 8a97f64 f0b005d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from glob import glob
import os
from pathlib import Path
import datasets
import pandas as pd
import requests
_METADATA_URL = "metadata.csv"
_CITATION = """\
@dataset{h_novel,
author = {Xing Tian},
title = {h_novel},
month = aug,
year = 2023,
publisher = {Xing Tian},
version = {1.0},
}
"""
_DESCRIPTION = """\
This dataset contains some SQ novel.
It is supposed to be used for text generation tasks.
"""
class HNovel(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="ltxsba", version=VERSION, description="ltxsba"),
datasets.BuilderConfig(name="ltxsba_1gb", version=VERSION, description="ltxsba_1gb"),
datasets.BuilderConfig(name="ltxsba_5gb", version=VERSION, description="ltxsba_5gb"),
datasets.BuilderConfig(name="ltxsba_100m", version=VERSION, description="ltxsba_100m"),
datasets.BuilderConfig(name="ltxsba_500m", version=VERSION, description="ltxsba_500m"),
datasets.BuilderConfig(name="yazhou", version=VERSION, description="yazhou"),
datasets.BuilderConfig(name="yazhou_5m", version=VERSION, description="yazhou_5m"),
datasets.BuilderConfig(name="yazhou_10m", version=VERSION, description="yazhou_10m"),
datasets.BuilderConfig(name="yazhou_20m", version=VERSION, description="yazhou_20m"),
datasets.BuilderConfig(name="yazhou_50m", version=VERSION, description="yazhou_50m"),
datasets.BuilderConfig(name="yazhou_70m", version=VERSION, description="yazhou_70m"),
datasets.BuilderConfig(name="all", version=VERSION, description="all"),
]
def _info(self):
features = datasets.Features(
{
"source": datasets.Value("string"),
"idx": datasets.Value("string"),
"filename": datasets.Value("string"),
"novel_name": datasets.Value("string"),
"row_idx": datasets.Value("string"),
"text": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage="",
license="",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dl_path = dl_manager.download(_METADATA_URL)
archive_path = dl_path
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"archive_path": archive_path, "dl_manager": dl_manager},
),
]
def _generate_examples(self, archive_path, dl_manager):
"""Yields examples."""
sample_idx = 0
df = pd.read_csv(archive_path)
for i, row in df.iterrows():
source = row["source"]
filename = row["filename"]
if self.config.name != "all" and source != self.config.name:
continue
try:
filename = dl_manager.download(filename)
filename = Path(filename)
name = filename.stem
splits = name.split("_")
idx = splits[-1]
novel_name = "_".join(splits[:-1])
row_idx = 1
with open(filename.as_posix(), "r", encoding="utf-8") as f:
for txt_row in f:
txt_row = str(txt_row).strip()
if len(txt_row) == 0:
continue
yield sample_idx, {
"source": source,
"idx": idx,
"filename": "/".join(filename.parts[-3:]),
"novel_name": novel_name,
"row_idx": row_idx,
"text": txt_row,
}
row_idx += 1
sample_idx += 1
except Exception:
continue
if __name__ == '__main__':
pass
|