|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""MORFITT: A multi-label corpus of French biomedical literature""" |
|
|
|
import os |
|
import json |
|
|
|
import datasets |
|
|
|
_DESCRIPTION = """\ |
|
We introduce MORFITT corpus, the first multi-label corpus for the classification of specialties in the medical field in French. MORFITT is composed of 3,624 summaries of scientific articles from PubMed, annotated in 12 specialties. The article details the corpus, the experiments and the preliminary results obtained using a classifier based on the pre-trained language model CamemBERT. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/qanastek/MORFITT" |
|
|
|
_LICENSE = "Apache License 2.0" |
|
|
|
_URL = "https://huggingface.co/datasets/qanastek/MORFITT/resolve/main/data.zip" |
|
|
|
_CITATION = """\ |
|
(comming soon) |
|
""" |
|
|
|
class MORFITT(datasets.GeneratorBasedBuilder): |
|
"""MORFITT: A multi-label corpus of French biomedical literature""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
|
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"abstract": datasets.Value("string"), |
|
"labels": datasets.Sequence(datasets.features.ClassLabel( |
|
names=[ |
|
'chemistry', |
|
'etiology', |
|
'genetics', |
|
'immunology', |
|
'microbiology', |
|
'parasitology', |
|
'pharmacology', |
|
'physiology', |
|
'psychology', |
|
'surgery', |
|
'veterinary', |
|
'virology', |
|
], |
|
)), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = dl_manager.download_and_extract(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "train.txt"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "dev.txt"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "test.txt"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
f_in = open(f"{filepath}","r") |
|
content = f_in.read() |
|
f_in.close() |
|
|
|
for key, line in enumerate(content.split("\n")[1:]): |
|
|
|
if len(line) <= 0: |
|
continue |
|
|
|
identifier, abstract, labels = line.split("\t") |
|
labels = labels.split("|") |
|
|
|
yield key, { |
|
"id": identifier, |
|
"abstract": abstract, |
|
"labels": labels, |
|
} |