File size: 3,426 Bytes
bd90170 d9255d7 bd90170 d9255d7 bd90170 79ff1f3 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 d9255d7 bd90170 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
import json
import random
import datasets
import numpy as np
import pandas as pd
_CITATION = """\
ddd
"""
_DESCRIPTION = """\
This article presents MORFITT, the first multi-label corpus in French annotated in
specialties in the medical field. MORFITT is composed of 3~624 abstracts of scientific
articles from PubMed, annotated in 12 specialties for a total of 5,116 annotations.
We detail the corpus, the experiments and the preliminary results obtained using a
classifier based on the pre-trained language model CamemBERT. These preliminary results
demonstrate the difficulty of the task, with a weighted average F1-score of 61.78%.
"""
_HOMEPAGE = "ddd"
_URL = "https://huggingface.co/datasets/Dr-BERT/MORFITT/resolve/main/data.zip"
_LICENSE = "unknown"
_SPECIALITIES = ['microbiology', 'etiology', 'virology', 'physiology', 'immunology', 'parasitology', 'genetics', 'chemistry', 'veterinary', 'surgery', 'pharmacology', 'psychology']
class MORFITT(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "source"
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="source", version="1.0.0", description="The MORFITT corpora"),
]
def _info(self):
features = datasets.Features(
{
"id": datasets.Value("string"),
"abstract": datasets.Value("string"),
"specialities": datasets.Sequence(
datasets.features.ClassLabel(names=_SPECIALITIES),
),
"specialities_one_hot": datasets.Sequence(
datasets.Value("float"),
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_dir = dl_manager.download_and_extract(_URL).rstrip("/")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"tsv_file": data_dir + "/train.tsv",
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"tsv_file": data_dir + "/dev.tsv",
"split": "validation",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"tsv_file": data_dir + "/test.tsv",
"split": "test",
},
),
]
def _generate_examples(self, tsv_file, split):
# Load TSV file
df = pd.read_csv(tsv_file, sep="\t")
for index, e in df.iterrows():
specialities = e["specialities"].split("|")
# Empty one hot vector
one_hot = [0.0 for i in _SPECIALITIES]
# Fill up the one hot vector
for s in specialities:
one_hot[_SPECIALITIES.index(s)] = 1.0
yield e["identifier"], {
"id": e["identifier"],
"abstract": e["abstract"],
"specialities": specialities,
"specialities_one_hot": one_hot,
} |