File size: 3,426 Bytes
bd90170
 
d9255d7
bd90170
 
d9255d7
 
 
 
 
 
bd90170
 
79ff1f3
 
 
 
 
 
bd90170
 
d9255d7
bd90170
d9255d7
bd90170
d9255d7
bd90170
d9255d7
bd90170
 
 
d9255d7
 
 
 
 
bd90170
 
 
 
 
 
 
d9255d7
 
 
 
 
 
bd90170
 
d9255d7
bd90170
 
 
d9255d7
bd90170
d9255d7
bd90170
 
 
 
 
d9255d7
 
bd90170
 
 
 
d9255d7
 
bd90170
 
 
 
 
d9255d7
 
bd90170
 
 
 
 
d9255d7
 
bd90170
 
 
 
d9255d7
 
 
 
bd90170
d9255d7
bd90170
d9255d7
bd90170
d9255d7
 
bd90170
d9255d7
 
 
bd90170
d9255d7
 
 
 
 
bd90170
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
import json
import random

import datasets
import numpy as np
import pandas as pd

_CITATION = """\
ddd
"""

_DESCRIPTION = """\
This article presents MORFITT, the first multi-label corpus in French annotated in
specialties in the medical field. MORFITT is composed of 3~624 abstracts of scientific
articles from PubMed, annotated in 12 specialties for a total of 5,116 annotations. 
We detail the corpus, the experiments and the preliminary results obtained using a 
classifier based on the pre-trained language model CamemBERT. These preliminary results
demonstrate the difficulty of the task, with a weighted average F1-score of 61.78%.
"""

_HOMEPAGE = "ddd"

_URL = "https://huggingface.co/datasets/Dr-BERT/MORFITT/resolve/main/data.zip"

_LICENSE = "unknown"

_SPECIALITIES = ['microbiology', 'etiology', 'virology', 'physiology', 'immunology', 'parasitology', 'genetics', 'chemistry', 'veterinary', 'surgery', 'pharmacology', 'psychology']

class MORFITT(datasets.GeneratorBasedBuilder):

    DEFAULT_CONFIG_NAME = "source"

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="source", version="1.0.0", description="The MORFITT corpora"),
    ]

    def _info(self):

        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "abstract": datasets.Value("string"),
                "specialities": datasets.Sequence(
                    datasets.features.ClassLabel(names=_SPECIALITIES),
                ),
                "specialities_one_hot": datasets.Sequence(
                    datasets.Value("float"),
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=str(_LICENSE),
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        data_dir = dl_manager.download_and_extract(_URL).rstrip("/")
            
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "tsv_file": data_dir + "/train.tsv",
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "tsv_file": data_dir + "/dev.tsv",
                    "split": "validation",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "tsv_file": data_dir + "/test.tsv",
                    "split": "test",
                },
            ),
        ]

    def _generate_examples(self, tsv_file, split):

        # Load TSV file
        df = pd.read_csv(tsv_file, sep="\t")

        for index, e in df.iterrows():

            specialities = e["specialities"].split("|")

            # Empty one hot vector
            one_hot = [0.0 for i in _SPECIALITIES]

            # Fill up the one hot vector
            for s in specialities:
                one_hot[_SPECIALITIES.index(s)] = 1.0

            yield e["identifier"], {
                "id": e["identifier"],
                "abstract": e["abstract"],
                "specialities": specialities,
                "specialities_one_hot": one_hot,
            }